E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	89
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144mrt0cllt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGApackages.

Symbol	Parameter		Value		Unit
		Min.	Тур.	Max.	
T _{A C-Grade Part}	Ambient temperature under bias	-40	—	85 ¹	°C
T _{J C-Grade Part}	Junction temperature under bias	-40	—	105 ¹	°C
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C
T _{J V-Grade Part}	Junction temperature under bias	-40	—	125 ¹	°C
T _{A M-Grade Part}	Ambient temperature under bias	-40	—	125 ²	°C
T _{J M-Grade Part}	Junction temperature under bias	-40	—	135 ²	°C

1. Values mentioned are measured at \leq 112 MHz in HSRUN mode.

2. Values mentioned are measured at \leq 80 MHz in RUN mode.

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} ^{, 4} , ⁵	ADC reference high decoupling capacitance	70	100		nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100		nF

V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.

2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).

3. Minimum recommendation is after considering component aging and tolerance.

4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.

5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.

6. Contact your local Field Applications Engineer for details on best analog routing practices.

7. The filtering used for decoupling the device supplies must comply with the following best practices rules:

• The protection/decoupling capacitors must be on the path of the trace connected to that component.

• No trace exceeding 1 mm from the protection to the trace or to the ground.

• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).

• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

General

			VLPS (μΑ) ²	V	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		l@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³	
Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	Peripherals enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
		Max	1637	1694	3.1	3.21	NA	12.7	13.7	25	32.9	30.7	38.8	36	43.8	N	A	450
S32K144	25	Тур	29.8	42	1.48	1.50	2.91	7	7.7	19.7	26.9	25.1	33.3	30.2	39.6	43.3	55.6	378
	85	Тур	150	159	1.72	1.85	3.08	7.2	8.1	20.4	27.1	26.1	33.5	30.5	40	43.9	56.1	381
		Max	359	384	2.60	2.65	NA	9.2	9.9	23.2	29.6	29.3	36.2	34.8	42.1	46.3	59.7	435
	105	Тур	256	273	1.80	2.10	3.23	7.8	8.5	20.6	27.4	26.6	33.8	31.2	40.5	44.8	57.1	390
		Max	850	900	2.65	2.70	NA	10.3	11.1	23.9	30.6	30.3	37.3	35.6	43.5	47.9	61.3	445
	125	Тур	NA	NA	NA	NA	3.65	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA
		Max	1960	1998	3.18	3.25	NA	12.9	13.8	26.9	33.6	35	40.3	38.7	46.8	N	A	484
S32K146	25	Тур	37	47	1.57	1.61	3.3	8	9.2	23.4	31.4	30.5	40.2	36.2	47.6	52	68.3	452
	85	Тур	207	209	1.79	1.83	3.54	8.9	10.1	24.4	32.4	31.5	41.3	37.2	48.7	53.3	69.8	465
		Max	974	981	3.32	3.38	NA	12.7	13.9	29.3	37.9	36.7	47	42.4	54.4	60.3	78	530
	105	Тур	419	422	1.99	2.04	3.78	9.8	11	25.3	33.4	32.5	42.2	38.1	49.6	54.4	70.8	477
		Max	2004	2017	4.06	4.13	NA	17.1	18.3	34.1	42.6	41.3	51.4	46.9	58.8	65.7	82.8	587
	125	Тур	NA	NA	NA	NA	4.44	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA
		Max	3358	3380	5.28	5.38	NA	22.6	23.7	40.2	48.8	47.3	57.4	52.8	64.8	N	A	660
S32K148 ⁸	25	Тур	38	54	2.17	2.20	3.45	8.5	9.6	27.6	34.9	35.5	45.3	42.1	57.7	60.3	83.3	526
	85	Тур	336	357	2.30	2.35	3.74	10.1	11.1	29.1	37.0	36.8	46.6	43.4	59.9	62.9	88.7	543

Table continues on the next page...

18

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 11 and Table 12, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Symbol	Parameter		Value		Unit	Notes	
		Min.	Тур.	Max.			
V _{DD}	I/O Supply Voltage	2.7	3.3	4	V	1	
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2	
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3		$0.3 \times V_{DD}$	V	3	
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	—	V		
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	3.5	—	_	mA		
Iol _{GPIO} -HD_DSE_0	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	3	_		mA		
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	—	_	mA	4	
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	12	_	_	mA	4	
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	9.5	_	_	mA	5	
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	10	_	—	mA	5	
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	16	_	—	mA	5	
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	15.5	_	_	mA	5	
IOHT	Output high current total for all ports	_	_	100	mA		
IIN			ł	6			
	All pins other than high drive port pins		0.005	0.5	μA		
	High drive port pins ⁷		0.010	0.5	μA]	
R _{PU}	Internal pullup resistors	20		60	kΩ	8	
R _{PD}	Internal pulldown resistors	20		60	kΩ	9	

1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.

- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

I/O parameters

- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the *Reference Manual*.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input $V = V_{DD}$

5.4 DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	—	V	
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad V_{oh} = (V_{DD} - 0.8 V)	5	_	—	mA	
Iol _{GPIO} Iol _{GPIO-HD_DSE_0}	I/O current sink capability measured when pad $V_{\rm ol}{=}$ 0.8 V	5	_	—	mA	
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	20	_	—	mA	3
IOI _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 V$	20	_	—	mA	3
Ioh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	14.0	—	—	mA	4
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	14.5	—	_	mA	4
loh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	21	—	—	mA	4
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	20.5	—	—	mA	4
IOHT	Output high current total for all ports	—		100	mA	
IIN	Input leakage current (per pin) for full te	mperature r	ange at V _{DD}	₀ = 5.5 V	mA 2 mA 2 mA 2 mA 2 mA 2 mA 2 mA 2 mA 2	5
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		50	kΩ	6
R _{PD}	Internal pulldown resistors	20		50	kΩ	7

Table 12. DC electrical specifications at 5.0 V Range

1. For reset pads, same V_{ih} levels are applicable

2. For reset pads, same V_{il} levels are applicable

- 3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.
- 4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

- 5. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to *SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx* attached with the *Reference Manual*.
- 6. Measured at input $V = V_{SS}$
- 7. Measured at input $V = V_{DD}$

Symbol	DSE	Rise tir	ne (nS) ¹	Fall tin	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
-		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25
		3.0	7.1	2.6	7.5	50
		12.0	27.0	10.3	26.8	200
	1	0.4	1.3	0.38	1.3	25
		1.5	3.8	1.4	3.9	50
		7.4	14.9	7.0	15.3	200

5.5 AC electrical specifications at 3.3 V range

 Table 13. AC electrical specifications at 3.3 V Range

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Symbol	DSE	Rise tir	me (nS) ¹	Fall tim	ie (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50

Table 14. AC electrical specifications at 5 V Range

Table continues on the next page...

Symbol	Description ¹		Description ¹ S32K142		S3	S32K144 S32		632K146 S		S32K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
	setting (32-bit write complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550	200	550	200	550		
t _{quickwr} Clnup	Quick Write Cleanup execution time		—	(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0	ms	7

Table 23. Flash command timing specifications for S32K14x (continued)

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

Table 24. Flash command timing specifications for S32K11x

Symbol	Descripti	on ¹	S32	2K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block execution	32 KB flash	—	0.36	—	0.36	ms	
	time	64 KB flash	—	—	—	_		
		128 KB flash	—	1.2	—	—		
		256 KB flash	—	—	—	2		
		512 KB flash	_	—	—	_	μs	
t _{rd1sec}	Read 1 Section	2 KB flash		75	—	75		
(execution time	4 KB flash	—	100	—	100		
t _{pgmchk}	Program Check execution time	—	—	100	-	100	μs	
t _{pgm8}	Program Phrase execution time	-	90	225	90	225	μs	
t _{ersblk}	Erase Flash Block	32 KB flash	15	300	15	300	μs	2
	execution time	64 KB flash	—	—	—	_		
		128 KB flash	120	1100	—	—		
		256 KB flash	_	—	250	2125		
		512 KB flash	_	—	—	—		

Table continues on the next page ...

Table 25.	NVM reliability	y s	pecifications	(continued))
-----------	-----------------	-----	---------------	-------------	---

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using FlexMemory feature : Fle	xRAM as E	Emulated EEP	ROM		
t _{nvmretee}	Data retention	5	—	_	years	4
n _{nvmwree16}	Write endurance EEPROM backup to FlexRAM ratio = 16 	100 K	_	_	writes	5, 6, 7
n _{nvmwree256}	 EEPROM backup to FlexRAM ratio = 256 	1.6 M	—	—	writes	

- 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.
- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.
- FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

NXP
Semiconductors

S32K1xx Data Sheet, Rev. 8, 06/2018

FLASH PORT	FLASH PORT Sym Unit				FLASH A									FLASH B				
					RL	JN ¹					HSR	UN ¹			RUN/HSRUN ²			
QuadSPI Mode					SI	DR					SE	DR			SDR		DDR ³	
				rnal pling		Intern	al DQS			rnal pling		Interna	al DQS			rnal pling	Extern	al DQS
			N	11		AD oback		ernal oback	N	11	PA Loop			rnal back	N	11	Extern	al DQS
			Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max
						•	Regis	ster Sett	ings		•	•						•
MCR[DDR_EN]		-	()	(C	(C	()	0)	()	()	-	1
MCR[DQS_EN]		-	()	1		1		0 1		1		0		1			
MCR[SCLKCFG[0]]		-	-	-	-	1	0		- 1			0		-		-		
MCR[SCLKCFG[1]]		-	-	-	-	1	0		- 1		0		-		-			
MCR[SCLKCFG[2]]		-	-	-		-	-		-		-		-		-		0	
MCR[SCLKCFG[3]]		-	-	-		-	-		-		-		-		-		0	
MCR[SCLKCFG[5]]		-	()	(C	0		0		0		0		0		1	
SMPR[FSPHS]		-	()	-	1	0		0 1		0		0		0			
SMPR[FSDLY]		-	()	()	(C	(0 0		0		0		0		
SOCCR			-	-	0		23		-		0		30		-		-	
[SOCCFG[7:0]]																		
SOCCR[SOCCFG[15:8]]		-	-			-		-	-		-			-	-		3	0
FLSHCR[TDH]		-	0x	0x00 0x00		0x	:00	0x	00	0x(00	0x	00	0x	00	0x	01	
							Timing	g Param	eters									
SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴
SCK Clock Period	t _{SCK}	ns	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	50.0	-	50.0 ⁴	-

Table continues on the next page...

Memory and memory interfaces

39

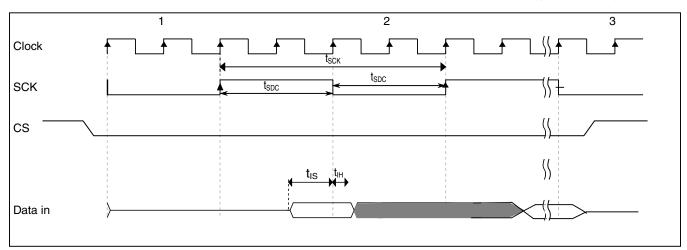


Figure 9. QuadSPI input timing (SDR mode) diagram

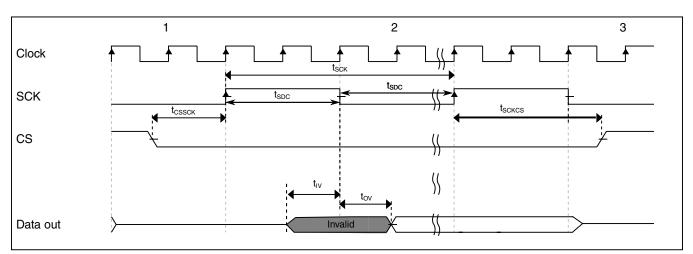
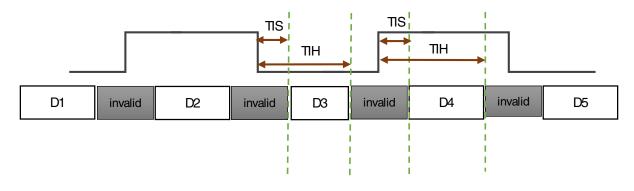



Figure 10. QuadSPI output timing (SDR mode) diagram

TIS-Setup Time TIH-Hold Time

Figure 11. QuadSPI input timing (HyperRAM mode) diagram

6.4.1.2 12-bit ADC electrical characteristics

NOTE

- ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.
- On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		2.7	_	3	V	
I _{DDA_ADC}	Supply current per ADC		_	0.6	_	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±2.0	—	LSB ⁵	6, 7, 8, 9

Table 28. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume V_{DDA} = 3 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω , and C_{AS}=10 nF.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

6.4.2 CMP with 8-bit DAC electrical specifications Table 31. Comparator with 8-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit				
I _{DDHS}	Supply current, High-speed mode ¹				μA				
	-40 - 125 ℃	_	230	300					
I _{DDLS}	Supply current, Low-speed mode ¹				μA				
	-40 - 105 °C	_	6	11					
	-40 - 125 ℃	-	6	13					
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V _{DDA}	V				
V _{AIO}	Analog input offset voltage, High-speed mode				mV				
	-40 - 125 °C	-25	±1	25					
V _{AIO}	Analog input offset voltage, Low-speed mode				mV				
	-40 - 125 °C	-40	±4	40					
t _{DHSB}	Propagation delay, High-speed mode ²				ns				
	-40 - 105 °C	_	35	200					
	-40 - 125 °C	_	35	300					
t _{DLSB}	Propagation delay, Low-speed mode ²				μs				
	-40 - 105 °C	_	0.5	2					
	-40 - 125 ℃	_	0.5	3					
t _{DHSS}	Propagation delay, High-speed mode ³				ns				
	-40 - 105 °C	_	70	400					
	-40 - 125 ℃	_	70	500					
t _{DLSS}	Propagation delay, Low-speed mode ³				μs				
	-40 - 105 °C	_	1	5					
	-40 - 125 °C	_	1	5	1				
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs				
	-40 - 125 °C		1.5	3					
t _{IDLS}	Initialization delay, Low-speed mode ⁴				μs				
	-40 - 125 °C	_	10	30					
V _{HYST0}	Analog comparator hysteresis, Hyst0				mV				
	-40 - 125 °C	_	0	_					
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode		-		mV				
	-40 - 125 °C	_	19	66					
	Analog comparator hysteresis, Hyst1, Low-speed mode								
	-40 - 125 °C	_	15	40					
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode				mV				
	-40 - 125 °C	_	34	133					

Table continues on the next page...

Communication modules

Table 32. LPSPI electrical specifications1 (continued)

Num	Num Symbol Dese		Conditions		Run	Mode ²			HSRU	N Mode ²			VLPR	Mode		Un				
					5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO				
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.					
4	t _{Lag} 9	Enable lag	Slave	-	-	-	-	-	-	-	-	-	-	-	-	ns				
		time (After SPSCK delay)	Master		-		-		-		-		-		-					
		of corradiay)	Master Loopback ⁵	- 25		- 25		- 25		- 25		- 50		- 50						
				Master Loopback(slow) ⁶	(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} - 25		(SCKPCS+1)*t _{periph} - 50		(SCKPCS+1)*t _{periph} -50					
5	5 t _{WSPSCK} ¹⁰ Clock(SPSCK) high or low time (SPSCK duty cycle)		Slave													ns				
) high or low time (SPSCK	Master	က် ဂ	ε + 3	ကို	۴+ ۲-	2+3	5 0 0 10 10 10 10 10 10 10 10 10 10 10 10	2-2	5+5	2-2	5+2							
			Master Loopback ⁵	tsPSCK/2-3 tsPSCK/2+3	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-5	tspsck/2+5	tspsck/2-5	tsPSCK/2+5					
			Master Loopback(slow) ⁶	4	<u>ب</u>	+	μ,	+	÷.	-	÷.	+	ů.	-	<u>ب</u>					
6	t _{SU}	Data setup	Slave	3	-	5	-	3	-	5	-	18	-	18	-	ns				
		time(inputs)	Master	29	-	38	-	26	-	37 ¹¹ 32 ¹²	-	72	-	78	-					
			Master Loopback ⁵	7	-	8	-	5	-	7	-	20	-	20	-					
			Master Loopback(slow) ⁶	8	-	10	-	7	-	9	-	20	-	20	-					
7		t _{HI}	time (inpute)	Slave	3	-	3	-	3	-	3	-	14	-	14	-	ns			
		time(inputs)		time(inputs)	time(inputs)	time(inputs)	time(inputs)	Master	0	-	0	-	0	-	0	-	0	-	0	-
			Master Loopback ⁵	3	-	3	-	2	-	3	-	11	-	11	-					
			Master Loopback(slow) ⁶	3	-	3	-	3	-	3	-	12	-	12	-					

Table continues on the next page...

52

Communication modules

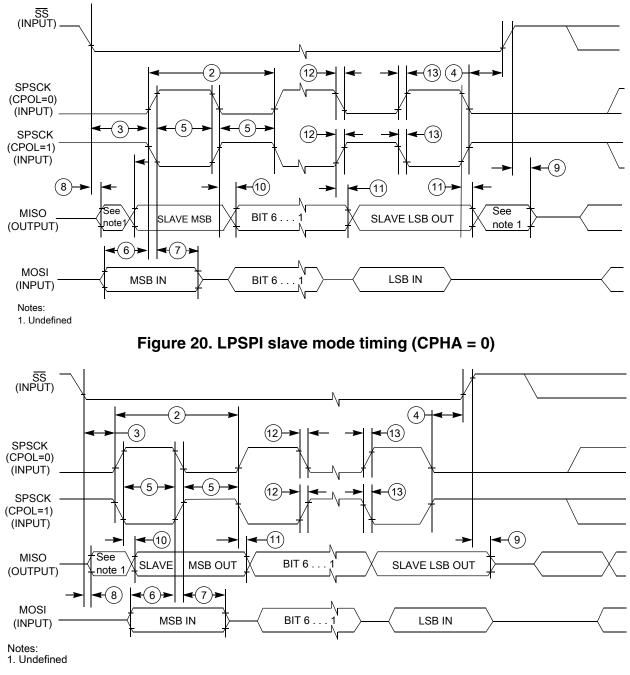


Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

6.5.4 FlexCAN electical specifications

For supported baud rate, see section 'Protocol timing' of the Reference Manual.

6.5.5 SAI electrical specifications

The following table describes the SAI electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit		
_	Operating voltage	2.97	3.6	V		
S1	SAI_MCLK cycle time	40	_	ns		
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period		
S3	SAI_BCLK cycle time	80	_	ns		
S4	SAI_BCLK pulse width high/low	45%	55%	BCLK period		
S5	SAI_RXD input setup before SAI_BCLK	28	_	ns		
S6	SAI_RXD input hold after SAI_BCLK	0	—	ns		
S7	SAI_BCLK to SAI_TXD output valid	—	8	ns		
S8	SAI_BCLK to SAI_TXD output invalid	-2	—	ns		
S9	SAI_FS input setup before SAI_BCLK	28	—	ns		
S10	SAI_FS input hold after SAI_BCLK	0	—	ns		
S11	SAI_BCLK to SAI_FS output valid	_	8	ns		
\$12	SAI_BCLK to SAI_FS output invalid	-2	—	ns		

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100-pin MAPBGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

Table continues on the next page...

Rev. No.

Date

		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : Minor editorial update: Fixed the placement of SRAM, under 'Flash memory controller' block Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Ordering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated requency for S32K14x Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information : Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption : Updated specs for S32K146 Removed section 'Modes configuration', amd moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements, and moved its content under the figure and current operating requirements and moved its content under the figure and current operating requi

Table 43. Revision History (continued)

Substantial Changes

Table continues on the next page...

the fisrt paragraph.

In 12-bit ADC operating conditions :

Table 43. Revision Histor	y (continued)
---------------------------	---------------

Rev. No.	Date	Substantial Changes
		 Fixed the typo in R_{SW1} In LPSPI electrical specifications : Updated t_{Lead} and t_{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics : Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Deleted specs for R_{BJC} for 32 QFN package Added 'R_{BJCBottom}'
8	18 June 2018	 In attachement 'S32K1xx Power_Modes _Configuration': Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. Removed S32K116 from Notes In figure: S32K1xx product series comparison : Added note 'Availability of peripherals depends on the pin availability' Updated 'Ambient Operation Temperature' row Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148 In Ordering information : Updated figure for 'Y: Optional feature' Updated footnote 3 In Power and ground pins : In figure 'Power diagram', updtaed V_{Flash} frequency to 3.3 V In Power mode transition operating behaviors : Updated footnote for 'VLPS Mode: All clock sources disabled' In Power consumption : Added IDDs for S32K116 Added footnote 'Data collected using RAM' to VLPR 'Peripherals enabled use case 1' Updated VLPR 'Peripherals enabled' to 'Peripherals enabled use case 1' Updated VLPS Peripherals enabled at 25 °C/Typicals for S32K142 and S32K144 to 40 µA and 42 µA respectively Added table 'VLPS additional use-case power consumption at typical conditions' In DC electrical specifications at 3.3 V Range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.0 V Range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015–2018 NXP B.V.

Document Number S32K1XX Revision 8, 06/2018

