NXP USA Inc. - FS32K144HRT0MLHT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144hrt0mlht

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
 - Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.
- Safety and Security
 - Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - 128-bit Unique Identification (ID) number
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - System Memory Protection Unit (System MPU)
 - Cyclic Redundancy Check (CRC) module
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
- Timing and control
 - Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- Package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

Feature comparison

Description Input Multiplexing sheet(s) attached with Reference Manual.

		S32	K11x	S32K14x K142 K144 K146 H				
	Parameter	K116	K118	K142	K144	K146	K148	
	Core	Arr	n [®] Cortex™-M0+		Arr	n [®] Cortex™-M4F		
	Frequency	48	MHz	80 MH	z (RUN mode) or 1	12 MHz (HSRUN 1	mode)1	
	IEEE-754 FPU		c			•		
	Cryptographic Services Engine (CSEc) ¹		•			•		
	CRC module	1	x		1	x		
	ISO 26262	capable u	o to ASIL-B		capable u	o to ASIL-B		
	Peripheral speed	up to 4	8 MHz		up to 112 M	Hz (HSRUN)		
	Crossbar		•			•		
E	DMA		•			•		
System	External Watchdog Monitor (EWM)		0			•		
sy	Memory Protection Unit (MPU)		•			•		
	FIRC CMU		•			0		
	Watchdog	1	x		1	x		
	Low power modes		•			•		
	HSRUN mode1		o			•		
	Number of I/Os	up to 43	up to 58	up t	io 89	up to 128	up to 156	
	Single supply voltage	2.7 -	5.5 V		2.7 -	5.5 V		
	Ambient Operation Temperature (Ta)	-40°C to +105	5ºC / +125ºC		-40°C to +10	5°C / +125°C		
	Flash	128 KB	256 KB	256 KB	512 KB	1 MB	2 MB ²	
	Error Correcting Code (ECC)		•			•		
	System RAM (including FlexRAM and MTB)	17 KB	25 KB	32 KB	64 KB	128 KB	256 KB	
Ž	FlexRAM (also available as system RAM)		KB	-		KB		
Memory	Cache		o		4	KB		
Σ	EEPROM emulated by FlexRAM ¹	2 KB (up to 3	2 KB D-Flash)	4 KE	3 (up to 64 KB D-F	lash)	See footnote 3	
	External memory interface		0		0		QuadSPI incl. HyperBus™	
	Low Power Interrupt Timer (LPIT)	1	x		1	x		
÷	FlexTimer (16-bit counter) 8 channels	2x	(16)	4x	(32)	6x (48)	8x (64)	
Timer	Low Power Timer (LPTMR)	1	x		1	x		
-	Real Time Counter (RTC)	1	x		1	x		
	Programmable Delay Block (PDB)	1	х		2	2x		
bo	Trigger mux (TRGMUX)	1x (43)	1x (45)	1x	(64)	1x (73)	1x (81)	
Analog	12-bit SAR ADC (1 Msps each)	1x (13)	1x (16)	2x	(16)	2x (24)	2x (32)	
A	Comparator with 8-bit DAC	1	x		1	x		
	10/100 Mbps IEEE-1588 Ethernet MAC		0		0		1x	
Ę	Serial Audio Interface (AC97, TDM, I2S)		c		0		2x	
Communication	Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)	2	x	2x		Зх		
Ē	Low Power SPI (LPSPI)	1x	2x	2x		Зx		
E C	Low Power I2C (LPI2C)		x		1x		2x	
0	FlexCAN (CAN-FD ISO/CD 11898-1)		x th FD)	2x (1x with FD)	3x (1x with FD)	3x3x1x with FD)(2x with FD)1x		
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1	x		1x			
IDEs	Debug & trace	SWD, MTB (1 KB), JTAG ⁴ SWD, JTAG (ITM, SW		JTAG (ITM, SWV,	SWO)	SWD, JTAG (ITM, SWV, SWO), ETM		
-	Ecosystem (IDE, compiler, debugger)		tudio (GCC) + SDK, auterbach, iSystems	1	NXP S32 Design S AR, GHS, Arm®, L	tudio (GCC) + SDł auterbach, iSystem	ζ, 15	
Other	Packages ⁵	32-pin QFN 48-pin LQFP	48-pin LQFP 64-pin LQFP	64-pin LQFP 100-pin LQFP	64-pin LQFP 100-pin LQFP 100-pin MAPBGA	64-pin LQFP 100-pin MAPBGA 100-pin LQFP 144-pin LQFP	100-pin MAPBGA 144-pin LQFP 176-pin LQFP	

LEGEND:

• Not implemented

Available on the device 1 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode.

2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.

3 4 KB (up to 512 KB D-Flash as a part of 2 MB Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.

4 Only for Boundary Scan Register
5 See Dimensions section for package drawings

Figure 3. S32K1xx product series comparison

- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGApackages.

Symbol	Parameter		Value		Unit
		Min.	Тур.	Max.	
T _{A C-Grade Part}	Ambient temperature under bias	-40	—	85 ¹	°C
T _{J C-Grade Part}	Junction temperature under bias	-40	—	105 ¹	°C
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C
T _{J V-Grade Part}	Junction temperature under bias	-40	—	125 ¹	°C
T _{A M-Grade Part}	Ambient temperature under bias	-40	—	125 ²	°C
T _{J M-Grade Part}	Junction temperature under bias	-40	—	135 ²	°C

1. Values mentioned are measured at \leq 112 MHz in HSRUN mode.

2. Values mentioned are measured at \leq 80 MHz in RUN mode.

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} ^{, 4} , ⁵	ADC reference high decoupling capacitance	70	100		nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100		nF

V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.

2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).

3. Minimum recommendation is after considering component aging and tolerance.

4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.

5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.

6. Contact your local Field Applications Engineer for details on best analog routing practices.

7. The filtering used for decoupling the device supplies must comply with the following best practices rules:

• The protection/decoupling capacitors must be on the path of the trace connected to that component.

• No trace exceeding 1 mm from the protection to the trace or to the ground.

• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).

• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	—	75	—	mV	1
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

Table 5. V_{DD} supply LVR, LVD and POR operating requirements (continued)

1. Rising threshold is the sum of falling threshold and hysteresis voltage.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- RUN Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - $BUS_CLK = 48 MHz$
 - FLASH_CLK = 24 MHz
- HSRUN Mode:
 - Clock source: SPLL
 - SYS_CLK/CORE_CLK = 112 MHz
 - BUS_CLK = 56 MHz
 - FLASH_CLK = 28 MHz
- VLPR Mode:
 - Clock source: SIRC
 - SYS_CLK/CORE_CLK = 4 MHz
 - $BUS_CLK = 4 MHz$
 - FLASH_CLK = 1 MHz
- STOP1/STOP2 Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - $BUS_CLK = 48 MHz$
 - FLASH_CLK = 24 MHz
- VLPS Mode: All clock sources disabled ¹

Table 6. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.	—	325	_	μs

Table continues on the next page...

- 1. For S32K11x FIRC/SOSC
 - For S32K14x FIRC/SOSC/SPLL

S32K1xx Data Sheet, Rev. 8, 06/2018

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

			VLPS (μΑ) ²	V	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		l@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³	
Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	Peripherals enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
		Max	1660	1736	3.48	3.55	NA	14.5	15.6	34.8	43.6	41.9	53.9	48.7	65.1	70.4	96.1	609
	105	Тур	560	577	2.49	2.54	4.03	10.9	11.9	29.8	37.8	37.6	47.5	45.2	61.5	63.8	89.1	565
		Max	2945	2970	4.40	4.47	NA	18.0	19.0	38.4	46.8	44.9	55.3	51.6	66.8	73.6	97.4	645
	125	Тур	NA	NA	NA	NA	4.85	NA	NA	NA	NA	NA	NA	NA	NA	N	İA	NA
		Max	3990	4166	6.00	6.08	NA	23.4	24.5	44.3	52.5	50.9	61.3	57.5	71.6	N	IA	719

S32K1xx Data Sheet, Rev. 8, 06/2018

- Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes
 V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for
 all unused input pins.
- 2. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 3. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.
- 4. Values mentioned for S32K14x devices are measured at RUN@80 MHz with peripherals disabled and values mentioned for S32K11x devices are measured at RUN@48 MHz with peripherals disabled.
- 5. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.
- 6. Data collected using RAM
- 7. Numbers on limited samples size and data collected with Flash
- 8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are inactive.

Table 17. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	—	1	_	MΩ	
R _S	Series resistor					
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	_	0	_	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3
	Low-gain mode (HGO=0)	_	1.0	_	V	
	High-gain mode (HGO=1)		3.3	_	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_{crit}$. The gm_crit is defined as:

gm_crit = 4 * ESR * $(2\pi F)^2$ * $(C_0 + C_L)^2$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C_1 , C_2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- 3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 21. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
T _{startup}	Startup Time	_	_	20	μs

6.2.5 SPLL electrical specifications

Table 22. SPLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8	—	16	MHz
F _{SPLL_Input} ²	PLL Input Frequency	8	—	40	MHz
F _{VCO_CLK}	VCO output frequency	180	—	320	MHz
F _{SPLL_CLK}	PLL output frequency	90	—	160	MHz
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³	•	·		
	at F _{VCO_CLK} 180 MHz	_	120	—	ps
	at F _{VCO_CLK} 320 MHz	_	75	—	ps
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (RMS) ³				
	at F _{VCO_CLK} 180 MHz	_	1350	—	ps
	at F _{VCO_CLK} 320 MHz	_	600	—	ps
D _{UNL}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%
T _{SPLL_LOCK}	Lock detector detection time ⁴	—	_	150 × 10 ⁻⁶ + 1075(1/F _{SPLL_REF})	S

1. F_{SPLL_REF} is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.

 F_{SPLL_Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary

4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3 Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.3.1.1 Flash timing specifications — commands Table 23. Flash command timing specifications for S32K14x

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	K146	S32	2K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block	32 KB flash	_	_	_	_	_		_	_	ms	
	execution time	64 KB flash		0.5	_	0.5	_	0.5	_	_		
		128 KB flash	_	_	_	_	_	_	_	<u> </u>	-	
		256 KB flash	_	2	_	—	_	_	—	-	1	
		512 KB flash	_	—	-	1.8	—	2	—	2		
t _{rd1sec}	Read 1 Section	2 KB flash	—	75	—	75	_	75	—	75	μs	
	execution time	4 KB flash	—	100	-	100	—	100	—	100	1	
t _{pgmchk}	Program Check execution time	—	_	95	-	95	-	95		100	μs	
t _{pgm8}	Program Phrase execution time	—	90	225	90	225	90	225	90	225	μs	
t _{ersblk}	Erase Flash	32 KB flash	—	—	-	—	—	—	—	-	ms	2
	Block execution time	64 KB flash	30	550	30	550	30	550	—	-	1	
		128 KB flash	—	—	—	—	—	—	—	-	1	
		256 KB flash	250	2125	—	—	—	—	—	—		
		512 KB flash	—	—	250	4250	250	4250	250	4250		
t _{ersscr}	Erase Flash Sector execution time		12	130	12	130	12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1KB flash)		5	_	5	-	5	_	5	—	ms	
t _{rd1all}	Read 1s All Block execution time		_	2.8	_	2.3	-	5.2	—	8.2	ms	
t _{rdonce}	Read Once execution time	_	-	30	—	30	-	30	-	30	μs	
t _{pgmonce}	Program Once execution time	—	90	—	90	—	90	—	90	-	μs	
t _{ersall}	Erase All Blocks execution time	—	250	2800	400	4900	700	10000	1400	17000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	35	_	35	-	35	-	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time		250	2800	400	4900	700	10000	1400	17000	ms	2
t _{pgmpart}	Program Partition for EEPROM	32 KB EEPROM backup	70	_	70	_	70	—	—	—	ms	3
	execution time	64 KB EEPROM backup	71	_	71	-	71	—	150	—		

Table continues on the next page...

Memory and memory interfaces

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	K146	S32	2K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{setram}	Set FlexRAM Function	Control Code 0xFF	0.08	—	0.08	—	0.08		0.08	_	ms	3
	execution time	32 KB EEPROM backup	0.8	1.2	0.8	1.2	0.8	1.2	_	-		
		48 KB EEPROM backup	1	1.5	1	1.5	1	1.5		_		
		64 KB EEPROM backup	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700	_	-	μs	3 [,] 4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	-		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700		_	μs	3 [,] 4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	-		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	360	2000	360	2000	μs	
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	630	2000	_	-	μs	3 [,] 4
		48 KB EEPROM backup	720	2125	720	2125	720	2125	_	-		
		64 KB EEPROM backup	810	2250	810	2250	810	2250	810	4500		
t _{quickwr}	32-bit Quick Write execution	1st 32-bit write	200	550	200	550	200	550	200	1100	μs	4 [,] 5 [,] 6
	time: Time from CCIF clearing (start the write) until CCIF	2nd through Next to Last (Nth-1) 32- bit write	150	550	150	550	150	550	150	550		

 Table 23. Flash command timing specifications for S32K14x (continued)

Table continues on the next page...

Table 32. LPSPI electrical specifications1 (continued)

Γ	Num	Symbol	Description	Conditions		Run Mode ²				HSRUN	Mode ²		VLPR Mode				Unit
					5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3 \	/ 10	
					Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
				Master Loopback(slow) 6	-		-		-		-		-		-		

- 1. Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.
- 2. While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz.
- 3. f_{periph} = LPSPI peripheral clock
- 4. $t_{periph} = 1/f_{periph}$
- 5. Master Loopback mode In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pads used are PTD15 and PTE0. Applicable only for LPSPI0.
- 6. Master Loopback (slow) In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pad used is PTB2. Applicable only for LPSPI0.
- 7. This is the maximum operating frequency (f_{op}) for LPSPI0 with medium PAD type only. Otherwise, the maximum operating frequency (f_{op}) is 12 Mhz.
- 8. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255.
- 9. Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255.
- 10. While selecting odd dividers, ensure Duty Cycle is meeting this parameter.
- 11. Maximum operating frequency (fop) is 12 MHz irrespective of PAD type and LPSPI instance.
- 12. Applicable for LPSPI0 only with medium PAD type, with maximum operating frequency (f_{op}) as 14 MHz.

S32K1xx

Data

Sheet,

Rev.

,œ

06/2018

Communication modules

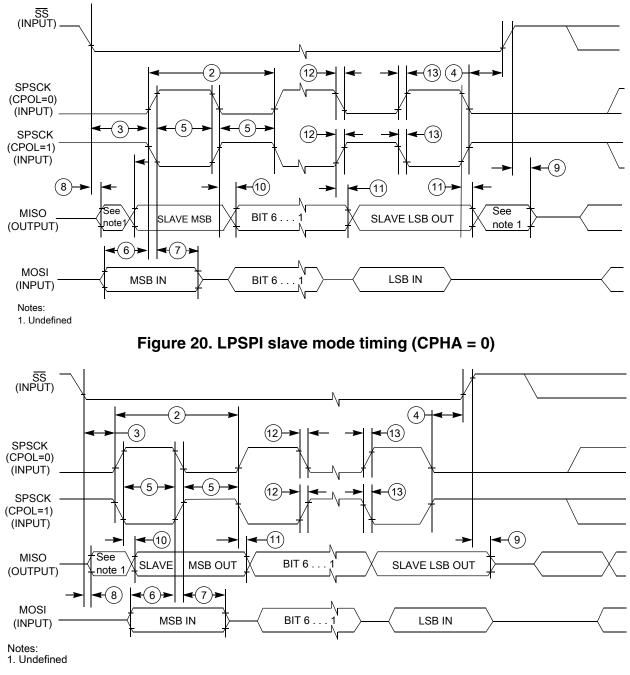


Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

Communication modules

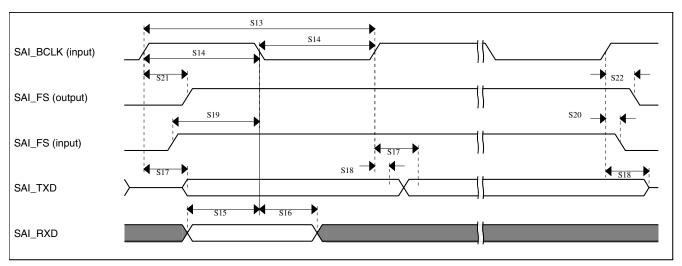


Figure 23. SAI Timing — Slave modes

6.5.6 Ethernet AC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

The following table describes the MII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK period
MII2	RXCLK pulse width low	35%	65%	RXCLK period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	—	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	—	ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK period
MII6	TXCLK pulse width low	35%	65%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	—	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	—	25	ns

Table 35. MII signal switching specifications

Communication modules

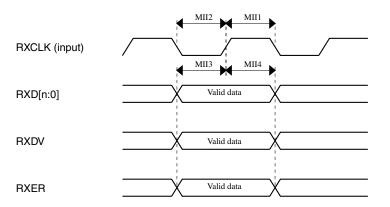
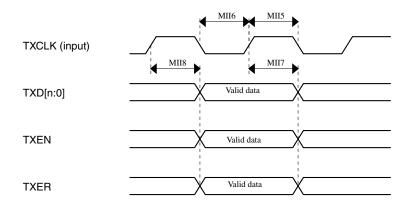



Figure 24. MII receive diagram

Figure 25. MII transmit signal diagram

The following table describes the RMII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
—	RMII input clock RMII_CLK Frequency	—	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2		ns

Table continues on the next page...

S32K1xx Data Sheet, Rev. 8, 06/2018

Symbol	Description	Run Mode					HSRUN Mode				VLPR Mode			
		5.0 V IO		3.3 V IO		5.0 V IO		3.3 V IO		5.0 V IO		3.3 V IO		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
S1	SWD_CLK frequency of operation	-	25	-	25	-	25	-	25	-	10	-	10	MHz
S2	SWD_CLK cycle period	1/S1	-	1/S1	-	1/S1	-	1/S1	-	1/S1	-	1/S1	-	ns
S3	SWD_CLK clock pulse width	S2/2 - 5	S2/2 + 5	S2/2 - 5	S2/2 + 5	S2/2 - 5	S2/2 + 5	S2/2 - 5	S2/2 + 5	S2/2 - 5	S2/2 + 5	S2/2 - 5	S2/2 + 5	ns
S4	SWD_CLK rise and fall times	-	1	-	1	-	1	-	1	-	1	-	1	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	4	-	4	-	4	-	4	-	16	-	16	-	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	3	-	3	-	3	-	3	-	10	-	10	-	ns
S11	SWD_CLK high to SWD_DIO data valid	-	28	-	38	-	28	-	38	-	70	-	77	ns
S12	SWD_CLK high to SWD_DIO high-Z	-	28	-	38	-	28	-	38	-	70	-	77	ns
S13	SWD_CLK high to SWD_DIO data invalid	0	-	0	-	0	-	0	-	0	-	0	-	ns

Table 38. SWD electrical specifications

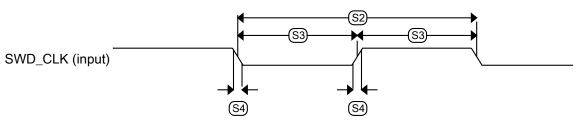


Figure 29. Serial wire clock input timing

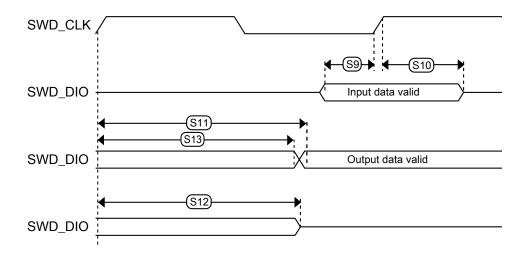


Figure 30. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the Trace electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

	Symbol	Description	RUN Mode			HSRUI	N Mode	VLPR Mode	Unit
—	Fsys	System frequency	80	48	40	112	80	4	MHz

Table 39.	Trace	specifications
-----------	-------	----------------

Table continues on the next page ...

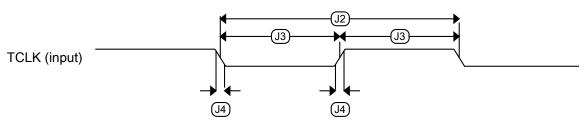


Figure 32. Test clock input timing

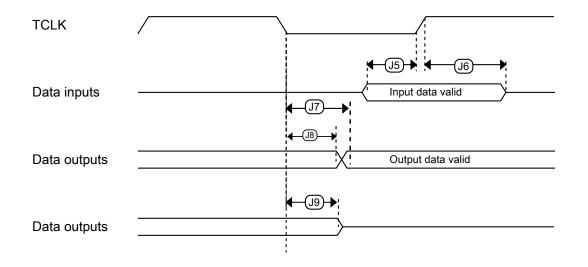


Figure 33. Boundary scan (JTAG) timing

	-									
Rating	Conditions	Symbol	Package			Values				
				S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
			144	NA	NA	NA	NA	37	31	[
			176	NA	NA	NA	NA	NA	30	ĺ
Thermal resistance, Junction to Ambient	Four layer	R _{θJMA}	32	26	NA	NA	NA	NA	NA	ĺ
(@200 ft/min) ^{1, 3}	board (2s2p)		48	48	41	NA	NA	NA	NA	ĺ
			64	NA	37	36	36	35	NA	ĺ
			100	NA	NA	34	34	33	NA	ĺ
			144	NA	NA	NA	NA	36	30	ĺ
			176	NA	NA	NA	NA	NA	29	ĺ
Thermal resistance, Junction to Board ⁴	_	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	11	NA	NA	NA	NA	NA	ĺ
			48	33	24	NA	NA	NA	NA	ĺ
			64	NA	26	25	25	23	NA	ĺ
			25	24	NA	ĺ				
			144	NA	NA	NA	NA	30	24	ĺ
			176	NA	NA	NA	NA	NA	24	ĺ
Thermal resistance, Junction to Case ⁵	—	R _{θJC}	32	NA	NA	NA	NA	NA	NA	ĺ
			48	23	19	NA	NA	NA	NA	ĺ
			64	NA	14	13	12	11	NA	ĺ
			100	NA	NA	13	12	11	NA	ĺ
			144	NA	NA	NA	NA	12	9	ĺ
			176	NA	NA	NA	NA	NA	9	
Thermal resistance, Junction to Case	_	R _{0JCBottom}	32	1			NA			
(Bottom) ⁶			48			N	A			
			64							1

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued)

Table continues on the next page...

100 144 176

70

S32K1xx Data Sheet,

Rev. 8, 06/2018

Rev. No.	Date	Substantial Changes
		 Updated note 'All the limits defined' Updated parameter 'I_{INJPAD_DC_ABS}', 'VIN_DC', I_{INJSUM_DC_ABS}. In Table 2, Updated parameter I_{INJPAD_DC_ABS}', 'VIN_DC', I_{INJSUM_DC_ABS}. In Table 5, updated TBDs for V_{LVR_HYST}, V_{LVD_HYST}, and _{VLVW_HYST} In Power mode transition operating behaviors, Added VLPR → VLPS Added VLPR → VLPS Added VLPS → VLPR Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup, and STOP2 → Asynchronous DMA Wakeup In Table 7, updated the specifications for S32K144. Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx. In Table 15, removed C_{IN_A}. In Table 17, Updated specificatins for g_{mXOSC}. Removed I_{DDSC}C In Table 19, Added parameter ΔF125. Removed I_{DDFIRC} In Table 21, removed I_{LPO} Updated section: Flash memory module (FTFC) electrical specifications In section: 12-bit ADC operating conditions, Updated TBDs for I_{DDA_ADC} and TUE in Table 29 In section: 12-bit ADC operating conditions, updated TBDs for I_{DDA_ADC} and TUE in Table 27. In section: 12-bit ADC operating conditions, updated Table 27. In section: CMP with 8-bit DAC electrical specifications, added note 'For comparator IN signals adjacent'
5	06 Dec 2017	 Removed S32K148 from 'Caution' Updated figure: S32K1xx product series comparison for 'EEPROM emulated by FlexRAM' of S32K148 (Added content to footnote) Added support for LIN protocol version 2.2 A In Absolute maximum ratings : Added note 'Unless otherwise' Added parameter 'Added note 'T_{ramp_MCU}' Updated footnote for 'T_{ramp}' In Voltage and current operating requirements : Added footnote 'V_{DD} and V_{DDA} must be shorted' against parameter 'V_{DD}-V_{DDA}' Updated footnote 'V_{DD} and V_{DDA} must be shorted' In Power and ground pins Added diagrams for 32-QFN and 48-LQFP and footnote below the diagrams. Updated footnote 'V_{DD} and V_{DDA} must be shorted'

Table 43. Revision History (continued)

Table continues on the next page ...

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015–2018 NXP B.V.

Document Number S32K1XX Revision 8, 06/2018

