E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	89
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144hrt0cllt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
 - Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.
- Safety and Security
 - Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - 128-bit Unique Identification (ID) number
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - System Memory Protection Unit (System MPU)
 - Cyclic Redundancy Check (CRC) module
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
- Timing and control
 - Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- Package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

3 Ordering information

3.1 Selecting orderable part number

Not all part number combinations are available. See the attachment *S32K1xx_Orderable_Part_Number_List.xlsx* attached with the Datasheet for a list of standard orderable part numbers.

General

- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 8. T_J (Junction temperature)=135 °C. Assumes T_A=125 °C for RUN mode
 - T_J (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode
 - Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements

NOTE

Device functionality is guaranteed up to the LVR assert level, however electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics would be degraded when voltage drops below 2.7 V

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V _{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V _{DDA}	Analog supply voltage	2.7	5.5	V	4
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	4
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V_{DD}	V _{DD}	V	6
I _{INJPAD_DC_OP} 7	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

Table 2. Voltage and current operating requirements 1

- Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.

*Note: VSSA and VSS are shorted at package level

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V_{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis	—	45		mV	1
V _{LVR_LP}	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	—	50		mV	1

Table continues on the next page ...

General

Symbol	Description	Min.	Тур.	Max.	Unit
	$VLPS \rightarrow RUN$	8	_	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	STOP2 → RUN	0.07	0.075	0.08	μs
	VLPR → RUN	19	_	26	μs
	VLPR → VLPS	5.1	5.7	6.5	μs
	$VLPS \rightarrow VLPR$	18.8	23	27.75	μs
	$RUN \rightarrow Compute operation$	0.72	0.75	0.77	μs
	HSRUN \rightarrow Compute operation	0.3	0.31	0.35	μs
	RUN → STOP1	0.35	0.38	0.4	μs
	$RUN \rightarrow STOP2$	0.2	0.23	0.25	μs
	RUN → VLPS	0.3	0.35	0.4	μs
	$RUN \rightarrow VLPR$	3.5	3.8	5	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset \rightarrow Code execution	—	214	—	μs

 Table 6. Power mode transition operating behaviors (continued)

NOTE

HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode.

4.7 Power consumption

The following table shows the power consumption targets for the device in various mode of operations. Attached *S32K1xx_Power_Modes _Configuration.xlsx* details the modes used in gathering the power consumption data stated in the following table Table 7. For full functionality refer to table: Module operation in available power modes of the *Reference Manual*.

Table 7. Power consumption (Typicals unless stated otherwise) 1

				VLPS (μΑ) ²	VI	_PR (m	A)	STOP1 (mA)	STOP2 (mA)	RUN MHz	@48 (mA)	RUN@ (n	64 MHz 1A)	RUN@ (n	80 MHz nA)	HSRUN@112 MHz (mA) ³		
Chip/Device	Ambient Temperature (°C)	-		Peripherals disabled ⁵	Peripherals enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2^7			Peripherals disabled	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴
S32K	116 2	25	Тур	26	40	1.05	1.07	TBD	6.3	7.2	11.8	20.3			N	IA			245
	8	85	Тур	76	93	1.1	1.11	TBD	6.6	7.5	12	20.6							251
			Max	287	300	1.39	1.4	NA	8	8.9	13.4	22.1							279
	1	105	Тур	139	164	1.15	1.16	TBD	6.8	7.7	12.3	20.8							255
			Max	590	603	1.68	1.69	NA	9.2	10.1	14.5	23.1							302
	1	125	Тур	NA	NA	NA	NA	TBD	NA	NA	NA	NA							NA
			Max	891	904	2.02	2.04	NA	10.4	11.3	15.6	24.1							325
S32K	118 2	25	Тур	26	38	1.9	2.5	TBD	7	12	TBD	TBD			N	IA			TBD
	1	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
			Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
	1	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	42							TBD
S32K	142 2	25	Тур	29	40	1.17	1.21	2.19	6.4	7.4	17.3	24.6	24.5	31.3	28.8	37.5	40.5	52.2	360
	8	85	Тур	128	137	1.48	1.51	2.31	7	8	17.6	24.9	25	31.6	29.1	37.7	41.1	52.5	364
		F	Мах	335	360	1.87	1.89	NA	8.6	9.4	22	28.2	26.9	33.5	32	40	44	55.6	400
	1	105	Тур	240	257	1.58	1.61	2.44	7.6	8.3	18.3	25.7	25.5	31.9	29.8	38	41.5	53.1	373
		F	Max	740	791	2.32	2.34	NA	9.9	10.9	23.1	30.2	27.8	35.3	33.8	40.7	44.9	57.4	423
	1	125	Тур	NA	NA	NA	NA	2.84	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA

Table continues on the next page...

NXP Semiconductors

S32K1xx Data Sheet, Rev. 8, 06/2018

17

Table 8. VLPS additional use-case power consumption at typical conditions

Use-case	Description	Temp.			Dev	vice			Un
			S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
VLPS and RTC	Clock source: LPO or RTC_CLKIN	25	TBD	TBD	30	30	30	40	μA
		85	TBD	TBD	110	170	180	240	μA
		105	TBD	TBD	230	330	350	490	μA
		125	TBD	TBD	570	680	810	1250	μA
VLPS and LPUART	Clock source: SIRC	25	TBD	TBD	230	230	250	250	μA
TX/RX	 Transmiting or receiving continuously using DMA 	85	TBD	TBD	320	400	410	490	μA
	Baudrate: 19.2 kbps	105	TBD	TBD	490	550	600	850	μA
		125	TBD	TBD	890	1070	1250	1960	μA
VLPS and LPUART	Clock source: SIRC	25	TBD	TBD	100	100	110	110	μA
wake-up	-upWake-up address feature enabledBaudrate: 19.2 kbps	85	TBD	TBD	170	240	280	350	μA
		105	TBD	TBD	260	400	480	600	μA
		125	TBD	TBD	530	580	1000	1280	μA
VLPS and LPI2C	Clock Source: SIRC	25	TBD	TBD	670	690	820	900	μA
master	 Transmit/receive using DMA Baudrate: 100 kHz 	85	TBD	TBD	880	960	1220	1370	μA
		105	TBD	TBD	1080	1250	1660	2060	μA
		125	TBD	TBD	1970	1980	2860	3690	μA
VLPS and LPI2C	Clock source: SIRC	25	TBD	TBD	250	250	270	280	μA
slave wake-up	 Wake-up address feature enabled Baudrate: 100 kHz 	85	TBD	TBD	340	340	410	510	μA
		105	TBD	TBD	430	430	610	810	μA
		125	TBD	TBD	740	760	1170	1540	μA
VLPS and LPSPI	Clock source: SIRC	25	TBD	TBD	2.99	3.19	3.75	4.11	mA
master	 Iransmit/receive using DMA Baudrate: 500 kHz 	85	TBD	TBD	3.26	3.7	4.35	4.93	mA
		105	TBD	TBD	3.5	4.2	4.93	5.74	mA
		125	TBD	TBD	3.93	4.63	5.97	7.38	mĀ
VLPS and LPIT	Clock source: SIRC	25	TBD	TBD	100	100	120	130	μA
	 1 cnannel enable Mode: 32-bit periodic counter 	85	TBD	TBD	190	250	260	320	μA
	Mode: 32-bit periodic counter		TBD	TBD	310	410	440	570	μA
		125	TBD	TBD	640	750	910	1280	μĀ

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 11 and Table 12, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.	1	
V _{DD}	I/O Supply Voltage	2.7	3.3	4	V	1
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	—	V _{DD} + 0.3	V	2
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	—	$0.3 \times V_{DD}$	V	3
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_		V	
loh _{GPIO}	I/O current source capability measured when	3.5	_		mA	
loh _{GPIO-HD_DSE_0}	pad $V_{oh} = (V_{DD} - 0.8 V)$					
Iol _{GPIO}	I/O current sink capability measured when	3	—	_	mA	
Iol _{GPIO-HD_DSE_0}	pad V _{ol} = 0.8 V					
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	_	_	mA	4
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	12	_	_	mA	4
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	9.5	_	—	mA	5
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	10	_	_	mA	5
loh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	16	_	_	mA	5
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	15.5	—	_	mA	5
IOHT	Output high current total for all ports	—	—	100	mA	
lin	Input leakage current (per pin) for full tempera	ture range at	t V _{DD} = 3.3 V	1		6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins ⁷		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		60	kΩ	8
R _{PD}	Internal pulldown resistors	20		60	kΩ	9

1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.

- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

- 5. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to *SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx* attached with the *Reference Manual*.
- 6. Measured at input $V = V_{SS}$
- 7. Measured at input $V = V_{DD}$

Symbol	DSE	Rise ti	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25
		3.0	7.1	2.6	7.5	50
		12.0	27.0	10.3	26.8	200
	1	0.4	1.3	0.38	1.3	25
		1.5	3.8	1.4	3.9	50
		7.4	14.9	7.0	15.3	200

5.5 AC electrical specifications at 3.3 V range

 Table 13. AC electrical specifications at 3.3 V Range

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Symbol	DSE	Rise tir	ne (nS) ¹	Fall tim	ie (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50

Table 14. AC electrical specifications at 5 V Range

Table continues on the next page...

Memory and memory interfaces

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	K146	S32	2K148		
-			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{setram}	Set FlexRAM Function	Control Code 0xFF	0.08		0.08		0.08		0.08	-	ms	3
	execution time	32 KB EEPROM backup	0.8	1.2	0.8	1.2	0.8	1.2	_	-		
		48 KB EEPROM backup	1	1.5	1	1.5	1	1.5	_	-		
		64 KB EEPROM backup	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700		_	μs	3.4
		48 KB EEPROM backup	430	1850	430	1850	430	1850		_		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700	_	_	μs	3 [,] 4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	—		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time		360	2000	360	2000	360	2000	360	2000	μs	
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	630	2000	_	_	μs	3 [,] 4
		48 KB EEPROM backup	720	2125	720	2125	720	2125	_	—		
		64 KB EEPROM backup	810	2250	810	2250	810	2250	810	4500		
t _{quickwr}	32-bit Quick Write execution	1st 32-bit write	200	550	200	550	200	550	200	1100	μs	4 [,] 5 [,] 6
	ume: Time from CCIF clearing (start the write) until CCIF	2nd through Next to Last (Nth-1) 32- bit write	150	550	150	550	150	550	150	550		

 Table 23. Flash command timing specifications for S32K14x (continued)

Table continues on the next page...

Symbol	Description ¹		Description ¹ S32K142 S32K144		2K144	S32K146		S32K148				
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
	setting (32-bit write complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550	200	550	200	550		
t _{quickwr} Clnup	Quick Write Cleanup execution time		—	(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0	ms	7

Table 23. Flash command timing specifications for S32K14x (continued)

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

Table 24. Flash command timing specifications for S32K11x

Symbol	Descripti	S32	K116	Sa	32K118		_	
			Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block execution	32 KB flash	—	0.36	-	0.36	ms	
	time	64 KB flash	—	—	—	—		
		128 KB flash	—	1.2	—	—		
		256 KB flash	—	_	—	2		
		512 KB flash	—	—	—	—		
t _{rd1sec} Read 1 Section		2 KB flash	-	75	—	75	μs	
	execution time	4 KB flash	—	100	—	100		
t _{pgmchk}	Program Check execution time	—	_	100	_	100	μs	
t _{pgm8}	Program Phrase execution time	—	90	225	90	225	μs	
t _{ersblk}	Erase Flash Block	32 KB flash	15	300	15	300	ms	2
	execution time	64 KB flash	—	—	—	—		
		128 KB flash	120	1100	—	—		
		256 KB flash	—	—	250	2125]	
		512 KB flash	—	—	—	—]	

Table continues on the next page ...

NXP
Sem
icono
luctors

S32K1xx Data Sheet, Rev. 8, 06/2018

FLASH PORT	Sym	Unit						FLA	SH A							FLA	SH B	
					RL	JN ¹					HSR	UN ¹				RUN/I	ISRUN ²	
QuadSPI Mode					SI	DR					S	DR			SI	DR	D)R ³
			Inte Sam	ernal pling		Intern	al DQS		Inte Sam	ernal Ipling		Interna	al DQS		Inte Sam	ernal pling	Extern	al DQS
			N	11	P/ Loop	AD oback	Inte Loop	ernal oback	Ν	N1	P# Loop	\D back	Inte Loop	ernal oback	Ν	11	Extern	al DQS
			Min	Max	Min	Мах	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
							Regis	ster Sett	ings	-								
MCR[DDR_EN]		-	()	()	(C	(0	C		(C	()	-	1
MCR[DQS_EN]		-	(C	1	1	-	1	(0	1		-	1	()	-	1
MCR[SCLKCFG[0]]		-		-	1 0			- 1		0		-		-				
MCR[SCLKCFG[1]]		-		-	1	1 0			-	1		0		-		-		
MCR[SCLKCFG[2]]		-		-	-		-					-		-		0		
MCR[SCLKCFG[3]]		-		-	-	-		-		-	-			-		-	()
MCR[SCLKCFG[5]]		-	(C	0)	(C	(0	C)	(C	()	-	1
SMPR[FSPHS]		-	(C	1	1	(C	(0	1		(C	()	()
SMPR[FSDLY]		-	(C	()	(C	(0	C		(C	()	()
SOCCR				-	0)	2	3		-	C)	3	0		-		-
[SOCCFG[7:0]]																		
SOCCR[SOCCFG[15:8]]		-		-	-	-		-		-	-			-		- 30		
FLSHCR[TDH]		-	0x	00	0x	00	0x	:00	0x	:00	0x(00	0x	:00	0x	00	0x	.01
							Timing	g Param	eters									
SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴
SCK Clock Period	t _{SCK}	ns	I/fSCK	-	I/fSCK	-	I/fSCK	-	I/fSCK	-	/fSCK	-	/fSCK	-	50.0	-	50.0 ⁴	-

Table continues on the next page...

Memory and memory interfaces

39

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
f _{ADCK}	ADC conversion clock frequency	Normal usage	2	40	50	MHz	3, 4
f _{CONV}	ADC conversion frequency	No ADC hardware averaging. ⁵ Continuous conversions enabled, subsequent conversion time	46.4	928	1160	Ksps	6, 7
		ADC hardware averaging set to 32. ⁵ Continuous conversions enabled, subsequent conversion time	1.45	29	36.25	Ksps	6, 7

Table 27. 12-bit ADC operating conditions (continued)

- 1. Typical values assume $V_{DDA} = 5 V$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS}=20 \Omega$, and $C_{AS}=10 \text{ nF}$ unless otherwise stated. Typical values are for reference only, and are not tested in production.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}. To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 4. ADC conversion will become less reliable above maximum frequency.
- 5. When using ADC hardware averaging, see the *Reference Manual* to determine the most appropriate setting for AVGS.
- 6. Numbers based on the minimum sampling time of 275 ns.
- 7. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function'

Figure 13. ADC input impedance equivalency diagram

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		3	—	5.5	V	
I _{DDA_ADC}	Supply current per ADC		—	1	—	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		—	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		—	±0.7	—	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity			±1.0	—	LSB ⁵	6, 7, 8, 9

Table 29. 12-bit ADC characteristics (3 V to 5.5 V)($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS}=20 \Omega$, and $C_{AS}=10 \text{ nF}$ unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

- Due to triple bonding in lower pin packages like 32-QFN, 48-LQFP, and 64-LQFP degradation might be seen in ADC parameters.
- When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose
PTE8	CMP0_IN3
PTC3	ADC0_SE11/CMP0_IN4
PTC2	ADC0_SE10/CMP0_IN5
PTD7	CMP0_IN6
PTD6	CMP0_IN7
PTD28	ADC1_SE22
PTD27	ADC1_SE21

Communication modules

Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

Debug modules

Symbol	Description	Min.	Max.	Unit
MDC1	MDC pulse width high	40%	60%	MDC period
MDC2	MDC pulse width low	40%	60%	MDC period
MDC3	MDIO (input) to MDC rising edge setup	25	—	ns
MDC4	MDIO (input) to MDC rising edge hold	0	—	ns
MDC5	MDC falling edge to MDIO output valid (maximum propagation delay)		25	ns
MDC6	MDC falling edge to MDIO output invalid (minimum propagation delay)	-10		ns

6.5.7 Clockout frequency

Maximum supported clock out frequency for this device is 20 MHz

6.6 Debug modules

6.6.1 SWD electrical specofications

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued)

Rating	Conditions	Symbol	Package			Val	ues			Unit
				S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
Thermal resistance, Junction to Package	Natural Convection	ΨJT	32	1	NA	NA	NA	NA	NA	
Top ⁷			48	4	2	NA	NA	NA	NA	
			64	NA	2	2	2	2	NA	
			100	NA	NA	2	2	2	NA	
			144	NA	NA	NA	NA	2	1	
			176	NA	NA	NA	NA	NA	1	

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

6. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.

7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from this equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

Rev. No.	Date	Substantial Changes
		 Fixed the typo in R_{SW1} In LPSPI electrical specifications : Updated t_{Lead} and t_{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics : Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Deleted specs for R_{0JC} for 32 QFN package Added 'R_{0JCBottom}'
8	18 June 2018	 In attachement 'S32K1xx_Power_Modes _Configuration': Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. Removed S32K116 from Notes In figure: S32K1xx product series comparison :

Rev. No.	Date	Substantial Changes
		 Updated specs for T_{JIT} Cycle-to-Cycle jitter to 300 ps In QuadSPI AC specifications : Updated specs for T_{iv} Data Output In-Valid Time In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid area In CMP with 8-bit DAC electrical specifications : Removed '(VAIO)' from decription of V_{HYST0} In LPSPI electrical specifications : Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)'

Table 43. Revision History