NXP USA Inc. - FS32K144UAT0VLHR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	112MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144uat0vlhr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Block diagram

Following figures show superset high level architecture block diagrams of S32K14x series and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

Figure 1. High-level architecture diagram for the S32K14x family

- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGA packages.

Symbol	ibol Parameter		Value				
		Min.	Тур.	Max.			
T _{A C-Grade Part}	Ambient temperature under bias	-40	—	85 ¹	°C		
T _{J C-Grade Part}	Junction temperature under bias	-40	—	105 ¹	°C		
T _{A V-Grade Part}	Ambient temperature under bias	-40	—	105 ¹	°C		
T _{J V-Grade Part}	Junction temperature under bias	-40	—	125 ¹	°C		
T _{A M-Grade Part}	Ambient temperature under bias	-40	—	125 ²	°C		
T _{J M-Grade Part}	Junction temperature under bias	-40	—	135 ²	°C		

1. Values mentioned are measured at \leq 112 MHz in HSRUN mode.

2. Values mentioned are measured at \leq 80 MHz in RUN mode.

- 5. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to *SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx* attached with the *Reference Manual*.
- 6. Measured at input $V = V_{SS}$
- 7. Measured at input $V = V_{DD}$

Symbol	DSE	Rise ti	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25
		3.0	7.1	2.6	7.5	50
		12.0	27.0	10.3	26.8	200
	1	0.4	1.3	0.38	1.3	25
		1.5	3.8	1.4	3.9	50
		7.4	14.9	7.0	15.3	200

5.5 AC electrical specifications at 3.3 V range

 Table 13. AC electrical specifications at 3.3 V Range

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Symbol	DSE	Rise tir	ne (nS) ¹	Fall time (nS) ¹		Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50

Table 14. AC electrical specifications at 5 V Range

Table continues on the next page...

I/O parameters

Symbol	DSE	Rise time (nS) ¹		Rise time (nS) ¹ Fall time (nS) ¹			Capacitance (pF) ²
		Min.	Max .	Min.	Max.		
		17.3	54.8	17.6	59.7	200	
	1	1.1	4.6	1.1	5.0	25	
		2.0	5.7	2.0	5.8	50	
		5.4	16.0	5.0	16.0	200	
tRF _{GPIO-FAST}	0	0.42	2.2	0.37	2.2	25	
		2.0	5.0	1.9	5.2	50	
		9.3	18.8	8.5	19.3	200	
	1	0.37	0.9	0.35	0.9	25	
		1.2	2.7	1.2	2.9	50	
		6.0	11.8	6.0	12.3	200	

Table 14. AC electrical specifications at 5 V Range (continued)

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.7 Standard input pin capacitance

Table 15. Standard input pin capacitance

Symbol	Description	Min.	Max.	Unit
C _{IN_D}	Input capacitance: digital pins		7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 16. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit
	High Speed run mode ²			
f _{SYS}	System and core clock	_	112	MHz
f _{BUS}	Bus clock	—	56	MHz
f _{FLASH}	Flash clock	_	28	MHz
	Normal run mode (S32K11x series)		
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock		48	MHz

Table continues on the next page...

Table 16. Device clock specifications 1 (continue

Symbol	Description	Min.	Max.	Unit
f _{FLASH}	Flash clock	—	24	MHz
	Normal run mode (S32K14x series)	3		
f _{SYS}	System and core clock	—	80	MHz
f _{BUS}	Bus clock	—	40 ⁴	MHz
f _{FLASH}	Flash clock	—	26.67	MHz
	VLPR mode ⁵			•
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	—	4	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{ERCLK}	External reference clock		16	MHz

1. Refer to the section Feature comparison for the availability of modes and other specifications.

- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz

5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

Table 17. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	—	1	—	MΩ	
R _S	Series resistor					
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	_	0	—	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3
	Low-gain mode (HGO=0)	_	1.0	_	V	1
	High-gain mode (HGO=1)	_	3.3	—	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_{crit}$. The gm_crit is defined as:

gm_crit = 4 * ESR * $(2\pi F)^2$ * $(C_0 + C_L)^2$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C1, C2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- 3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications

Memory and memory interfaces

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	K146	6 S32K148			
-			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{setram}	Set FlexRAM Function	Control Code 0xFF	0.08		0.08		0.08		0.08	-	ms	3
	execution time	32 KB EEPROM backup	0.8	1.2	0.8	1.2	0.8	1.2	_	_		
		48 KB EEPROM backup	1	1.5	1	1.5	1	1.5	_	_		
		64 KB EEPROM backup	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700		_	μs	3.4
		48 KB EEPROM backup	430	1850	430	1850	430	1850		_		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700	_	_	μs	3 [,] 4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	—		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time		360	2000	360	2000	360	2000	360	2000	μs	
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	630	2000	_	_	μs	3 [,] 4
		48 KB EEPROM backup	720	2125	720	2125	720	2125	_	—		
		64 KB EEPROM backup	810	2250	810	2250	810	2250	810	4500		
t _{quickwr}	32-bit Quick Write execution	1st 32-bit write	200	550	200	550	200	550	200	1100	μs	4 [,] 5 [,] 6
	ume: Time from CCIF clearing (start the write) until CCIF	2nd through Next to Last (Nth-1) 32- bit write	150	550	150	550	150	550	150	550		

 Table 23. Flash command timing specifications for S32K14x (continued)

Table continues on the next page...

Symbol	Description	on ¹	S32	K116	S3	2K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3,4
		48 KB EEPROM backup	_	_	_	—		
		64 KB EEPROM backup	-	-	_	_		
t _{quickwr}	32-bit Quick Write execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write complete, ready for next 32-bit write)	1st 32-bit write	200	550	200	550	μs	4,5,6
		2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550		
		Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
t _{quickwrClnup}	Quick Write Cleanup execution time		_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

Table 24. Flash command timing specifications for S32K11x (continued)

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using as Program	and Data	Flash	-		-
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	—	—	years	1
n _{nvmcycp}	Cycling endurance	1 K		_	cycles	2, 3

Table continues on the next page ...

6.4.2 CMP with 8-bit DAC electrical specifications Table 31. Comparator with 8-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit		
I _{DDHS}	Supply current, High-speed mode ¹		•		μA		
	-40 - 125 °C	_	230	300			
I _{DDLS}	Supply current, Low-speed mode ¹				μA		
	-40 - 105 °C		6	11	-		
	-40 - 125 °C		6	13			
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V _{DDA}	V		
V _{AIO}	Analog input offset voltage, High-speed mode		•	mV			
	-40 - 125 °C	-25	±1	25			
V _{AIO}	Analog input offset voltage, Low-speed mode		-		mV		
	-40 - 125 °C	-40	±4	40			
t _{DHSB}	Propagation delay, High-speed mode ²				ns		
	-40 - 105 °C	_	35	200			
	-40 - 125 °C		35	300			
t _{DLSB}	Propagation delay, Low-speed mode ²		-	•	μs		
	-40 - 105 °C	_	0.5	2	-		
	-40 - 125 °C	_	0.5	3			
t _{DHSS}	Propagation delay, High-speed mode ³				ns		
	-40 - 105 °C	_	70	400	1		
	-40 - 125 °C	_	70	500			
t _{DLSS}	Propagation delay, Low-speed mode ³				μs		
	-40 - 105 °C	_	1	5	-		
	-40 - 125 °C	_	1	5			
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs		
	-40 - 125 °C	_	1.5	3	-		
t _{IDLS}	Initialization delay, Low-speed mode ⁴				μs		
	-40 - 125 °C	_	10	30	-		
V _{HYST0}	Analog comparator hysteresis, Hyst0				mV		
	-40 - 125 °C	_	0	_			
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode				mV		
	-40 - 125 °C	_	19	66			
	Analog comparator hysteresis, Hyst1, Low-speed mode						
	-40 - 125 °C	—	15	40	1		
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode				mV		
	-40 - 125 ℃	_	34	133			

Table continues on the next page...

ADC electrical specifications

Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

6.5 Communication modules

6.5.1 LPUART electrical specifications

Refer to General AC specifications for LPUART specifications.

6.5.1.1 Supported baud rate

Baud rate = Baud clock / ((OSR+1) * SBR).

For details, see section: 'Baud rate generation' of the Reference Manual.

6.5.2 LPSPI electrical specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

- All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds.
- All measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew setting (DSE = 1).

Communication modules

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 19. LPSPI master mode timing (CPHA = 1)

Communication modules

Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

	Symbol	Description	RUN Mode			HSRUI	N Mode	VLPR Mode	Unit
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast pa	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
Frace on slow pads	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

Table 39. Trace specifications (continued)

6.6.3 JTAG electrical specifications

66

Table 40. JTAG electrical specifications

Symbol	Description		Rur	Run Mode HSRUN			N Mode		VLPR Mode				Unit	
		5.0 V IO		3.3	3.3 V IO		5.0 V IO		V IO	5.0	5.0 V IO	3.3	V IO	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
JI	TCLK frequency of operation		!			!							- <u>+</u>	MHz
	Boundary Scan	-	20	-	20	-	20	-	20	-	10	-	10	1
	JTAG	-	20	-	20	-	20	-	20	-	10	-	10	1
J2	TCLK cycle period	1/JI	-	1/JI	-	1/JI	-	1/JI	-	1/JI	-	1/JI	-	ns
J3	TCLK clock pulse width	1				1						-	-	ns
	Boundary Scan	ю	ى س	ы	Q	ы	ى س	ы	ц.	ы	Q	ю	Q	1
	JTAG	J2/2 -	J2/2 +	J2/2 - {	J2/2 +	J2/2 -	J2/2 +	J2/2 - 1	J2/2 +	J2/2 - (J2/2 +	J2/2 - (J2/2 +	
J4	TCLK rise and fall times	-	1	-	1	-	1	-	1	-	1	-	1	ns
J5	Boundary scan input data setup time to TCLK rise	5	-	5	-	5	-	5	-	15	-	15	-	ns
J6	Boundary scan input data hold time after TCLK rise	5	-	5	-	5	-	5	-	8	-	8	-	ns
J7	TCLK low to boundary scan output data valid	-	28	-	32	-	28	-	32	-	80	-	80	ns
J8	TCLK low to boundary scan output data invalid	0	-	0	-	0	-	0	-	0	-	0	-	
J9	TCLK low to boundary scan output high-Z	-	28	-	32	-	28	-	32	-	80	-	80	ns
J10	TMS, TDI input data setup time to TCLK rise	3	-	3	-	3	-	3	-	15	-	15	-	ns
J11	TMS, TDI input data hold time after TCLK rise	2	-	2	-	2	-	2	-	8	-	8	-	ns
J12	TCLK low to TDO data valid	-	28	-	32	-	28	-	32	-	80	-	80	ns
J13	TCLK low to TDO data invalid	0	-	0	-	0	-	0	-	0	-	0	-	ns
J14	TCLK low to TDO high-Z	-	28	-	32	-	28	-	32	-	80	-	80	ns

Debug modules

Figure 32. Test clock input timing

Figure 33. Boundary scan (JTAG) timing

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100-pin MAPBGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	 Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings : Added footnote to I_{INJPAD_DC} Updated description, max and min values for I_{INJSUM} Updated description, max and V_{IN} Removed V_{INA} and V_{IN} Added footnote "Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V Removed I_{NJSUM_AF} Updated footnotes in table Table 4 Updated conditions for VLPR Removed ldd/MHz for S32K142 Updated numbers for S32K142 Updated numbers for S32K142 and S32K148 Removed use case footnotes In section Modes configuration : Replaced table "Modes configuration" with spreadsheet attachment: 'S32K1xx_Power_Modes _Master_configuration_sheet' In table: DC electrical specifications at

Table 43. Revision History

Table continues on the next page...

Rev. No.	Date	Substantial Changes
		Added footnotes V _{ih} Input Buffer High Voltage and V _{ih} Input Buffer Low
		Voltage
		Updated table: AC electrical specifications at 3.3 V range
		Updated table: AC electrical specifications at 5 v range In table: Standard input hin capacitance
		Added footnote to Normal run mode (\$32K14x series)
		Removed note from 1M ohms Feedback Besistor in figure Oscillator
		connections scheme
		 In table: External System Oscillator electrical specifications
		 Updated typical of I_{DDOSC} Supply current — low-gain mode (low-power mode) (HGO=0) 1 for 4 and 8 MHz
		Removed rows for IIk_ext EXTAL/XTAL impedence High-frequency, low-
		gain mode (low-power mode) and high-frequency, high-gain mode and VEXTAI
		Updated Typ. of R _S low-gain mode
		 Updated description of R_F, R_S, and V_{PP}
		 Removed footnote from R_F Feedback resistor
		• Updated footnote for $C_1 C_2$ and R_F
		In table: Table 18
		Removed mention of nigh-frequency Added HGO 0.1 information
		Added FIGO 0, Tillionnation In table: East internal BC Oscillator electrical specifications
		Updated France
		• Updated description of ΔF
		 Updated typ and max values of T_{JIT} cycle-to-cycle jitter and T_{JIT} Long term jitter over 1000 cycles
		 Added footnotes to T_{JIT} cycle-to-cycle jitter and T_{JIT} Long term jitter
		Indated naming convention of Instance Supply current
		Added footnote to Ippring Supply current
		Added footnote to column Parameter
		In table: Slow internal RC oscillator (SIRC) electrical specifications
		 Removed V_{DD} Supply current in 2 MHz Mode
		 Removed footnote and updated description of ΔF
		 Updated footnote to F_{SIRC} and I_{DDSIRC}
		In table: SPLL electrical specifications
		Added row for F _{SPLL_REF} PLL Reference
		 Updated haming convention throughout the table Updated the moving of T
		In table: Elash timing specifications — commands
		Added footnotes:
		All command times assumes
		 For all EEPROM Emulation terms
		 'First time' EERAM writes after a POR
		 Removed footnote 'Assumes 25 MHz or'
		 Updated Max of t_{eewr32bers}
		 Added parameters t_{quickwr} and t_{quickwrClnup}
		In table: Reliability specifications
		Removed Typ. values for all parameters
		Added footnote 'Any other EEE driver usage
		Added Touriole Any other ECE driver usage Indated OuadSPLAC specifications
		Bemoved tonic: Beliability Safety and Security modules
		In table: 12-bit ADC operating conditions
		• Updated V _{DDA}

Table 43. Revision History

Table continues on the next page...