NXP USA Inc. - FS32K144MFT0VLHR Datasheet

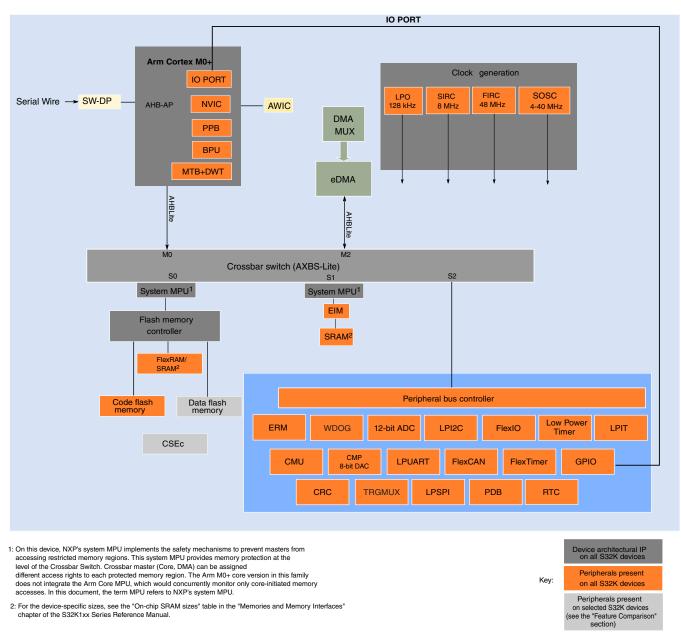
Welcome to E-XFL.COM

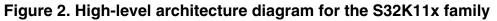
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

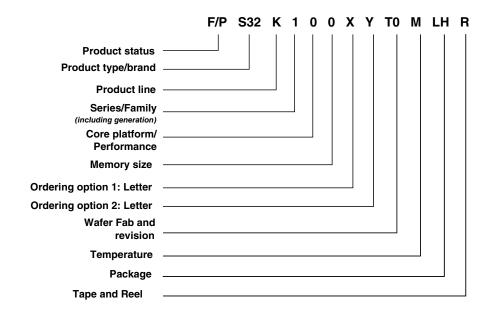

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144mft0vlhr


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
 - Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.
- Safety and Security
 - Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - 128-bit Unique Identification (ID) number
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - System Memory Protection Unit (System MPU)
 - Cyclic Redundancy Check (CRC) module
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
- Timing and control
 - Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- Package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

Feature comparison


2 Feature comparison

The following figure summarizes the memory, peripherals and packaging options for the S32K1xx devices. All devices which share a common package are pin-to-pin compatible.

NOTE

Availability of peripherals depends on the pin availability in a particular package. For more information see *IO Signal*

3.2 Ordering information

Product status

P: Prototype F: Qualified

Product type/brand S32: Automotive 32-bit MCU

Product line K: Arm Cortex MCUs

Series/Family

1: 1st product series 2: 2nd product series

Core platform/Performance

- 1: Arm Cortex M0+
- 4: Arm Cortex M4F

Memory size

	2	4	6	8
S32K11x			128K	256K
S32K14x	256K	512K	1M	2M

Ordering option

X: Speed

B: 48 MHz without DMA (S32K11x only) L: 48 MHz with DMA (S32K11x only) H: 80 MHz U¹: 112 MHz (Not valid with M temperature/125C)

Y: Optional feature

- R: Base feature set
- F: CAN FD, FlexIO
- A1: CAN FD, FlexIO, Security
- E: Ethernet, Serial Audio Interface (S32K148 only) J1: Ethernet, Serial Audio Interface, CAN FD, FlexIO, Security (S32K148 only)

Wafer, Fab and revision

Fx: ATMC² Tx: GF XX: Flex #²

x0: 1st revision

Temperature

V: -40C to 105C M: -40C to 125C W: -40C to 150C²

Package

Pins	LQFP	QFN	BGA
32	-	FM	-
48	LF	-	-
64	LH	-	-
100	LL	-	ΜΗ
144	LQ	-	-
176	LU		

Tape and Reel T: Trays/Tubes R: Tape and Reel

1. CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.

2. Not supported yet

3. Part numbers no longer offered as standard include:

Ordering Option X (M:64MHz); Ordering Option Y (N: limited RAM. 16KB for K142, 48KB for K144, 96KB for K146, 192KB for K148 S: Security); Temperature (C: -40C to 85C)

NOTE

Not all part number combinations are available. See S32K1xx_Orderable_Part_Number_List.xlsx attached with the Datasheet for list of standard orderable parts.

Figure 4. Ordering information

General

- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 8. T_J (Junction temperature)=135 °C. Assumes T_A=125 °C for RUN mode
 - T_J (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode
 - Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements

NOTE

Device functionality is guaranteed up to the LVR assert level, however electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics would be degraded when voltage drops below 2.7 V

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V_{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V _{DDA}	Analog supply voltage	2.7	5.5	V	4
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	4
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	6
I _{INJPAD_DC_OP} ⁷	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

Table 2. Voltage and current operating requirements 1

- Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.

- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

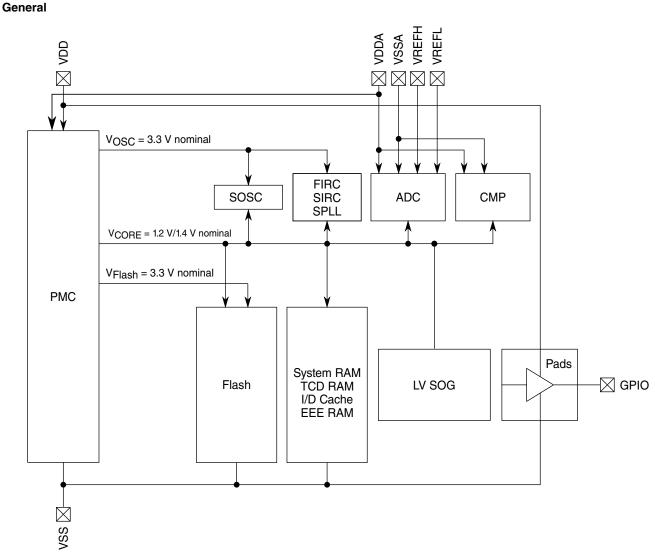

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGApackages.

Symbol	Parameter	Value			Unit
		Min.	Тур.	Max.	
T _{A C-Grade Part}	Ambient temperature under bias	-40	—	85 ¹	°C
T _{J C-Grade Part}	Junction temperature under bias	-40	—	105 ¹	°C
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C
T _{J V-Grade Part}	Junction temperature under bias	-40	—	125 ¹	°C
T _{A M-Grade Part}	Ambient temperature under bias	-40	—	125 ²	°C
T _{J M-Grade Part}	Junction temperature under bias	-40	—	135 ²	°C

1. Values mentioned are measured at \leq 112 MHz in HSRUN mode.

2. Values mentioned are measured at \leq 80 MHz in RUN mode.

*Note: VSSA and VSS are shorted at package level

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V_{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis		45		mV	1
$V_{LVR_{LP}}$	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	—	50	_	mV	1

Table continues on the next page ...

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 11 and Table 12, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	2.7	3.3	4	V	1
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3		$0.3 \times V_{DD}$	V	3
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	—	V	
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	3.5	—	_	mA	
Iol _{GPIO} -HD_DSE_0	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	3	_		mA	
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	—	_	mA	4
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	12	_	_	mA	4
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	9.5	_	_	mA	5
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	10	_	—	mA	5
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	16	_	—	mA	5
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	15.5	_	_	mA	5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full tempera	ture range at	V _{DD} = 3.3 V	/	1	6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins ⁷		0.010	0.5	μA]
R _{PU}	Internal pullup resistors	20		60	kΩ	8
R _{PD}	Internal pulldown resistors	20		60	kΩ	9

1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.

- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

Symbol	Description	Min.	Max.	Unit
f _{FLASH}	Flash clock		24	MHz
	Normal run mode (S32K14x series)	3	1	
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	_	40 ⁴	MHz
f _{FLASH}	Flash clock	_	26.67	MHz
	VLPR mode ⁵			
f _{SYS}	System and core clock		4	MHz
f _{BUS}	Bus clock		4	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{ERCLK}	External reference clock		16	MHz

1. Refer to the section Feature comparison for the availability of modes and other specifications.

- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz

5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

Table 17. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	—	1	_	MΩ	
R _S	Series resistor					
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	_	0	_	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)				3	
	Low-gain mode (HGO=0)	_	1.0	_	V	
	High-gain mode (HGO=1)		3.3	_	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_{crit}$. The gm_crit is defined as:

gm_crit = 4 * ESR * $(2\pi F)^2$ * $(C_0 + C_L)^2$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C_1 , C_2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- 3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications

NXP
Semiconductors

S32K1xx Data Sheet, Rev. 8, 06/2018

FLASH PORT	Sym	Unit						FLA	SH A							FLA	SH B	
					RL	JN ¹					HSR	UN ¹			RUN/HSRUN ²			
QuadSPI Mode					SI	DR					SE	R			SDR D		DE)R ³
				rnal pling		Interna	al DQS			rnal pling		Interna	al DQS			rnal pling	Extern	al DQS
			N	11		AD oback		ernal oback	N	11	PA Loop			rnal back	N	11	Extern	al DQS
			Min	Мах	Min	Мах	Min	Max	Min	Мах	Min	Max	Min	Мах	Min	Мах	Min	Max
							Regis	ster Sett	ings		•							•
MCR[DDR_EN]		-	()	()	()	()	0		()	()	-	1
MCR[DQS_EN]		-	(0 1		1	1		()	1		1		0		1	
MCR[SCLKCFG[0]]		-	-	- 1		1	0 -		1	1 0		-		-				
MCR[SCLKCFG[1]]		-	-	- 1		1	0 -		1 0		-		-					
MCR[SCLKCFG[2]]		-	-								-		-		0			
MCR[SCLKCFG[3]]		-	-	-				-				-		-		0		
MCR[SCLKCFG[5]]		-	()	0		0 0		0		0		0		0		1	
SMPR[FSPHS]		-	()	1		1 0		()	1		0		0		0	
SMPR[FSDLY]		-	()	(0 0		()	0		0		0		0		
SOCCR			-	-	0		0 23		-		0		30		-		-	
[SOCCFG[7:0]]																		
SOCCR[SOCCFG[15:8]]		-	-		-			-	-		-		-		-		3	0
FLSHCR[TDH]		-	0x	00	0x	00	0x	00	0x	00	0x(00	0x	00	0x	00	0x	01
							Timing	g Param	eters									
SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴
SCK Clock Period	t _{SCK}	ns	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	50.0	-	50.0 ⁴	-

Table continues on the next page...

Memory and memory interfaces

39

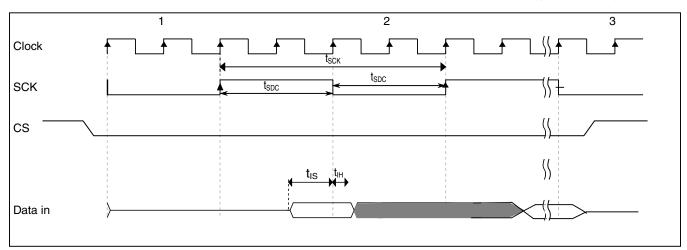


Figure 9. QuadSPI input timing (SDR mode) diagram

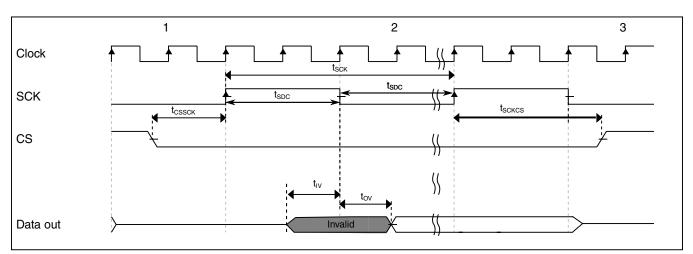
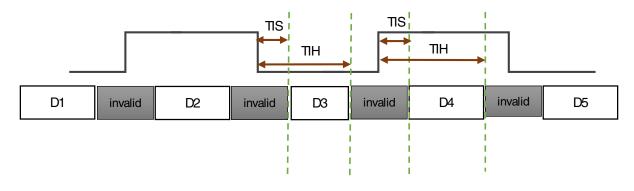



Figure 10. QuadSPI output timing (SDR mode) diagram

TIS-Setup Time TIH-Hold Time

Figure 11. QuadSPI input timing (HyperRAM mode) diagram

ADC electrical specifications

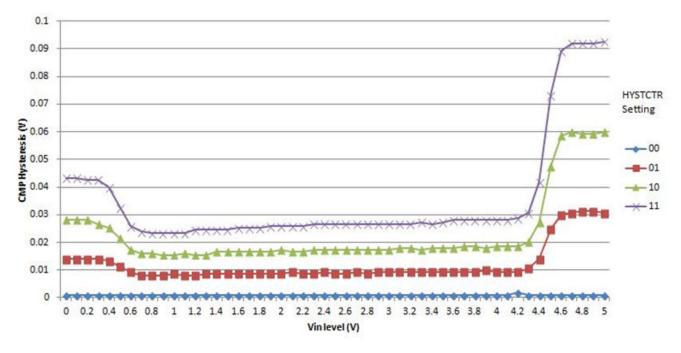


Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

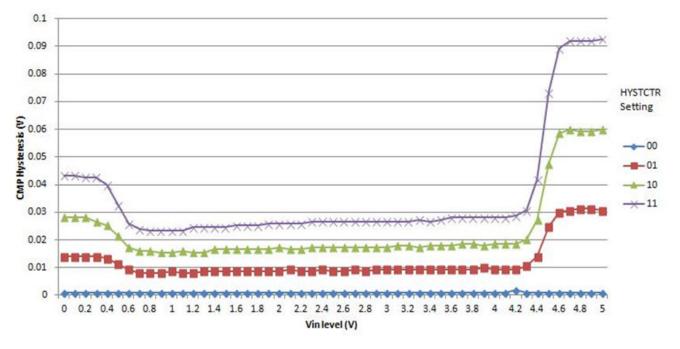


Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

Communication modules

Table 32. LPSPI electrical specifications1 (continued)

Num	Num Symbol	Description	Conditions		Run	Mode ²			HSRU	N Mode ²			VLPR	Mode		Un						
						5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO					
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1						
4	t _{Lag} 9	Enable lag	Slave	-	-	-	-	-	-	-	-	-	-	-	-	ns						
		time (After SPSCK delay)	Master		-		-		-		-		-		-							
		of corracially)	Master Loopback ⁵	- 25		- 25		- 25		- 25		- 50		- 50								
			Master Loopback(slow) ⁶	(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} - 25		(SCKPCS+1)*t _{periph} - 50		(SCKPCS+1)*t _{periph} -50								
5) 	Clock(SPSCK	Slave													ns						
) high or low time (SPSCK	Master	r S	ε + 3	ကို	۴+ ۲-	ကို	£+3	က် ကို	£+3	2-2	5+5	2-2	5+2							
		duty cycle)	Master Loopback ⁵		spsck/	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-5	tspsck/2+5	tspsck/2-5	tsPSCK/2+5						
			Master Loopback(slow) ⁶	H	<u>ب</u>	+	μ,	+	÷.	-	÷.	+	ů.	-	<u>ب</u>							
6	t _{SU}	Data setup time(inputs)	1						Slave	3	-	5	-	3	-	5	-	18	-	18	-	ns
				Master	29	-	38	-	26	-	37 ¹¹ 32 ¹²	-	72	-	78	-	_					
			Master Loopback ⁵	7	-	8	-	5	-	7	-	20	-	20	-	-						
			Master Loopback(slow) ⁶	8	-	10	-	7	-	9	-	20	-	20	-							
7	1 10 1	t _{HI}	Data hold time(inputs)	Slave	3	-	3	-	3	-	3	-	14	-	14	-	ns					
		time(inputs)		Master	0	-	0	-	0	-	0	-	0	-	0	-						
			Master Loopback ⁵	3	-	3	-	2	-	3	-	11	-	11	-							
			Master Loopback(slow) ⁶	3	-	3	-	3	-	3	-	12	-	12	-							

Table continues on the next page...

52

Communication modules

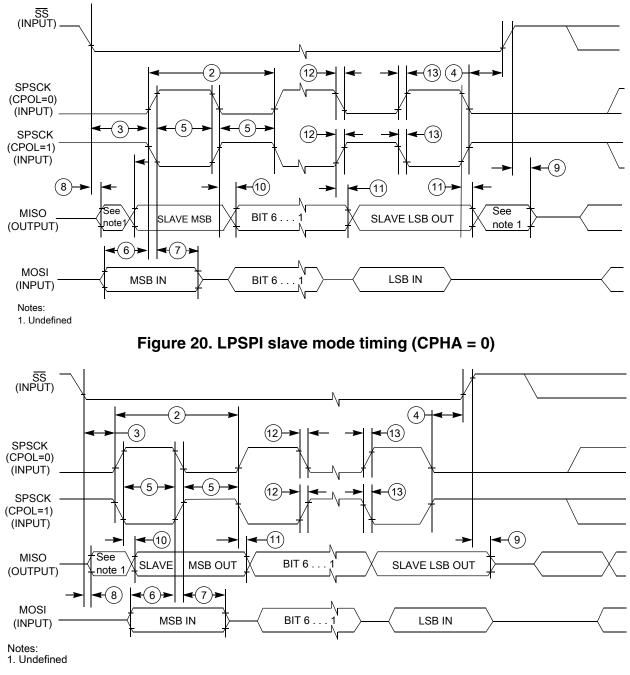


Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

Communication modules

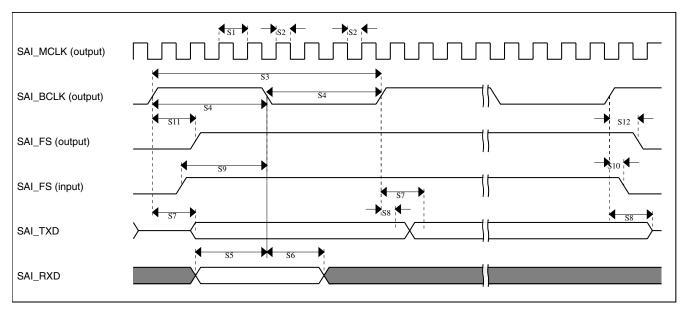
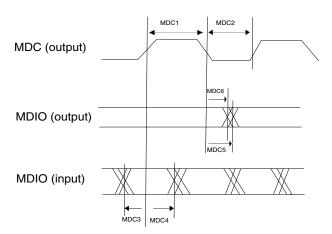


Figure 22. SAI Timing — Master modes

Symbol	Description	Min.	Max.	Unit
_	Operating voltage	2.97	3.6	V
S13	SAI_BCLK cycle time (input)	80	_	ns
S14 ¹	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S15	SAI_RXD input setup before SAI_BCLK	8	—	ns
S16	SAI_RXD input hold after SAI_BCLK	2	—	ns
S17	SAI_BCLK to SAI_TXD output valid		28	ns
S18	SAI_BCLK to SAI_TXD output invalid	0	_	ns
S19	SAI_FS input setup before SAI_BCLK	8	—	ns
S20	SAI_FS input hold after SAI_BCLK	2	—	ns
S21	SAI_BCLK to SAI_FS output valid	_	28	ns
S22	SAI_BCLK to SAI_FS output invalid	0	_	ns


Table 34. Slave mode timing specifications

1. The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle input must be taken care during the board design or by the master timing.

Debug modules

Symbol	Description	Min.	Max.	Unit
MDC1	MDC pulse width high	40%	60%	MDC period
MDC2	MDC pulse width low	40%	60%	MDC period
MDC3	MDIO (input) to MDC rising edge setup	25		ns
MDC4	MDIO (input) to MDC rising edge hold	0		ns
MDC5	MDC falling edge to MDIO output valid (maximum propagation delay)	—	25	ns
MDC6	MDC6 MDC falling edge to MDIO output invalid (minimum propagation delay)			ns

6.5.7 Clockout frequency

Maximum supported clock out frequency for this device is 20 MHz

6.6 Debug modules

6.6.1 SWD electrical specofications

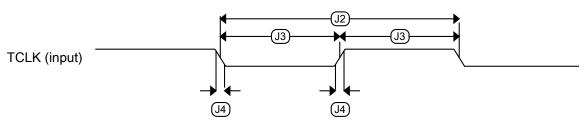


Figure 32. Test clock input timing

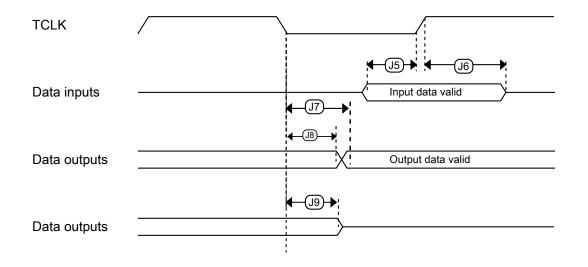


Figure 33. Boundary scan (JTAG) timing

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package

Rating	Conditions	Symbol	Package	Values						Un
			S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	1	
Thermal resistance, Junction to Ambient	Single layer	R _{θJA}	32	93	NA	NA	NA	NA	NA	°C/
(Natural Convection) ^{1, 2}	board (1s)		48	79	71	NA	NA	NA	NA	
			64	NA	62	61	61	59	NA	İ
			100	NA	NA	53	52	51	NA	ĺ
			144	NA	NA	NA	NA	51	44	1
			176	NA	NA	NA	NA	NA	42	
Thermal resistance, Junction to Ambient	Two layer	R _{θJA}	32	50	NA	NA	NA	NA	NA	1
(Natural Convection) ¹	board (1s1p)		48	58	50	NA	NA	NA	NA	_
			64	NA	46	45	45	45 44 NA	NA	
			100	NA	NA	42	42	40	NA	1
			144	NA	NA	NA	NA	44	37	1
			176	NA	NA	NA	NA	NA	36	1
Thermal resistance, Junction to Ambient	Four layer	R _{θJA}	32	32	NA	NA	NA	NA	NA	
(Natural Convection) ^{1, 2}	board (2s2p)		48	55	47	NA	NA	NA	NA	1
			64 NA 44	44	43	43	41	NA		
			100	NA	NA NA 40 40	39	NA			
			144	NA	NA	NA	NA	42	36	
			176	NA	NA	NA	NA	NA	35	
Thermal resistance, Junction to Ambient	Single layer	R _{0JMA}	32	77	NA	NA	NA	NA	NA	
(@200 ft/min) ^{1, 3}	board (1s)		48	66	58	NA	NA	NA	NA	
			64	NA	50	49	49	48	NA	
			100	NA	NA	43	42	41	NA	1
			144	NA	NA	NA	NA	42	36]
			176	NA	NA	NA	NA	NA	34]
Thermal resistance, Junction to Ambient	Two layer	R _{0JMA}	32	43	NA	NA	NA	NA	NA	1
(@200 ft/min) ¹	board (1s1p)		48	51	43	NA	NA	NA	NA	1
			64	NA	39	38	38	37	NA]
			100	NA	NA	35	35	34	NA	1

Table continues on the next page...

69

Table 43. Revision Histor	y (continued)
---------------------------	---------------

Rev. No.	Date	Substantial Changes
		 Fixed the typo in R_{SW1} In LPSPI electrical specifications : Updated t_{Lead} and t_{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics : Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Deleted specs for R_{BJC} for 32 QFN package Added 'R_{BJCBottom}'
8	18 June 2018	 In attachement 'S32K1xx Power_Modes _Configuration': Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. Removed S32K116 from Notes In figure: S32K1xx product series comparison : Added note 'Availability of peripherals depends on the pin availability' Updated 'Ambient Operation Temperature' row Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148 In Ordering information : Updated figure for 'Y: Optional feature' Updated footnote 3 In Power and ground pins : In figure 'Power diagram', updtaed V_{Flash} frequency to 3.3 V In Power mode transition operating behaviors : Updated IDDs for S32K116 Added IDDs for S32K116 Added footnote for 'VLPS Mode: All clock sources disabled' In Power consumption : Added footnote 'Data collected using RAM' to VLPR 'Peripherals enabled use case 1' Updated VLPR 'Peripherals enabled use case 1' Updated VLPS Peripherals enabled at 25 °C/Typicals for S32K142 and S32K144 to 40 µA and 42 µA respectively Added table 'VLPS additional use-case power consumption at typical conditions' In DC electrical specifications at 3.3 V Range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.0 V Range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming convent

Rev. No.	Date	Substantial Changes
		 Updated specs for T_{JIT} Cycle-to-Cycle jitter to 300 ps
		 In QuadSPI AC specifications :
		 Updated specs for T_{iv} Data Output In-Valid Time
		In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid
		area
		 In CMP with 8-bit DAC electrical specifications :
		 Removed '(VAIO)' from decription of V_{HYST0}
		In LPSPI electrical specifications :
		 Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)'

Table 43. Revision History