E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	89
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144hrt0vmht

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
 - Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.
- Safety and Security
 - Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - 128-bit Unique Identification (ID) number
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - System Memory Protection Unit (System MPU)
 - Cyclic Redundancy Check (CRC) module
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
- Timing and control
 - Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- Package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

Feature comparison

Description Input Multiplexing sheet(s) attached with Reference Manual.

		S32	K11x		K14x				
	Parameter	K116	K118	K142	K144	K146	K148		
	Core	Arr	n [®] Cortex™-M0+		Arr	n [®] Cortex™-M4F			
	Frequency	48	MHz	80 MH	z (RUN mode) or 1	12 MHz (HSRUN 1	mode)1		
	IEEE-754 FPU		c			•			
	Cryptographic Services Engine (CSEc) ¹		•	•					
	CRC module	1	x		1	x			
	ISO 26262	capable u	o to ASIL-B	capable up to ASIL-B					
	Peripheral speed	up to 4	8 MHz		up to 112 M	Hz (HSRUN)			
	Crossbar		•			•			
E	DMA		•			•			
System	External Watchdog Monitor (EWM)		0			•			
sy	Memory Protection Unit (MPU)		•			•			
	FIRC CMU		•			0			
	Watchdog	1	x		1	x			
	Low power modes		•			•			
	HSRUN mode1		o			•			
	Number of I/Os	up to 43	up to 58	up t	io 89	up to 128	up to 156		
	Single supply voltage	2.7 -	5.5 V		2.7 -	5.5 V			
	Ambient Operation Temperature (Ta)	-40°C to +105	5ºC / +125ºC		-40°C to +10	5°C / +125°C			
	Flash	128 KB	256 KB	256 KB	512 KB	1 MB	2 MB ²		
	Error Correcting Code (ECC)		•			•			
	System RAM (including FlexRAM and MTB)	17 KB	25 KB	32 KB	64 KB	128 KB	256 KB		
Ž	FlexRAM (also available as system RAM)		KB	-		KB			
Memory	Cache		o		4	KB			
Σ	EEPROM emulated by FlexRAM ¹	2 KB (up to 3	2 KB D-Flash)	4 KE	3 (up to 64 KB D-F	lash)	See footnote 3		
	External memory interface		0		0		QuadSPI incl. HyperBus™		
	Low Power Interrupt Timer (LPIT)	1	x		1	x			
÷	FlexTimer (16-bit counter) 8 channels	2x	(16)	4x	(32)	6x (48)	8x (64)		
Timer	Low Power Timer (LPTMR)	1	x		1	x			
-	Real Time Counter (RTC)	1	x		1	x			
	Programmable Delay Block (PDB)	1	х		2	2x			
bo	Trigger mux (TRGMUX)	1x (43)	1x (45)	1x	(64)	1x (73)	1x (81)		
Analog	12-bit SAR ADC (1 Msps each)	1x (13)	1x (16)	2x	(16)	2x (24)	2x (32)		
A	Comparator with 8-bit DAC	1	x		1	x			
	10/100 Mbps IEEE-1588 Ethernet MAC		0		0		1x		
Ę	Serial Audio Interface (AC97, TDM, I2S)		c		0		2x		
Communication	Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)	2	x	2x		Зх			
Ē	Low Power SPI (LPSPI)	1x	2x	2x		Зx			
E C	Low Power I2C (LPI2C)		x		1x		2x		
0	FlexCAN (CAN-FD ISO/CD 11898-1)		x th FD)	2x (1x with FD)	3x (1x with FD)	3x (2x with FD)	3x (3x with FD)		
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1	x		1x				
IDEs	Debug & trace	SWD, MTB (1 KB), JTAG ⁴	SWD,	JTAG (ITM, SWV,	SWO)	SWD, JTAG (ITM, SWV, SWO), ETM		
-	Ecosystem (IDE, compiler, debugger)		tudio (GCC) + SDK, auterbach, iSystems	1	NXP S32 Design S AR, GHS, Arm®, L	tudio (GCC) + SDł auterbach, iSystem	ζ, 15		
Other	Packages ⁵	32-pin QFN 48-pin LQFP	48-pin LQFP 64-pin LQFP	64-pin LQFP 100-pin LQFP	64-pin LQFP 100-pin LQFP 100-pin MAPBGA	64-pin LQFP 100-pin MAPBGA 100-pin LQFP 144-pin LQFP	100-pin MAPBGA 144-pin LQFP 176-pin LQFP		

LEGEND:

• Not implemented

Available on the device 1 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode.

2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.

3 4 KB (up to 512 KB D-Flash as a part of 2 MB Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.

4 Only for Boundary Scan Register
5 See Dimensions section for package drawings

Figure 3. S32K1xx product series comparison

3 Ordering information

3.1 Selecting orderable part number

Not all part number combinations are available. See the attachment *S32K1xx_Orderable_Part_Number_List.xlsx* attached with the Datasheet for a list of standard orderable part numbers.

4 General

4.1 Absolute maximum ratings

NOTE

- Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions.
- Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.
- All the limits defined in the datasheet specification must be honored together and any violation to any one or more will not guarantee desired operation.
- Unless otherwise specified, all maximum and minimum values in the datasheet are across process, voltage, and temperature.

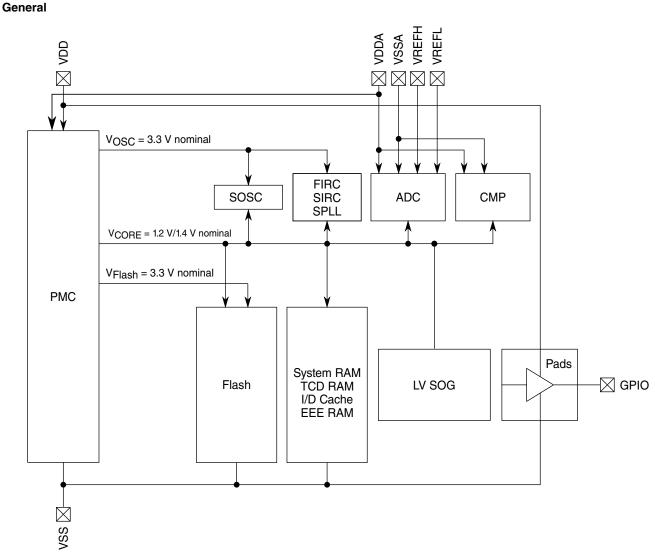

Symbol	Parameter	Conditions ¹	Min	Max	Unit
V _{DD} ²	2.7 V - 5. 5V input supply voltage	—	-0.3	5.8 ³	V
V _{REFH}	3.3 V / 5.0 V ADC high reference voltage		-0.3	5.8 ³	V
I _{INJPAD_DC_ABS} 4	Continuous DC input current (positive / negative) that can be injected into an I/O pin	_	-3	+3	mA
V _{IN_DC}	Continuous DC Voltage on any I/O pin with respect to $\rm V_{SS}$		-0.8	5.8 ⁵	V
INJSUM_DC_ABS	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	—	—	30	mA
T _{ramp} ⁶	ECU supply ramp rate	—	0.5 V/min	500 V/ms	—
T _{ramp_MCU} ⁷	MCU supply ramp rate		0.5 V/min	100 V/ms	—
T _A ⁸	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature	—	-55	165	°C
V _{IN_TRANSIENT}	Transient overshoot voltage allowed on I/O pin beyond $V_{IN_DC\ limit}$			6.8 ⁹	V

Table 1. Absolute maximum ratings

1. All voltages are referred to V_{SS} unless otherwise specified.

- As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. 60 s lifetime No restrictions i.e. The part can switch.

10 hours lifetime - Device in reset i.e. The part cannot switch.

*Note: VSSA and VSS are shorted at package level

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V_{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis		45		mV	1
$V_{LVR_{LP}}$	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	—	50	_	mV	1

Table continues on the next page ...

Table 8. VLPS additional use-case power consumption at typical conditions

Use-case	Description	Temp.			Dev	vice			Unit
			S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
VLPS and RTC	Clock source: LPO or RTC_CLKIN	25	TBD	TBD	30	30	30	40	μA
		85	TBD	TBD	110	170	180	240	μA
		105	TBD	TBD	230	330	350	490	μA
		125	TBD	TBD	570	680	810	1250	μA
VLPS and LPUART	Clock source: SIRC	25	TBD	TBD	230	230	250	250	μA
TX/RX	 Transmiting or receiving continuously using DMA 	85	TBD	TBD	320	400	410	490	μA
	Baudrate: 19.2 kbps	105	TBD	TBD	490	550	600	850	μA
		125	TBD	TBD	890	1070	1250	1960	μA
VLPS and LPUART	Clock source: SIRC	25	TBD	TBD	100	100	110	110	μA
wake-up	 Wake-up address feature enabled Baudrate: 19.2 kbps 	85	TBD	TBD	170	240	280	350	μA
		105	TBD	TBD	260	400	480	600	μA
		125	TBD	TBD	530	580	1000	1280	μA
VLPS and LPI2C	Clock Source: SIRC	25	TBD	TBD	670	690	820	900	μA
master	 Transmit/receive using DMA Baudrate: 100 kHz 	85	TBD	TBD	880	960	1220	1370	μA
		105	TBD	TBD	1080	1250	1660	2060	μA
		125	TBD	TBD	1970	1980	2860	3690	μA
VLPS and LPI2C	Clock source: SIRC	25	TBD	TBD	250	250	270	280	μA
slave wake-up	 Wake-up address feature enabled Baudrate: 100 kHz 	85	TBD	TBD	340	340	410	510	μA
		105	TBD	TBD	430	430	610	810	μA
		125	TBD	TBD	740	760	1170	1540	μA
VLPS and LPSPI	Clock source: SIRC	25	TBD	TBD	2.99	3.19	3.75	4.11	mA
master	 Transmit/receive using DMA Baudrate: 500 kHz 	85	TBD	TBD	3.26	3.7	4.35	4.93	mA
		105	TBD	TBD	3.5	4.2	4.93	5.74	mA
		125	TBD	TBD	3.93	4.63	5.97	7.38	mA
VLPS and LPIT	Clock source: SIRC	25	TBD	TBD	100	100	120	130	μA
	 1 channel enable Mode: 32-bit periodic counter 	85	TBD	TBD	190	250	260	320	μA
		105	TBD	TBD	310	410	440	570	μA
		125	TBD	TBD	640	750	910	1280	μA

Symbol	Description	Min.	Max.	Unit	
f _{FLASH}	Flash clock		24	MHz	
	Normal run mode (S32K14x series)	3	1		
f _{SYS}	System and core clock	_	80	MHz	
f _{BUS}	Bus clock	_	40 ⁴	MHz	
f _{FLASH}	Flash clock	_	26.67	MHz	
	VLPR mode ⁵				
f _{SYS}	System and core clock		4	MHz	
f _{BUS}	Bus clock		4	MHz	
f _{FLASH}	Flash clock	_	1	MHz	
f _{ERCLK}	External reference clock		16	MHz	

1. Refer to the section Feature comparison for the availability of modes and other specifications.

- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz

5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

Table 17. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	—	1	_	MΩ	
R _S	Series resistor					
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	_	0	_	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3
	Low-gain mode (HGO=0)	_	1.0	_	V	
	High-gain mode (HGO=1)		3.3	_	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_{crit}$. The gm_crit is defined as:

gm_crit = 4 * ESR * $(2\pi F)^2$ * $(C_0 + C_L)^2$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C_1 , C_2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- 3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications

NXP
Semiconductors

S32K1xx Data Sheet, Rev. 8, 06/2018

FLASH PORT	Sym	Unit						FLA	SH A							FLA	SH B	FLASH B				
					RL	JN ¹					HSR	UN ¹			RUN/HSRUN ²							
QuadSPI Mode					SI	SDR SI			SDR				DR	DE)R ³							
				rnal pling		Intern	al DQS			rnal pling		Interna	al DQS			rnal pling	Extern	al DQS				
			N	11		AD oback		ernal oback	N	11	PA Loop			rnal back	N	11	Extern	al DQS				
			Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max				
						•	Regis	ster Sett	ings		•	•						•				
MCR[DDR_EN]		-	()	(C	(C	()	0)	()	()	-	1				
MCR[DQS_EN]		-	()	-	1		1)	1		1		0		1					
MCR[SCLKCFG[0]]		-	-	-	-	1		0		-	1		0		-		-					
MCR[SCLKCFG[1]]		-	-	-	-	1	0		- 1		0		-		-							
MCR[SCLKCFG[2]]		-	-	-		-	-		-		-		-		-		0					
MCR[SCLKCFG[3]]		-	-	-		-		-	-	-	-			-	-	-	(C				
MCR[SCLKCFG[5]]		-	()	(C	(C	()	0)	()	()	-	1				
SMPR[FSPHS]		-	()	-	1	(C	()	1		()	()	()				
SMPR[FSDLY]		-	()	()	(C	()	0)	()	()	()				
SOCCR			-	-	(C	2	3		-	0)	3	0		-		-				
[SOCCFG[7:0]]																						
SOCCR[SOCCFG[15:8]]		-	-			-		-	-		-			-	-		3	0				
FLSHCR[TDH]		-	0x	00	0x	00	0x	:00	0x	00	0x(00	0x	00	0x	00	0x	01				
							Timing	g Param	eters													
SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴				
SCK Clock Period	t _{SCK}	ns	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	50.0	-	50.0 ⁴	-				

Table continues on the next page...

Memory and memory interfaces

39

6.4.1.2 12-bit ADC electrical characteristics

NOTE

- ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.
- On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		2.7	_	3	V	
I _{DDA_ADC}	Supply current per ADC		_	0.6	_	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±2.0	—	LSB ⁵	6, 7, 8, 9

Table 28. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume V_{DDA} = 3 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω , and C_{AS}=10 nF.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		3	—	5.5	V	
I _{DDA_ADC}	Supply current per ADC		—	1	—	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		—	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		—	±0.7	—	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		—	±1.0	—	LSB ⁵	6, 7, 8, 9

Table 29. 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS})

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS}=20 \Omega$, and $C_{AS}=10 \text{ nF}$ unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

- Due to triple bonding in lower pin packages like 32-QFN, 48-LQFP, and 64-LQFP degradation might be seen in ADC parameters.
- When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose
PTE8	CMP0_IN3
PTC3	ADC0_SE11/CMP0_IN4
PTC2	ADC0_SE10/CMP0_IN5
PTD7	CMP0_IN6
PTD6	CMP0_IN7
PTD28	ADC1_SE22
PTD27	ADC1_SE21

Communication modules

Table 32. LPSPI electrical specifications1 (continued)

Num Symbol		ol Description	Conditions		Run	Mode ²		HSRUN Mode ²				VLPR Mode				Unit			
					5.0 V IO		3.3 V IO		5.0 V IO		3.3 V IO		5.0 V IO		3.3	V IO	1		
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1			
4	t _{Lag} 9	Enable lag	Slave	-	-	-	-	-	-	-	-	-	-	-	-	ns			
		time (After SPSCK delay)	Master	(SCKPCS+1)*t _{periph} - 25	-	25	-	25	25				-	- 20	-				
		of corracially)	Master Loopback ⁵							- 25									
			Master Loopback(slow) ⁶		(SCKPCS+1)*t _{periph} -	(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} - 25		(SCKPCS+1)*t _{periph} - 50		(SCKPCS+1)*t _{periph} - 50							
5	twspsck ¹⁰	 Clock(SPSCK) high or low time (SPSCK duty cycle) 	Slave													ns			
			Master	tspsck/2-3 tspsck/2+3	с+3	с, С	ε + 3	ကို		6 5 7 7 7 7	£+3	2-2	5+5	2-2	2+5				
			Master Loopback ⁵		tspsck/2-3	tspsck/2+3	tspsck/2-3	tspsck/2+3 tspsck/2-3	tspsck/2-3	t _{sPSCK} /2-3 t _{sPSCK} /2+3	tspsck/2-5 tspsck/2+5	tspsck/2+5	tspsck/2-5 tspsck/2+5	tsPSCK/2+5					
							Master Loopback(slow) ⁶	H	<u>ب</u>	+	μ,	+	÷.	-	÷.	-	ů.	-	<u>ب</u>
6		Data setup time(inputs)	Slave	3	-	5	-	3	-	5	-	18	-	18	-	ns			
			Master	29	-	38	-	26	-	37 ¹¹ 32 ¹²	-	72	-	78	-	_			
					Master Loopback ⁵	7	-	8	-	5	-	7	-	20	-	20	-	-	
			Master Loopback(slow) ⁶	8	-	10	-	7	-	9	-	20	-	20	-				
7		t _{HI} Data hold time(inputs)		Slave	3	-	3	-	3	-	3	-	14	-	14	-	ns		
			Master	0	-	0	-	0	-	0	-	0	-	0	-				
			Master Loopback ⁵	3	-	3	-	2	-	3	-	11	-	11	-				
			Master Loopback(slow) ⁶	3	-	3	-	3	-	3	-	12	-	12	-				

Table continues on the next page...

52

Communication modules

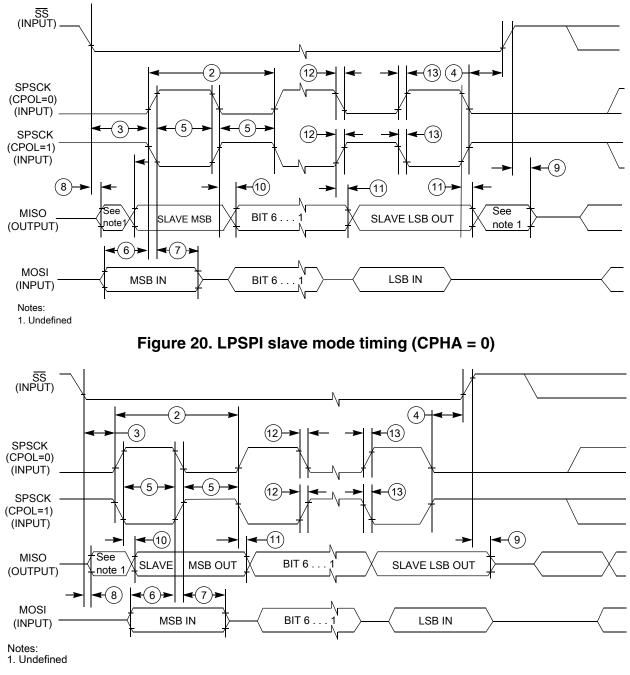


Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

Communication modules

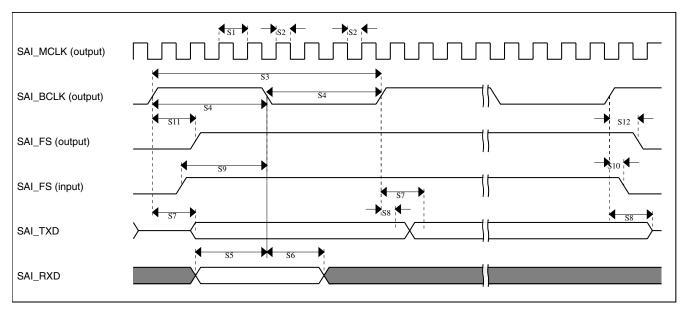


Figure 22. SAI Timing — Master modes

Symbol	Description	Min.	Max.	Unit
_	Operating voltage	2.97	3.6	V
S13	SAI_BCLK cycle time (input)	80	_	ns
S14 ¹	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S15	SAI_RXD input setup before SAI_BCLK	8	—	ns
S16	SAI_RXD input hold after SAI_BCLK	2	—	ns
S17	SAI_BCLK to SAI_TXD output valid		28	ns
S18	SAI_BCLK to SAI_TXD output invalid	0	_	ns
S19	SAI_FS input setup before SAI_BCLK	8	—	ns
S20	SAI_FS input hold after SAI_BCLK	2	—	ns
S21	SAI_BCLK to SAI_FS output valid	_	28	ns
S22	SAI_BCLK to SAI_FS output invalid	0	_	ns

Table 34. Slave mode timing specifications

1. The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle input must be taken care during the board design or by the master timing.

Communication modules

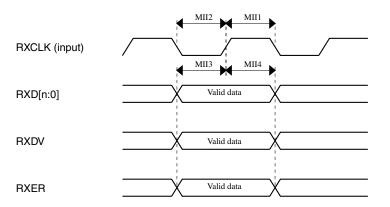
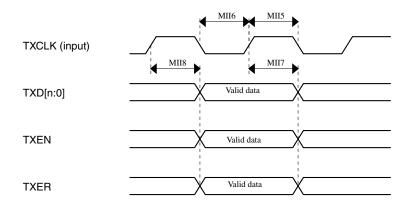
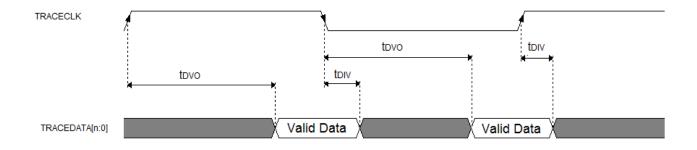



Figure 24. MII receive diagram

Figure 25. MII transmit signal diagram

The following table describes the RMII electrical characteristics.


- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
—	RMII input clock RMII_CLK Frequency	—	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	—	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2		ns

Table continues on the next page...


	Symbol Description		Symbol Description RUN Mode		HSRUN Mode		VLPR Mode	Unit	
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast pads	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
ads	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow pads	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

 Table 39.
 Trace specifications (continued)

6.6.3 JTAG electrical specifications

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	 Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings : Added footnote to I_{INJPAD_DC} Updated description, max and min values for I_{INJSUM} Updated fournet operating requirements : Renamed V_{SUP_OFF} Removed V_{INA} and V_{IN} Added footnote "Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V Updated footnote in table Table 4 Updated footnote mode transition operating behaviors In table: Power consumption Added footnote "With PMC_REGSC[CLKBIASDIS] " Updated conditions for VLPR Removed Idd/MHz for S32K142 and S32K148 Removed use case footnotes In section Modes configuration : Replaced table "Modes configuration" with spreadsheet attachment: 'S32K1xx_Power_Modes _Master_configuration_sheet' In tabl

Table 43. Revision History

Table continues on the next page...

Rev. No.

Date

		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : Ninor editorial update: Fixed the placement of SRAM, under 'Flash memory controller' block Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Ordering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated Frequency for S32K14x Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information : Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption : Updated specs for S32K146 Removed section 'Modes configuration', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements' and moved its content under the figure and current oper

Table 43. Revision History (continued)

Substantial Changes

Table continues on the next page...

the fisrt paragraph.

In 12-bit ADC operating conditions :

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015–2018 NXP B.V.

Document Number S32K1XX Revision 8, 06/2018

