NXP USA Inc. - FS32K146HAT0MLHT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k146hat0mlht

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature comparison

Description Input Multiplexing sheet(s) attached with Reference Manual.

		S32I	K11x	S32K14x				
	Parameter	K116	K118	K142	K144	K146	K148	
	Core	Arn	n [®] Cortex™-M0+		Arr	n [®] Cortex [™] -M4F		
	Frequency	48 1	ИНz	80 MH	z (RUN mode) or 1	12 MHz (HSRUN	mode)1	
	IEEE-754 FPU	()			•		
	Cryptographic Services Engine (CSEc) ¹	•	•		·	•		
	CRC module	1	x		1	х		
	ISO 26262	capable up	to ASIL-B		capable up	o to ASIL-B		
	Peripheral speed	up to 4	8 MHz		up to 112 MI	Hz (HSRUN)		
	Crossbar		•			•		
E	DMA		•			•		
yste	External Watchdog Monitor (EWM)		D .	•				
Ś	Memory Protection Unit (MPU)		•			•		
	FIRC CMU		•			0		
	Watchdog	1	x		1	x		
	Low power modes	•				•		
	HSRUN mode1	(>			•		
	Number of I/Os	up to 43	up to 58	up t	o 89	up to 128	up to 156	
	Single supply voltage	2.7 -	5.5 V		2.7 -	5.5 V		
	Ambient Operation Temperature (Ta)	-40°C to +105	₀C / +125∘C		-40°C to +105	5∘C / +125∘C		
	Flash	128 KB	256 KB	256 KB	512 KB	1 MB	2 MB ²	
	Error Correcting Code (ECC)		•			•		
_	System RAM (including FlexRAM and MTB)	17 KB	25 KB	32 KB 64 KB 128 KB 256 I			256 KB	
Lou	FlexRAM (also available as system RAM)	21	KB		4	KB		
Men	Cache	0		4 KB				
	EEPROM emulated by FlexRAM ¹	2 KB (up to 3	2 KB D-Flash)	4 KE	3 (up to 64 KB D-F	lash)	See footnote 3	
	External memory interface		>		0		QuadSPI incl. HyperBus™	
	Low Power Interrupt Timer (LPIT)	1	x		1	x		
л.	FlexTimer (16-bit counter) 8 channels	2x	(16)	4x	(32)	6x (48)	8x (64)	
Ē	Low Power Timer (LPTMR)	1	x		1	x		
	Real Time Counter (RTC)	1	x		1	x		
	Programmable Delay Block (PDB)	1	x		2	x		
og	Trigger mux (TRGMUX)	1x (43)	1x (45)	1x	(64)	1x (73)	1x (81)	
Anal	12-bit SAR ADC (1 Msps each)	1x (13)	1x (16)	2x	(16)	2x (24)	2x (32)	
<u> </u>	Comparator with 8-bit DAC	1	x		1	x		
	10/100 Mbps IEEE-1588 Ethernet MAC	()		0		1x	
Б	Serial Audio Interface (AC97, TDM, I2S)	(0		2x	
nicati	Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)	2	x	2x		Зх		
Ē	Low Power SPI (LPSPI)	1x	2x	2x		Зx		
mo C	Low Power I2C (LPI2C)	1	x		1x		2x	
Ŭ	FlexCAN (CAN-FD ISO/CD 11898-1)	1 (1x wi	x th FD)	2x (1x with FD)	3x (1x with FD)	3x (2x with FD)	3x (3x with FD)	
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1	x		1x			
DEs	Debug & trace	SWD, MTB (I KB), JTAG ⁴	SWD, JTAG (ITM, SWV, SWO) (ITM SWC			SWD, JTAG (ITM, SWV, SWO), ETM	
=	Ecosystem (IDE, compiler, debugger)	NXP S32 Design Si IAR, GHS, Arm®, L	udio (GCC) + SDK, auterbach, iSystems	N IA	IXP S32 Design Si AR, GHS, Arm®, Li	tudio (GCC) + SDł auterbach, iSysten	۲, ns	
Other	Packages ⁵	32-pin QFN 48-pin LQFP	48-pin LQFP 64-pin LQFP	64-pin LQFP 100-pin LQFP	64-pin LQFP 100-pin LQFP 100-pin MAPBGA	64-pin LQFP 100-pin MAPBGA 100-pin LQFP 144-pin LQFP	100-pin MAPBGA 144-pin LQFP 176-pin LQFP	

LEGEND:

• Not implemented

Available on the device 1 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode.

2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.

3 4 KB (up to 512 KB D-Flash as a part of 2 MB Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.

4 Only for Boundary Scan Register
5 See Dimensions section for package drawings

Figure 3. S32K1xx product series comparison

3.2 Ordering information

Product status

P: Prototype F: Qualified

Product type/brand S32: Automotive 32-bit MCU

Product line K: Arm Cortex MCUs

Series/Family

1: 1st product series 2: 2nd product series

Core platform/Performance

- 1: Arm Cortex M0+
- 4: Arm Cortex M4F

Memory size

	2	4	6	8
S32K11x			128K	256K
S32K14x	256K	512K	1M	2M

Ordering option

X: Speed

B: 48 MHz without DMA (S32K11x only) L: 48 MHz with DMA (S32K11x only) H: 80 MHz U¹: 112 MHz (Not valid with M temperature/125C)

Y: Optional feature

- R: Base feature set
- F: CAN FD, FlexIO
- A1: CAN FD, FlexIO, Security
- E: Ethernet, Serial Audio Interface (S32K148 only) J1: Ethernet, Serial Audio Interface, CAN FD, FlexIO, Security (S32K148 only)

Wafer, Fab and revision

Fx: ATMC² Tx: GF XX: Flex #²

x0: 1st revision

Temperature

V: -40C to 105C M: -40C to 125C W: -40C to 150C²

Package

Pins	LQFP	QFN	BGA
32	-	FM	-
48	LF	-	-
64	LH	-	-
100	LL	-	мн
144	LQ	-	-
176	LU	-	-

Tape and Reel T: Trays/Tubes R: Tape and Reel

1. CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.

2. Not supported yet

3. Part numbers no longer offered as standard include:

Ordering Option X (M:64MHz); Ordering Option Y (N: limited RAM. 16KB for K142, 48KB for K144, 96KB for K146, 192KB for K148 S: Security); Temperature (C: -40C to 85C)

NOTE

Not all part number combinations are available. See S32K1xx_Orderable_Part_Number_List.xlsx attached with the Datasheet for list of standard orderable parts.

Figure 4. Ordering information

4.4 Power and ground pins

NOTE: V_{DD} and V_{DDA} must be shorted to a common source on PCB

Figure 5. Pinout decoupling

Table 4. Supplies decoupling capacitors 1, 2

Symbol Description		Min. ³	Тур.	Max.	Unit
C _{REF} ^{, 4} , ⁵	ADC reference high decoupling capacitance	70	100	—	nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100		nF

V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.

2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).

3. Minimum recommendation is after considering component aging and tolerance.

4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.

5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.

6. Contact your local Field Applications Engineer for details on best analog routing practices.

7. The filtering used for decoupling the device supplies must comply with the following best practices rules:

• The protection/decoupling capacitors must be on the path of the trace connected to that component.

• No trace exceeding 1 mm from the protection to the trace or to the ground.

• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).

• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

Table 8. VLPS additional use-case power consumption at typical conditions

Use-case	Description	Temp.		Device					Un
			S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	1
VLPS and RTC	Clock source: LPO or RTC_CLKIN	25	TBD	TBD	30	30	30	40	μA
		85	TBD	TBD	110	170	180	240	μA
		105	TBD	TBD	230	330	350	490	μA
		125	TBD	TBD	570	680	810	1250	μA
VLPS and LPUART	Clock source: SIRC	25	TBD	TBD	230	230	250	250	μA
TX/RX	 Transmiting or receiving continuously using DMA 	85	TBD	TBD	320	400	410	490	μA
	Baudrate: 19.2 kbps	105	TBD	TBD	490	550	600	850	μA
	·	125	TBD	TBD	890	1070	1250	1960	μA
VLPS and LPUART	Clock source: SIRC	25	TBD	TBD	100	100	110	110	μA
wake-up	 Wake-up address feature enabled Baudrate: 19.2 kbps 	85	TBD	TBD	170	240	280	350	μA
		105	TBD	TBD	260	400	480	600	μA
		125	TBD	TBD	530	580	1000	1280	μA
VLPS and LPI2C	Clock Source: SIRC	25	TBD	TBD	670	690	820	900	μA
master	 Transmit/receive using DMA Baudrate: 100 kHz 	85	TBD	TBD	880	960	1220	1370	μA
		105	TBD	TBD	1080	1250	1660	2060	μA
		125	TBD	TBD	1970	1980	2860	3690	μA
VLPS and LPI2C	Clock source: SIRC	25	TBD	TBD	250	250	270	280	μA
slave wake-up	 Wake-up address feature enabled Baudrate: 100 kHz 	85	TBD	TBD	340	340	410	510	μA
		105	TBD	TBD	430	430	610	810	μA
		125	TBD	TBD	740	760	1170	1540	μA
VLPS and LPSPI	Clock source: SIRC	25	TBD	TBD	2.99	3.19	3.75	4.11	mA
master	 Iransmit/receive using DMA Baudrate: 500 kHz 	85	TBD	TBD	3.26	3.7	4.35	4.93	mA
	- Dautiale. Juo NIZ	105	TBD	TBD	3.5	4.2	4.93	5.74	mA
		125	TBD	TBD	3.93	4.63	5.97	7.38	mĀ
VLPS and LPIT	Clock source: SIRC	25	TBD	TBD	100	100	120	130	μA
	 1 cnannel enable Mode: 32-bit periodic counter 	85	TBD	TBD	190	250	260	320	μA
		105	TBD	TBD	310	410	440	570	μA
		125	TBD	TBD	640	750	910	1280	μĀ

The following table shows the power consumption targets for S32K148 in various mode of operations measure at 3.3 V.

Chip/Device	Ambient		RUN@80	MHz (mA)	HSRUN@112 MHz (mA) ¹		
	Temperature (°C)		Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	
S32K148	25	Тур	67.3	79.1	89.8	105.5	
	85	Тур	67.4	79.2	95.6	105.9	
		Max	82.5	88.2	109.7	117.4	
	105	Тур	68.0	79.8	96.6	106.7	
		Max	80.3	89.1	109.0	119.0	
	125	Max	83.5	94.7	N	IA	

Table 9.Power consumption at 3.3 V

1. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model				2
	All pins except the corner pins		500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

Symbol	Description	on ¹	S32	K116	Sa	2K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{ersscr}	Erase Flash Sector execution time		12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1 KB flash)		5	—	5	_	ms	
t _{rd1all}	Read 1s All Block execution time		—	1.7	—	2.8	ms	
t _{rdonce}	Read Once execution time		-	30	_	30	μs	
t _{pgmonce}	Program Once execution time		90	_	90	-	μs	
t _{ersall}	Erase All Blocks execution time		150	1500	230	2500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	_	35	_	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	—	150	1500	230	2500	ms	2
t _{pgmpart}	Program Partition for EEPROM execution time	32 KB EEPROM backup	71	_	71	-	ms	3
		64 KB EEPROM backup	_	_	—	-	-	
t _{setram}	Set FlexRAM Function execution time	Control Code 0xFF	0.08	-	0.08	-	ms	3
		32 KB EEPROM backup	0.8	1.2	0.8	1.2	_	
		48 KB EEPROM backup	_	_	_	_	_	
		64 KB EEPROM backup	_	_	_	_		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3 [,] 4
		48 KB EEPROM backup	-	-	—	-		
		64 KB EEPROM backup	_	_	_	-		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3,4
		48 KB EEPROM backup	_	-	-	-	-	
		64 KB EEPROM backup	-	_	—	-		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	—	360	2000	360	2000	μs	

 Table 24. Flash command timing specifications for S32K11x (continued)

Table continues on the next page...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		3	—	5.5	V	
I _{DDA_ADC}	Supply current per ADC		—	1	—	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		—	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		—	±0.7	—	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity			±1.0	—	LSB ⁵	6, 7, 8, 9

Table 29. 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS})

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS}=20 \Omega$, and $C_{AS}=10 \text{ nF}$ unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

- Due to triple bonding in lower pin packages like 32-QFN, 48-LQFP, and 64-LQFP degradation might be seen in ADC parameters.
- When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose
PTE8	CMP0_IN3
PTC3	ADC0_SE11/CMP0_IN4
PTC2	ADC0_SE10/CMP0_IN5
PTD7	CMP0_IN6
PTD6	CMP0_IN7
PTD28	ADC1_SE22
PTD27	ADC1_SE21

6.4.2 CMP with 8-bit DAC electrical specifications Table 31. Comparator with 8-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode ¹		•		μA
	-40 - 125 °C	_	230	300	
I _{DDLS}	Supply current, Low-speed mode ¹				μA
	-40 - 105 °C	_	6	11	-
	-40 - 125 °C		6	13	
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V _{DDA}	V
V _{AIO}	Analog input offset voltage, High-speed mode		-	•	mV
	-40 - 125 °C	-25	±1	25	-
V _{AIO}	Analog input offset voltage, Low-speed mode				mV
	-40 - 125 °C	-40	±4	40	-
t _{DHSB}	Propagation delay, High-speed mode ²			•	ns
	-40 - 105 °C	_	35	200	
	-40 - 125 °C		35	300	-
t _{DLSB}	Propagation delay, Low-speed mode ²			•	μs
	-40 - 105 °C	_	0.5	2	-
	-40 - 125 °C	_	0.5	3	-
t _{DHSS}	Propagation delay, High-speed mode ³				ns
	-40 - 105 °C	_	70	400	-
	-40 - 125 °C	_	70	500	-
t _{DLSS}	Propagation delay, Low-speed mode ³				μs
	-40 - 105 °C	_	1	5	-
	-40 - 125 °C	_	1	5	-
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs
	-40 - 125 °C	_	1.5	3	-
t _{IDLS}	Initialization delay, Low-speed mode ⁴				μs
	-40 - 125 °C	_	10	30	-
V _{HYST0}	Analog comparator hysteresis, Hyst0				mV
	-40 - 125 °C	_	0	_	-
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode		•		mV
	-40 - 125 °C	_	19	66	
	Analog comparator hysteresis, Hyst1, Low-speed mode				
	-40 - 125 °C	_	15	40	
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode				mV
	-40 - 125 °C	_	34	133	

Table continues on the next page...

Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)

Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)

ADC electrical specifications

Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

Table 32. LPSPI electrical specifications1 (continued)

Num	Symbol	I Description	Conditions	Run Mode ²			HSRUN Mode ²				VLPR Mode				Unit	
				5.0 V IO		3.3 V IO		5.0 V IO		3.3 V IO		5.0 V IO		3.3 V IO		1
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
8	t _a	Slave access time	Slave	-	50	-	50	-	50	-	50	-	100	-	100	ns
9	t _{dis}	Slave MISO (SOUT) disable time	Slave	-	50	-	50	-	50	-	50	-	100	-	100	ns
10	t _v	, Data valid (after SPSCK	Slave	-	30	-	39	-	26	-	36 ¹¹ 31 ¹²	-	92	-	96	ns
			Master	-	12	-	16	-	11	-	15	-	47	-	48]
			Master Loopback ⁵	-	12	-	16	-	11	-	15	-	47	-	48	
			Master Loopback(slow) ⁶	-	8	-	10	-	7	-	9	-	44	-	44	
11	t _{HO}	Data hold	Slave	4	-	4	-	4	-	4	-	4	-	4	-	ns
	time(outpu	time(outputs)	Master	-15	-	-22	-	-15	-	-23	-	-22	-	-29	-	
			Master Loopback ⁵	-10	-	-14	-	-10	-	-14	-	-14	-	-19	-	
			Master Loopback(slow) ⁶	-15	-	-22	-	-15	-	-22	-	-21	-	-27	-	
12	t _{RI/FI}	t _{RI/FI} Rise/Fall time input	Slave	-	1	-	1	-	1	-	1	-	1	-	1	ns
			Master	-		-		-		-		-		-		
			Master Loopback ⁵	-	-	-		-		-		-		-		
			Master Loopback(slow) ⁶	-		-		-		-		-		-		
13	t _{RO/FO}	Rise/Fall time output	Slave	-	25	-	25	-	25	-	25	-	25	-	25	ns
			Master	-	1	-	1	-		-		-		-	1	
			Master Loopback ⁵	-		-		-		-		-		-		

Table continues on the next page...

Communication modules

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 19. LPSPI master mode timing (CPHA = 1)

Communication modules

Figure 23. SAI Timing — Slave modes

6.5.6 Ethernet AC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

The following table describes the MII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
— RXCLK frequency		—	25	MHz
MII1 RXCLK pulse width high		35%	65% RXCLK peri	
MII2	MII2 RXCLK pulse width low		65% RXCLK period	
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5		ns
—	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK period
MII6	TXCLK pulse width low	35%	65%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2		ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Table 35. MII signal switching specifications

Communication modules

Figure 24. MII receive diagram

Figure 25. MII transmit signal diagram

The following table describes the RMII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
—	RMII input clock RMII_CLK Frequency	—	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	—	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2		ns

Table continues on the next page...

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100-pin MAPBGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	 Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings : Added footnote to I_{INJPAD_DC} Updated description, max and min values for I_{INJSUM} Updated description, max and V_{IN} Removed V_{INA} and V_{IN} Added footnote "Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V Removed I_{NJSUM_AF} Updated footnotes in table Table 4 Updated conditions for VLPR Removed ldd/MHz for S32K142 Updated numbers for S32K142 Updated numbers for S32K142 and S32K148 Removed use case footnotes In section Modes configuration : Replaced table "Modes configuration" with spreadsheet attachment: 'S32K1xx_Power_Modes _Master_configuration_sheet' In table: DC electrical specifications at

Table 43. Revision History

Table continues on the next page...

Rev. No.

Date

		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : Minor editorial update: Fixed the placement of SRAM, under 'Flash memory controller' block Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Ordering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In Figure: S32K1xx product series comparison : Editorial updates Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information : Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption : Updated specs for S32K146 Removed section 'Modes configuration', and moved its content under

Table 43. Revision History (continued)

Substantial Changes

Table continues on the next page...

the fisrt paragraph.

In 12-bit ADC operating conditions :

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015–2018 NXP B.V.

Document Number S32K1XX Revision 8, 06/2018

