

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core Size32-Bit Single-CoreSpeed64MHzConnectivityCANbus, FlexIO, I²C, LINbus, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O89Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Muning TypeSurface Mount		
Core Size32-Bit Single-CoreSpeed64MHzConnectivityCANbus, FlexIO, I²C, LINbus, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O89Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGAInternal00-MAPBGA (11x11)	Product Status	Active
Speed64MHzConnectivityCANbus, FlexIO, I²C, LINbus, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O89Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Core Processor	ARM® Cortex®-M4F
ConnectivityCANbus, FlexIO, I²C, LINbus, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O89Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Core Size	32-Bit Single-Core
PeripheralsPOR, PWM, WDTNumber of I/O89Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Speed	64MHz
Number of I/O89Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Peripherals	POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Number of I/O	89
EEPROM Size4K x 8RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Program Memory Size	512KB (512K x 8)
RAM Size64K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	EEPROM Size	4K x 8
Data ConvertersA/D 16x12b SAR; D/A1x8bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	RAM Size	64K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LFBGASupplier Device Package100-MAPBGA (11x11)	Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Operating Temperature -40°C ~ 85°C (TA) Mounting Type Surface Mount Package / Case 100-LFBGA Supplier Device Package 100-MAPBGA (11x11)	Data Converters	A/D 16x12b SAR; D/A1x8b
Mounting Type Surface Mount Package / Case 100-LFBGA Supplier Device Package 100-MAPBGA (11x11)	Oscillator Type	Internal
Package / Case 100-LFBGA Supplier Device Package 100-MAPBGA (11x11)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 100-MAPBGA (11x11)	Mounting Type	Surface Mount
	Package / Case	100-LFBGA
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144mat0cmhr	Supplier Device Package	100-MAPBGA (11x11)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144mat0cmhr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

General

			VLPS (μΑ) ²	V	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		l@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³	
Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	Peripherals enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
		Max	1637	1694	3.1	3.21	NA	12.7	13.7	25	32.9	30.7	38.8	36	43.8	N	A	450
S32K144	25	Тур	29.8	42	1.48	1.50	2.91	7	7.7	19.7	26.9	25.1	33.3	30.2	39.6	43.3	55.6	378
	85	Тур	150	159	1.72	1.85	3.08	7.2	8.1	20.4	27.1	26.1	33.5	30.5	40	43.9	56.1	381
		Max	359	384	2.60	2.65	NA	9.2	9.9	23.2	29.6	29.3	36.2	34.8	42.1	46.3	59.7	435
	105	Тур	256	273	1.80	2.10	3.23	7.8	8.5	20.6	27.4	26.6	33.8	31.2	40.5	44.8	57.1	390
		Max	850	900	2.65	2.70	NA	10.3	11.1	23.9	30.6	30.3	37.3	35.6	43.5	47.9	61.3	445
	125	Тур	NA	NA	NA	NA	3.65	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA
		Max	1960	1998	3.18	3.25	NA	12.9	13.8	26.9	33.6	35	40.3	38.7	46.8	N	A	484
S32K146	25	Тур	37	47	1.57	1.61	3.3	8	9.2	23.4	31.4	30.5	40.2	36.2	47.6	52	68.3	452
	85	Тур	207	209	1.79	1.83	3.54	8.9	10.1	24.4	32.4	31.5	41.3	37.2	48.7	53.3	69.8	465
		Max	974	981	3.32	3.38	NA	12.7	13.9	29.3	37.9	36.7	47	42.4	54.4	60.3	78	530
	105	Тур	419	422	1.99	2.04	3.78	9.8	11	25.3	33.4	32.5	42.2	38.1	49.6	54.4	70.8	477
		Max	2004	2017	4.06	4.13	NA	17.1	18.3	34.1	42.6	41.3	51.4	46.9	58.8	65.7	82.8	587
	125	Тур	NA	NA	NA	NA	4.44	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA
		Max	3358	3380	5.28	5.38	NA	22.6	23.7	40.2	48.8	47.3	57.4	52.8	64.8	N	A	660
S32K148 ⁸	25	Тур	38	54	2.17	2.20	3.45	8.5	9.6	27.6	34.9	35.5	45.3	42.1	57.7	60.3	83.3	526
	85	Тур	336	357	2.30	2.35	3.74	10.1	11.1	29.1	37.0	36.8	46.6	43.4	59.9	62.9	88.7	543

Table continues on the next page...

18

The following table shows the power consumption targets for S32K148 in various mode of operations measure at 3.3 V.

Chip/Device	Ambient		RUN@80	MHz (mA)	HSRUN@112 MHz (mA) ¹		
Chip/Device	Temperature (°C)		Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	
S32K148	25	Тур	67.3	79.1	89.8	105.5	
	85	Тур	67.4	79.2	95.6	105.9	
		Max	82.5	88.2	109.7	117.4	
	105	Тур	68.0	79.8	96.6	106.7	
		Max	80.3	89.1	109.0	119.0	
	125	Max	83.5	94.7	N	İA	

Table 9.Power consumption at 3.3 V

1. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model				2
	All pins except the corner pins	- 500	500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 11 and Table 12, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Symbol	Parameter		Value		Unit	Notes	
		Min. Typ		Max.			
V _{DD}	I/O Supply Voltage	2.7	3.3	4	V	1	
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2	
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3		$0.3 \times V_{DD}$	V	3	
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	—	V		
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	3.5	—	_	mA		
Iol _{GPIO} -HD_DSE_0	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	3	_		mA		
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	—	_	mA	4	
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	12	_	_	mA	4	
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	9.5	_	_	mA	5	
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	10	_	—	mA	5	
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	16	_	—	mA	5	
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	15.5	_	_	mA	5	
IOHT	Output high current total for all ports	_	_	100	mA		
IIN	Input leakage current (per pin) for full tempera	ture range at	V _{DD} = 3.3 V	/	ł	6	
	All pins other than high drive port pins		0.005	0.5	μA		
	High drive port pins ⁷		0.010	0.5	μA]	
R _{PU}	Internal pullup resistors	20		60	kΩ	8	
R _{PD}	Internal pulldown resistors	20		60	kΩ	9	

1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.

- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

I/O parameters

- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the *Reference Manual*.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input $V = V_{DD}$

5.4 DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	V _{ih} Input Buffer High Voltage		_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	—	V	
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad V_{oh} = (V_{DD} - 0.8 V)	5	_	—	mA	
Iol _{GPIO} Iol _{GPIO-HD_DSE_0}	I/O current sink capability measured when pad $V_{\rm ol}{=}$ 0.8 V	5	_	—	mA	
Ioh _{GPIO-HD_DSE_1}			_	—	mA	3
IOI _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 V$	20	_	—	mA	3
Ioh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	14.0	—	—	mA	4
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	14.5	—	_	mA	4
loh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	21	—	—	mA	4
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	20.5	—	—	mA	4
IOHT	Output high current total for all ports	—	_	100	mA	
IIN	Input leakage current (per pin) for full te	mperature r	ange at V _{DD}	₀ = 5.5 V		5
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		50	kΩ	6
R _{PD}	Internal pulldown resistors	20		50	kΩ	7

Table 12. DC electrical specifications at 5.0 V Range

1. For reset pads, same V_{ih} levels are applicable

2. For reset pads, same V_{il} levels are applicable

- 3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.
- 4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

- 5. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to *SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx* attached with the *Reference Manual*.
- 6. Measured at input $V = V_{SS}$
- 7. Measured at input $V = V_{DD}$

Symbol	DSE	Rise tir	ne (nS) ¹	Fall tin	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25
		3.0	7.1	2.6	7.5	50
		12.0	27.0	10.3	26.8	200
	1	0.4	1.3	0.38	1.3	25
		1.5	3.8	1.4	3.9	50
		7.4	14.9	7.0	15.3	200

5.5 AC electrical specifications at 3.3 V range

 Table 13. AC electrical specifications at 3.3 V Range

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Symbol	DSE	Rise tir	me (nS) ¹	Fall time (nS) ¹		Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50

Table 14. AC electrical specifications at 5 V Range

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit
f _{FLASH}	Flash clock		24	MHz
	Normal run mode (S32K14x series)	3	1	
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	_	40 ⁴	MHz
f _{FLASH}	Flash clock	_	26.67	MHz
	VLPR mode ⁵			
f _{SYS}	System and core clock		4	MHz
f _{BUS}	Bus clock		4	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{ERCLK}	External reference clock		16	MHz

1. Refer to the section Feature comparison for the availability of modes and other specifications.

- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz

5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 21. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
T _{startup}	Startup Time	_	_	20	μs

6.2.5 SPLL electrical specifications

Table 22. SPLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8	—	16	MHz
F _{SPLL_Input} ²	PLL Input Frequency	8	—	40	MHz
F _{VCO_CLK}	VCO output frequency	180	—	320	MHz
F _{SPLL_CLK}	PLL output frequency	90	—	160	MHz
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³	•	·		
	at F _{VCO_CLK} 180 MHz	_	120	—	ps
	at F _{VCO_CLK} 320 MHz	_	75	—	ps
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (RMS) ³				
	at F _{VCO_CLK} 180 MHz	_	1350	—	ps
	at F _{VCO_CLK} 320 MHz	_	600	—	ps
D _{UNL}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%
T _{SPLL_LOCK}	Lock detector detection time ⁴	—	_	150 × 10 ⁻⁶ + 1075(1/F _{SPLL_REF})	S

1. F_{SPLL_REF} is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.

 F_{SPLL_Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary

4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3 Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

Symbol	Description ¹		S32	K142	S3	2K144	S32	K146	S32	K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
	setting (32-bit write complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550	200	550	200	550		
t _{quickwr} Clnup	Quick Write Cleanup execution time		—	(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0	ms	7

Table 23. Flash command timing specifications for S32K14x (continued)

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

Table 24. Flash command timing specifications for S32K11x

Symbol	Descripti	on ¹	S32	2K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block execution	32 KB flash	—	0.36	—	0.36	ms	
	time	64 KB flash	—	—	—	_		
		128 KB flash	—	1.2	—	—		
		256 KB flash	—	—	—	2		
		512 KB flash	_	—	—	_		
t _{rd1sec}	Read 1 Section	2 KB flash		75	—	75	μs	
	execution time	4 KB flash	—	100	—	100		
t _{pgmchk}	Program Check execution time	—	—	100	-	100	μs	
t _{pgm8}	Program Phrase execution time	-	90	225	90	225	μs	
t _{ersblk}	Erase Flash Block	32 KB flash	15	300	15	300	ms	2
	execution time	64 KB flash	—	—	—	_		
		128 KB flash	120	1100	—	—		
		256 KB flash	_	—	250	2125		
		512 KB flash	_	—	—	—		

Table continues on the next page ...

Symbol	Description	on ¹	S32	K116	s	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3 [,] 4
		48 KB EEPROM backup	-	—	—	—		
		64 KB EEPROM backup	-	—	—	—		
t _{quickwr}	32-bit Quick Write	1st 32-bit write	200	550	200	550	μs	4 [,] 5,6
	execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write	2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550		
	complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
t _{quickwrClnup}	Quick Write Cleanup execution time	_		(# of Quick Writes) * 2.0	—	(# of Quick Writes) * 2.0	ms	7

Table 24. Flash command timing specifications for S32K11x (continued)

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using as Program	and Data	Flash			
t _{nvmretp1k}	Data retention after up to 1 K cycles	20		_	years	1
n _{nvmcycp}	Cycling endurance	1 K	_	_	cycles	2, 3

Table continues on the next page...

Table 25.	NVM reliability	y s	pecifications	(continued))
-----------	-----------------	-----	---------------	-------------	---

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using FlexMemory feature : Fle	xRAM as E	Emulated EEP	ROM		
t _{nvmretee}	Data retention	5	—	_	years	4
n _{nvmwree16}	Write endurance EEPROM backup to FlexRAM ratio = 16 	100 K	_	_	writes	5, 6, 7
n _{nvmwree256}	 EEPROM backup to FlexRAM ratio = 256 	1.6 M	—	—	writes	

- 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.
- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.
- FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

6.4.1.2 12-bit ADC electrical characteristics

NOTE

- ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.
- On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		2.7	_	3	V	
I _{DDA_ADC}	Supply current per ADC		_	0.6	_	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±2.0	—	LSB ⁵	6, 7, 8, 9

Table 28. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume V_{DDA} = 3 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω , and C_{AS}=10 nF.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

Table 32. LPSPI electrical specifications1

Num	Symbol	Description	Conditions		Run	Mode ²			HSRU	N Mode ²			VLPR	Mode		Unit
				5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	1
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
	f _{periph} , 3, 4	Peripheral	Slave	-	40	-	40	-	56	-	56	-	4	-	4	MH
		Frequency	Master	-	40	-	40	-	56	-	56	-	4	-	4]
			Master Loopback ⁵	-	40	-	48	-	48	-	48	-	4	-	4	
			Master Loopback(slow) ⁶	-	48	-	48	-	48	-	48	-	4	-	4	
1	f _{op}	Frequency of	Slave	-	10	-	10	-	14	-	14 ⁷	-	2	-	2	MH
		operation	Master	-	10	-	10	-	14	-	14 ⁷	-	2	-	2	1
			Master Loopback ⁵	-	20	-	12	-	24	-	12	-	2	-	2	
			Master Loopback(slow) ⁶	-	12	-	12	-	12	-	12	-	2	-	2	
2	t _{SPSCK}	SPSCK	Slave	100	-	100	-	72	-	72	-	500	-	500	-	ns
		period	Master	100	-	100	-	72	-	72	-	500	-	500	-	
			Master Loopback ⁵	50	-	83	-	42	-	83	-	500	-	500	-	
			Master Loopback(slow) ⁶	83	-	83	-	83	-	83	-	500	-	500	-	
3	t _{Lead} ⁸	Enable lead	Slave	-	-	-	-	-	-	-	-	-	-	-	-	ns
		time (PCS to SPSCK delay)	Master		-		-		-		-		-		-]
			Master Loopback ⁵	1-25		- ⁻ -25		- ⁻ -25		⁻ -25		-50		- ⁻ -50		
			Master Loopback(slow) ⁶	(PCSSCK+1)*t _{periph} -25		(PCSSCK+1)*t _{periph} -50		(PCSSCK+1)*t _{periph} -50								

Table continues on the next page...

Communication modules

5

Communication modules

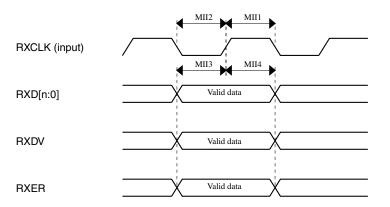
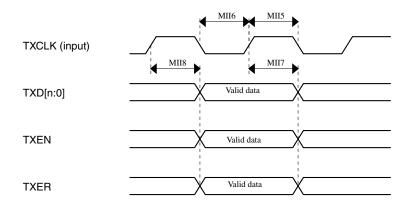



Figure 24. MII receive diagram

Figure 25. MII transmit signal diagram

The following table describes the RMII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
—	RMII input clock RMII_CLK Frequency	—	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2		ns

Table continues on the next page...

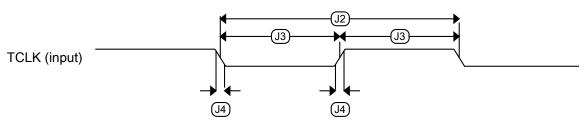


Figure 32. Test clock input timing

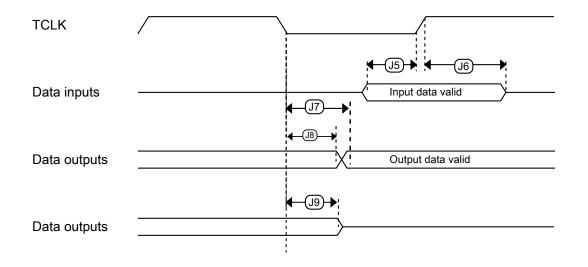


Figure 33. Boundary scan (JTAG) timing

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued)

Rating	Conditions	Symbol	Package			Valu	ues			Unit
				S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
Thermal resistance, Junction to Package	Natural	ΨJT	32	1	NA	NA	NA	NA	NA	
Top ⁷	Convection		48	4	2	NA	NA	NA	NA	
			64	NA	2	2	2	2	NA	
			100	NA	NA	2	2	2	NA	
			144	NA	NA	NA	NA	2	1	
			176	NA	NA	NA	NA	NA	1	

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

6. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.

7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100-pin MAPBGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	 Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings : Added footnote to I_{INJPAD_DC} Updated description, max and min values for I_{INJSUM} Updated fournet operating requirements : Renamed V_{SUP_OFF} Removed V_{INA} and V_{IN} Added footnote "Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V Updated footnote in table Table 4 Updated footnote mode transition operating behaviors In table: Power consumption Added footnote "With PMC_REGSC[CLKBIASDIS] " Updated conditions for VLPR Removed Idd/MHz for S32K142 and S32K148 Removed use case footnotes In section Modes configuration : Replaced table "Modes configuration" with spreadsheet attachment: 'S32K1xx_Power_Modes _Master_configuration_sheet' In tabl

Table 43. Revision History

Table continues on the next page...

Rev. No.	Date	Substantial Changes
		 Updated values for V_{REFH} and V_{REFL} to add refernce to the section "voltage and current operating requirments" for Min and Max valaues Updated footnote to Typ. Removed footnote from RAS Analog source resistance Updated figure: ADC input impedance equivalency diagram In table: 12-bit ADC characteristics (2.7 V to 3 V) (V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Removed number for TUE Updated footnote to Typ. In table: Comparator with 8-bit DAC electrical specifications Updated Typ. of I_{DDLS} Supply current, Low-speed mode Updated Typ. of I_{DDLS} Propagation delay, Low-speed mode Updated Typ. of I_{DDLS} Propagation delay, High-speed mode Updated Typ. of I_{DDAC} Initialization and switching settling time Updated footnote Updated footnote Updated section: LENE Propagation delay Added section: SAI electrical specifications Added section: Clockout frequency Added section: Clockout frequency Added section: Trace electrical specifications Updated table: Table 41 : Updated numbers for S32K142 and S32K148 Updated Document number for 32-pin QFN in topic Obtaining package dimensions
3	14 March 2017	 In Table 2 Updated min. value of V_{DD_OFF} Added parameter I_{INJSUM_AF} Updated Power mode transition operating behaviors Updated Power consumption Updated footnote to T_{SPLL_LOCK} in SPLL electrical specifications In 12-bit ADC electrical characteristics Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC}, TUE, DNL, and INL Added min. value to SMPLTS Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Removed footnote 'All the parameters in this table ' In Flash timing specifications — commands updated Max. value of t_{vfykey} to 33 µs
4	02 June 2017	 In section: Block diagram, added block diagram for S32K11x series. Updated figure: S32K1xx product series comparison. In section: Selecting orderable part number, added reference to attachemen <i>S32K_Part_Numbers.xlsx</i>. In section: Ordering information Updated figure: Ordering information. In Table 1,

Table 43. Revision History (continued)

Table continues on the next page...

Rev. No.

Date

		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Crdering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated requency for S32K14x Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information : Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption : Updated specs for S32K146 Removed section 'Modes configuration', amd moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements and moved its content under the figure and current operating requi

Table 43. Revision History (continued)

Substantial Changes

Table continues on the next page...

the fisrt paragraph.

In 12-bit ADC operating conditions :

Rev. No.	Date	Substantial Changes
		 Updated specs for T_{JIT} Cycle-to-Cycle jitter to 300 ps
		 In QuadSPI AC specifications :
		 Updated specs for T_{iv} Data Output In-Valid Time
		In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid
		area
		 In CMP with 8-bit DAC electrical specifications :
		 Removed '(VAIO)' from decription of V_{HYST0}
		In LPSPI electrical specifications :
		 Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)'

Table 43. Revision History