

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k146uat0vlht
Supplier Device Package	64-LQFP (10x10)
Package / Case	64-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TA)
Oscillator Type	Internal
Data Converters	A/D 24x12b SAR; D/A1x8b
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
RAM Size	128K x 8
EEPROM Size	4K x 8
Program Memory Type	FLASH
Program Memory Size	1MB (1M x 8)
Number of I/O	58
Peripherals	POR, PWM, WDT
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Speed	112MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M4F
Product Status	Active
Details	

Email: info@E-XFL.COM

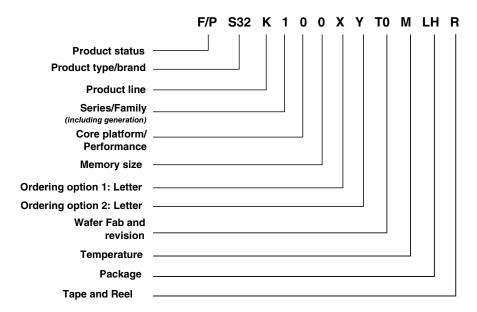
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

· Communications interfaces

- Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
- Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
- Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
- Up to three FlexCAN modules (with optional CAN-FD support)
- FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
- Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.

· Safety and Security

- Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
- 128-bit Unique Identification (ID) number
- Error-Correcting Code (ECC) on flash and SRAM memories
- System Memory Protection Unit (System MPU)
- Cyclic Redundancy Check (CRC) module
- Internal watchdog (WDOG)
- External Watchdog monitor (EWM) module


· Timing and control

- Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
- One 16-bit Low Power Timer (LPTMR) with flexible wake up control
- Two Programmable Delay Blocks (PDB) with flexible trigger system
- One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
- 32-bit Real Time Counter (RTC)

Package

- 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

3.2 Ordering information

Product status

P: Prototype F: Qualified

Product type/brand

S32: Automotive 32-bit MCU

Product line

K: Arm Cortex MCUs

Series/Family

1: 1st product series
 2: 2nd product series

Core platform/Performance

1: Arm Cortex M0+

4: Arm Cortex M4F

Memory size

	2	4	6	8		
S32K11x			128K	256K		
S32K14x	256K	512K	1M	2M		

Ordering option

X: Speed

B: 48 MHz without DMA (S32K11x only) L: 48 MHz with DMA (S32K11x only)

H: 80 MHz

U1: 112 MHz (Not valid with M temperature/125C)

Y: Optional feature

R: Base feature set F: CAN FD, FlexIO

A1: CAN FD, FlexIO, Security

E: Ethernet, Serial Audio Interface (S32K148 only)

J1: Ethernet, Serial Audio Interface, CAN FD, FlexIO, Security (S32K148 only)

Wafer, Fab and revision

Fx: ATMC² Tx: GF XX: Flex #²

x0: 1st revision

Temperature

V: -40C to 105C M: -40C to 125C W: -40C to 150C²

Package

Pins	LQFP	QFN	BGA
32	-	FM	-
48	LF	•	-
64	H	-	-
100	LL	,	МН
144	ß		•
176	LU	-	-

Tape and Reel

T: Trays/Tubes
R: Tape and Reel

- CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to
 execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
- 2. Not supported yet
- Part numbers no longer offered as standard include:
 Ordering Option X (M:64MHz); Ordering Option Y (N: limited RAM. 16KB for K142, 48KB for K144, 96KB for K146, 192KB for K148
 Security); Temperature (C: -40C to 85C)

NOTE

Not all part number combinations are available. See S32K1xx_Orderable_Part_Number_List.xlsx attached with the Datasheet for list of standard orderable parts.

Figure 4. Ordering information

S32K1xx Data Sheet, Rev. 8, 06/2018

Table 5. V_{DD} supply LVR, LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	_	75	_	mV	1
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

1. Rising threshold is the sum of falling threshold and hysteresis voltage.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- RUN Mode:
 - Clock source: FIRC
 - SYS CLK/CORE CLK = 48 MHz
 - BUS CLK = 48 MHz
 - FLASH_CLK = 24 MHz
- HSRUN Mode:
 - Clock source: SPLL
 - SYS CLK/CORE CLK = 112 MHz
 - BUS CLK = 56 MHz
 - FLASH_CLK = 28 MHz
- VLPR Mode:
 - Clock source: SIRC
 - SYS_CLK/CORE_CLK = 4 MHz
 - BUS CLK = 4 MHz
 - FLASH CLK = 1 MHz
- STOP1/STOP2 Mode:
 - Clock source: FIRC
 - SYS CLK/CORE CLK = 48 MHz
 - BUS_CLK = 48 MHz
 - FLASH CLK = 24 MHz
- VLPS Mode: All clock sources disabled ¹

Table 6. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
	After a POR event, amount of time from the point V_{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.	_	325	_	μs

Table continues on the next page...

- 1. For S32K11x FIRC/SOSC
 - For S32K14x FIRC/SOSC/SPLL

S32K1xx Data Sheet, Rev. 8, 06/2018

I/O parameters

- Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the Reference Manual.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input V = V_{DD}

5.4 DC electrical specifications at 5.0 V Range

Table 12. DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V_{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V_{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	_	V	
Ioh _{GPIO}	I/O current source capability measured	5	_	_	mA	
$loh_{GPIO-HD_DSE_0}$	when pad V _{oh} = (V _{DD} - 0.8 V)					
Iol _{GPIO}	I/O current sink capability measured	5	_	_	mA	
Iol _{GPIO-HD_DSE_0}	when pad V _{ol} = 0.8 V					
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = V_{DD}$ - 0.8 V	20	_	_	mA	3
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	20	_	_	mA	3
Ioh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh} = V_{DD}$ - 0.8 V	14.0	_	_	mA	4
Iol _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	14.5	_	_	mA	4
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh} = V_{DD}$ - 0.8 V	21	_	_	mA	4
Iol _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	20.5	_	_	mA	4
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full te	mperature r	ange at V _{DE}	= 5.5 V		5
	All pins other than high drive port pins		0.005	0.5	μΑ	
	High drive port pins		0.010	0.5	μΑ	
R _{PU}	Internal pullup resistors	20		50	kΩ	6
R _{PD}	Internal pulldown resistors	20		50	kΩ	7

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same V_{il} levels are applicable
- 3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.
- 4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

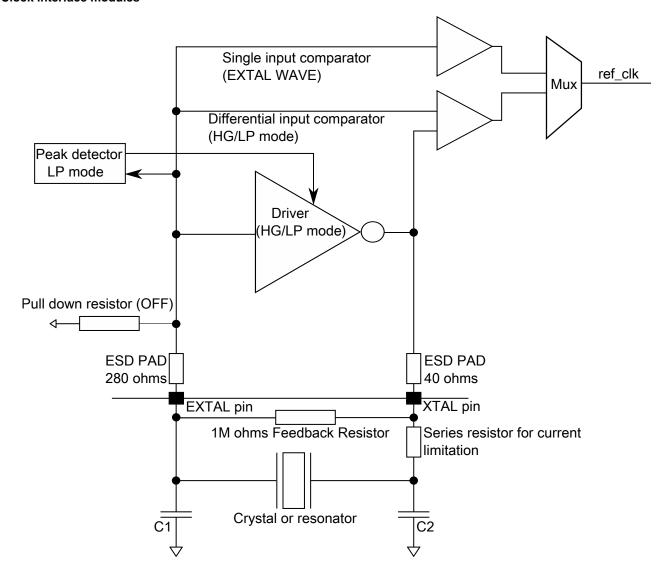


Figure 8. Oscillator connections scheme

Table 17. External System Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
g _m xosc	Crystal oscillator transconductance		-			
	SCG_SOSCCFG[RANGE]=2'b10 for 4-8 MHz	2.2	_	13.7	mA/V	
	SCG_SOSCCFG[RANGE]=2'b11 for 8-40 MHz	16	_	47	mA/V	
V _{IL}	Input low voltage — EXTAL pin in external clock mode	V _{SS}	_	1.15	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V	
C ₁	EXTAL load capacitance	_	_	_		1
C ₂	XTAL load capacitance	_	_	_		1
R _F	Feedback resistor		•	•		2
	Low-gain mode (HGO=0)	_	_	_	ΜΩ	

Table continues on the next page...

Memory and memory interfaces

Table 24. Flash command timing specifications for S32K11x (continued)

Symbol	Description	on ¹	S3	2K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{ersscr}	Erase Flash Sector execution time	_	12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1 KB flash)	_	5	_	5	_	ms	
t _{rd1all}	Read 1s All Block execution time	_	_	1.7	_	2.8	ms	
t _{rdonce}	Read Once execution time	_	_	30	_	30	μs	
t _{pgmonce}	Program Once execution time	_	90	_	90	_	μs	
t _{ersall}	Erase All Blocks execution time	_	150	1500	230	2500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	35	_	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	_	150	1500	230	2500	ms	2
t _{pgmpart}	Program Partition for EEPROM execution time	32 KB EEPROM backup	71	_	71	_	ms	3
		64 KB EEPROM backup	_	_	_	_		
t _{setram}	Set FlexRAM Function execution time	Control Code 0xFF	0.08	_	0.08	_	ms	3
		32 KB EEPROM backup	0.8	1.2	0.8	1.2		
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup	_	_	_	_		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3,4
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup		_	_	_		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3,4
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup	_	_	_			
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	μs	

Table continues on the next page...

Table 24. Flash command timing specifications for S32K11x (continued)

Symbol	Descripti	on ¹	S32	K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3,4
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup	_	_	_	_		
t _{quickwr}	32-bit Quick Write	1st 32-bit write	200	550	200	550	μs	4.5.6
	execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write	2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550		
	complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
t _{quickwrClnup}	Quick Write Cleanup execution time	_	_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may
 be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 No EEPROM
 issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using as Program	and Data	Flash	-		
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	_	_	years	1
n _{nvmcycp}	Cycling endurance	1 K	_	_	cycles	2, 3

Table continues on the next page...

S32K1xx Data Sheet, Rev. 8, 06/2018

Memory and memory interfaces

Table 25. NVM reliability specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes					
When using FlexMemory feature: FlexRAM as Emulated EEPROM											
t _{nvmretee}	Data retention	5	_	_	years	4					
n _{nvmwree16}	Write endurance • EEPROM backup to FlexRAM ratio = 16	100 K	_	_	writes	5, 6, 7					
n _{nvmwree256}	EEPROM backup to FlexRAM ratio = 256	1.6 M	_	_	writes						

- 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.
- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.
- 5. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

Table 26. QuadSPI electrical specifications (continued)

FLASH PORT	Sym	Unit						FLA	ASH A							FL/	ASH B	
					RU	JN ¹					HSR	UN ¹				RUN/I	HSRUN ²	2
QuadSPI Mode					S	DR					SDR				SDR		DDR ³	
				ernal ipling		Internal DQS			Internal Internal DQS Sampling			al DQS			ernal pling	External DQS		
			N			PAD International Internationa			N1			PAD Internal Loopback			N1		External DQS	
	1		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
SCK Duty Cycle	tspc	ns	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 0.750	tSCK/2 - 0.750	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 2.5	tSCK/2 + 2.5	tSCK/2 - 2.5	tSCK/2 + 2.5
Data Input Setup Time	t _{IS}	ns	15	-	2.5	-	10	-	14	-	1.6	-	9	-	25	-	2	-
Data Input Hold Time	t _{IH}	ns	0	-	1	-	1	-	0	-	1	-	1	-	0	-	20	-
Data Output Valid Time	t _{OV}	ns	-	4.5	-	4.5	-	4.5	-	4	-	4	-	4	-	10	-	10
Data Output In-Valid Time	t _{IV}	ns	-	5	-	5	-	5	-	5	-	3 ⁵	-	5	-	5	5	-
CS to SCK Time ⁶	t _{CSSCK}	ns	5	-	5	-	5	-	5	-	5	-	5	-	10	-	10	-
SCK to CS Time ⁷	t _{SCKCS}	ns	5	-	5	-	5	-	5	-	5	-	5	-	5	-	5	-
Output Load		pf	2	25	2	25	2	25	2	25	2	5	2	25	2	25	2	25

- 1. See Reference Manual for details on mode settings
- 2. See Reference Manual for details on mode settings
- 3. Valid for HyperRAM only
- 4. RWDS(External DQS CLK) frequency
- 5. For operating frequency ≤ 64 Mhz, Output invalid time is 5 ns.
- 6. Program register value QuadSPI_FLSHCR[TCSS] = 4`h2
- 7. Program register value QuadSPI_FLSHCR[TCSH] = 4`h1

Analog modules

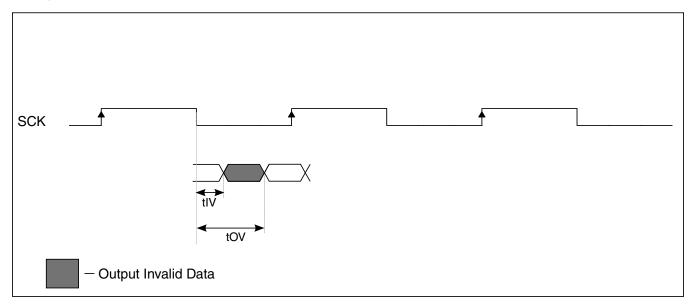


Figure 12. QuadSPI output timing (HyperRAM mode) diagram

6.4 Analog modules

6.4.1 ADC electrical specifications

6.4.1.1 12-bit ADC operating conditions Table 27. 12-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{REFH}	ADC reference voltage high		See Voltage and current operating requirements for values	V_{DDA}	See Voltage and current operating requirements for values	V	2
V _{REFL}	ADC reference voltage low		See Voltage and current operating requirements for values	0	See Voltage and current operating requirements for values	mV	2
V _{ADIN}	Input voltage		V _{REFL}	_	V_{REFH}	V	
R _S	Source impedendance	f _{ADCK} < 4 MHz	_	_	5	kΩ	
R _{SW1}	Channel Selection Switch Impedance		_	0.75	1.2	kΩ	
R _{AD}	Sampling Switch Impedance		_	2	5	kΩ	
C _{P1}	Pin Capacitance		_	10	_	pF	
C _{P2}	Analog Bus Capacitance		_	_	4	pF	
C _S	Sampling capacitance		_	4	5	pF	

Table continues on the next page...

43

Table 27.	12-bit ADC o	perating	conditions ((continued))
-----------	--------------	----------	--------------	-------------	---

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
f _{ADCK}	ADC conversion clock frequency	Normal usage	2	40	50	MHz	3, 4
f _{CONV}	ADC conversion frequency	No ADC hardware averaging. ⁵ Continuous conversions enabled, subsequent conversion time	46.4	928	1160	Ksps	6, 7
		ADC hardware averaging set to 32. ⁵ Continuous conversions enabled, subsequent conversion time	1.45	29	36.25	Ksps	6, 7

- 1. Typical values assume $V_{DDA} = 5 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS} = 20 \Omega$, and $C_{AS} = 10 \text{ nF}$ unless otherwise stated. Typical values are for reference only, and are not tested in production.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}.
 To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 4. ADC conversion will become less reliable above maximum frequency.
- 5. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.
- 6. Numbers based on the minimum sampling time of 275 ns.
- 7. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function'

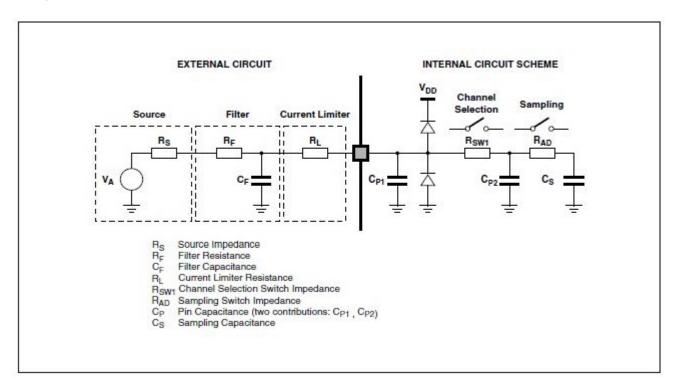
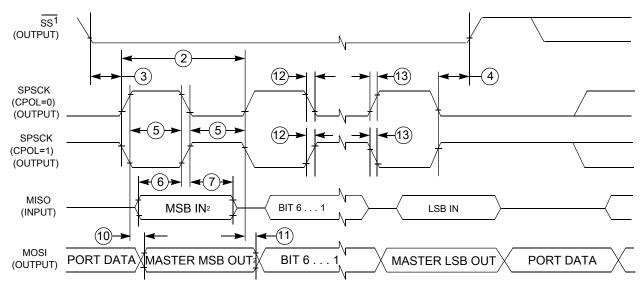


Figure 13. ADC input impedance equivalency diagram

S32K1xx Data Sheet, Rev. 8, 06/2018

Table 32. LPSPI electrical specifications1 (continued)


Num	Symbol	Description	Conditions	Run Mode ²				HSRUN	l Mode ²		VLPR Mode				Unit	
				5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3 \	/ IO	
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
			Master Loopback(slow)	-		-		-		-		-		-		

- Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.
- 2. While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz.
- 3. f_{periph} = LPSPI peripheral clock
- 4. $t_{periph} = 1/f_{periph}$
- 5. Master Loopback mode In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pads used are PTD15 and PTE0. Applicable only for LPSPI0.
- 6. Master Loopback (slow) In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pad used is PTB2. Applicable only for LPSPI0.
- 7. This is the maximum operating frequency (f_{op}) for LPSPI0 with medium PAD type only. Otherwise, the maximum operating frequency (f_{op}) is 12 Mhz.
- 8. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255.
- 9. Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255.
- 10. While selecting odd dividers, ensure Duty Cycle is meeting this parameter.
- 11. Maximum operating frequency (f_{op}) is 12 MHz irrespective of PAD type and LPSPI instance.
- 12. Applicable for LPSPI0 only with medium PAD type, with maximum operating frequency (f_{op}) as 14 MHz.

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. LPSPI master mode timing (CPHA = 0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 19. LPSPI master mode timing (CPHA = 1)

Table 38. SWD electrical specifications

Symbol	Description		Run	Mode			HSRU	N Mode		VLPR Mode				Unit
		5.0	V IO	3.3 \	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
S1	SWD_CLK frequency of operation	-	25	-	25	-	25	-	25	-	10	-	10	MHz
S2	SWD_CLK cycle period	1/S1	-	1/S1	-	1/S1	-	1/S1	-	1/S1	-	1/S1	-	ns
S3	SWD_CLK clock pulse width	S2/2 - 5	S2/2 + 5	S2/2 - 5	S2/2 + 5	S2/2 - 5	S2/2 + 5	ns						
S4	SWD_CLK rise and fall times	-	1	-	1	-	1	-	1	-	1	-	1	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	4	-	4	-	4	-	4	-	16	-	16	-	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	3	-	3	-	3	-	3	-	10	-	10	-	ns
S11	SWD_CLK high to SWD_DIO data valid	-	28	-	38	-	28	-	38	-	70	-	77	ns
S12	SWD_CLK high to SWD_DIO high-Z	-	28	-	38	-	28	-	38	-	70	-	77	ns
S13	SWD_CLK high to SWD_DIO data invalid	0	-	0	-	0	-	0	-	0	-	0	-	ns

Table 39. Trace specifications (continued)

	Symbol	Symbol Description		RUN Mode	•	HSRUN Mode		VLPR Mode	Unit
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast pads	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
ads	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow pads	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

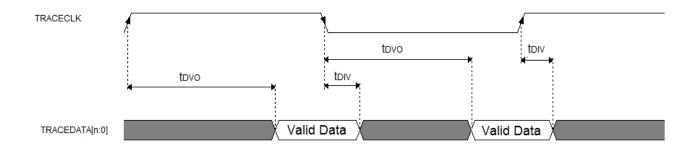


Figure 31. TRACE CLKOUT specifications

6.6.3 JTAG electrical specifications

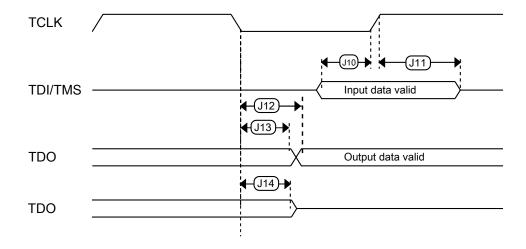


Figure 34. Test Access Port timing

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued)

Rating	Rating Conditions Symbol Package		Valı	Values						
				S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
Thermal resistance, Junction to Package	Natural	ΨЈТ	32	1	NA	NA	NA	NA	NA	
Top ⁷	Convection		48	4	2	NA	NA	NA	NA	
			64	NA	2	2	2	2	NA	
			100	NA	NA	2	2	2	NA	
			144	NA	NA	NA	NA	2	1	
			176	NA	NA	NA	NA	NA	1	

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 43. Revision History (continued)

Rev. No.	Date	Substantial Changes
nev. No.	Date	 Updated note 'All the limits defined' Updated parameter 'I_{INJPAD_DC_ABS}', 'V_{IN_DC}', I_{INJSUM_DC_ABS}. In Table 2, Updated parameter I_{INJPAD_DC_OP} and I_{INJSUM_DC_OP}. In Table 5, updated TBDs for V_{LVR_HYST}, V_{LVD_HYST}, and v_{LVW_HYST}. In Power mode transition operating behaviors, Added VLPR → VLPS Added VLPS → VLPR Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup, and STOP2 → Asynchronous DMA Wakeup In Table 7, updated the specifications for S32K144. Updated the attachment S32K1xx_Power_Modes_Configuration.xlsx. In Table 15, removed C_{IN_A}. In Table 17, Updated specificatins for g_{mXOSC}. Removed I_{DDSIRC} In Table 19, Added parameter ΔF125. Removed I_{DDSIRC} In Table 20, Added parameter ΔF125. Removed I_{DDSIRC} In Table 21, removed I_{LPO} Updated section: Flash memory module (FTFC) electrical specifications In section: 12-bit ADC operating conditions, Updated TBDs for I_{DDA_ADC} and TUE in Table 28 Updated TBDs for I_{DDA_ADC} and TUE in Table 29 In section: QuadSPI AC specifications, updated figure 'QuadSPI output timing (HyperRAM mode) diagram'. In section: CMP with 8-bit DAC electrical specifications, added note 'For comparator IN signals adjacent ' In table: Table 32, minor update in footnote 6.
5	06 Dec 2017	 In table: Table 41, updated specifications for S32K146. Removed S32K148 from 'Caution' Updated figure: S32K1xx product series comparison for 'EEPROM emulated by FlexRAM' of S32K148 (Added content to footnote) Added support for LIN protocol version 2.2 A In Absolute maximum ratings: Added note 'Unless otherwise ' Added parameter 'Added note 'Tramp_MCU' Updated footnote for 'Tramp' In Voltage and current operating requirements: Added footnote 'VDD and VDDA must be shorted ' against parameter 'VDD-VDDA' Updated footnote 'VDD and VDDA must be shorted ' In Power and ground pins Added diagrams for 32-QFN and 48-LQFP and footnote below the diagrams. Updated footnote 'VDD and VDDA must be shorted ' In Power mode transition operating behaviors:

Table continues on the next page...

Revision History

Table 43. Revision History

Rev. No.	Date	Substantial Changes
		Updated specs for T _{JIT} Cycle-to-Cycle jitter to 300 ps
		In QuadSPI AC specifications :
		 Updated specs for T_{iv} Data Output In-Valid Time
		 In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid
		area
		In CMP with 8-bit DAC electrical specifications:
		 Removed '(VAIO)' from decription of V_{HYST0}
		In LPSPI electrical specifications :
		 Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)'

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015–2018 NXP B.V.

Document Number S32K1XX Revision 8, 06/2018

