

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	112MHz
Connectivity	CANbus, Ethernet, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	128
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x12b SAR; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k148urt0vlqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature comparison

2 Feature comparison

The following figure summarizes the memory, peripherals and packaging options for the S32K1xx devices. All devices which share a common package are pin-to-pin compatible.

NOTE

Availability of peripherals depends on the pin availability in a particular package. For more information see *IO Signal*

4 General

4.1 Absolute maximum ratings

NOTE

- Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions.
- Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.
- All the limits defined in the datasheet specification must be honored together and any violation to any one or more will not guarantee desired operation.
- Unless otherwise specified, all maximum and minimum values in the datasheet are across process, voltage, and temperature.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
V _{DD} ²	2.7 V - 5. 5V input supply voltage	—	-0.3	5.8 ³	V
V _{REFH}	3.3 V / 5.0 V ADC high reference voltage	—	-0.3	5.8 ³	V
I _{INJPAD_DC_ABS} 4	Continuous DC input current (positive / negative) that can be injected into an I/O pin	_	-3	+3	mA
V _{IN_DC}	Continuous DC Voltage on any I/O pin with respect to $V_{\mbox{\scriptsize SS}}$		-0.8	5.8 ⁵	V
I _{INJSUM_DC_ABS}	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	—	—	30	mA
T _{ramp} ⁶	ECU supply ramp rate	—	0.5 V/min	500 V/ms	—
T _{ramp_MCU} ⁷	MCU supply ramp rate	—	0.5 V/min	100 V/ms	—
T _A ⁸	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature	—	-55	165	°C
V _{IN_TRANSIENT}	Transient overshoot voltage allowed on I/O pin beyond $V_{IN_DC\ limit}$		_	6.8 ⁹	V

Table 1. Absolute maximum ratings

1. All voltages are referred to V_{SS} unless otherwise specified.

- As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. 60 s lifetime No restrictions i.e. The part can switch.

10 hours lifetime - Device in reset i.e. The part cannot switch.

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} ^{, 4} , ⁵	ADC reference high decoupling capacitance	70	100	—	nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100		nF

V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.

2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).

3. Minimum recommendation is after considering component aging and tolerance.

4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.

5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.

6. Contact your local Field Applications Engineer for details on best analog routing practices.

7. The filtering used for decoupling the device supplies must comply with the following best practices rules:

• The protection/decoupling capacitors must be on the path of the trace connected to that component.

• No trace exceeding 1 mm from the protection to the trace or to the ground.

• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).

• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	—	75	—	mV	1
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

Table 5. V_{DD} supply LVR, LVD and POR operating requirements (continued)

1. Rising threshold is the sum of falling threshold and hysteresis voltage.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- RUN Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - $BUS_CLK = 48 MHz$
 - FLASH_CLK = 24 MHz
- HSRUN Mode:
 - Clock source: SPLL
 - SYS_CLK/CORE_CLK = 112 MHz
 - BUS_CLK = 56 MHz
 - FLASH_CLK = 28 MHz
- VLPR Mode:
 - Clock source: SIRC
 - SYS_CLK/CORE_CLK = 4 MHz
 - $BUS_CLK = 4 MHz$
 - FLASH_CLK = 1 MHz
- STOP1/STOP2 Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - $BUS_CLK = 48 MHz$
 - FLASH_CLK = 24 MHz
- VLPS Mode: All clock sources disabled ¹

Table 6. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.	_	325	_	μs

Table continues on the next page...

- 1. For S32K11x FIRC/SOSC
 - For S32K14x FIRC/SOSC/SPLL

General

Symbol	Description	Min.	Тур.	Max.	Unit
	$VLPS \rightarrow RUN$	8	—	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	STOP2 → RUN	0.07	0.075	0.08	μs
	VLPR → RUN	19	_	26	μs
	VLPR → VLPS	5.1	5.7	6.5	μs
	$VLPS \rightarrow VLPR$	18.8	23	27.75	μs
	$RUN \rightarrow Compute operation$	0.72	0.75	0.77	μs
	HSRUN \rightarrow Compute operation	0.3	0.31	0.35	μs
	RUN → STOP1	0.35	0.38	0.4	μs
	$RUN \rightarrow STOP2$	0.2	0.23	0.25	μs
	RUN → VLPS	0.3	0.35	0.4	μs
	$RUN \rightarrow VLPR$	3.5	3.8	5	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset \rightarrow Code execution	—	214	—	μs

 Table 6. Power mode transition operating behaviors (continued)

NOTE

HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode.

4.7 Power consumption

The following table shows the power consumption targets for the device in various mode of operations. Attached *S32K1xx_Power_Modes _Configuration.xlsx* details the modes used in gathering the power consumption data stated in the following table Table 7. For full functionality refer to table: Module operation in available power modes of the *Reference Manual*.

The following table shows the power consumption targets for S32K148 in various mode of operations measure at 3.3 V.

Chip/Device	Ambient		RUN@80	RUN@80 MHz (mA)		2 MHz (mA) ¹
	Temperature (°C)		Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI
S32K148	25	Тур	67.3	79.1	89.8	105.5
	85	Тур	67.4	79.2	95.6	105.9
		Max	82.5	88.2	109.7	117.4
	105	Тур	68.0	79.8	96.6	106.7
		Max	80.3	89.1	109.0	119.0
	125	Max	83.5	94.7	N	IA

Table 9.Power consumption at 3.3 V

1. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model				2
	All pins except the corner pins	- 500	500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

I/O parameters

- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the *Reference Manual*.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input $V = V_{DD}$

5.4 DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	—	_	V	
Ioh _{GPIO}	I/O current source capability measured	5	—	—	mA	
loh _{GPIO-HD_DSE_0}	when pad V _{oh} = (V _{DD} - 0.8 V)					
Iol _{GPIO}	I/O current sink capability measured	5	—	_	mA	
Iol _{GPIO-HD_DSE_0}	when pad V _{ol} = 0.8 V					
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	20	_	_	mA	3
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 V$	20	_	-	mA	3
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	14.0	_	-	mA	4
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	14.5	_	-	mA	4
loh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	21	_	-	mA	4
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	20.5	_	-	mA	4
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full te	mperature r	ange at V _{DE}	₀ = 5.5 V	L	5
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μA	1
R _{PU}	Internal pullup resistors	20		50	kΩ	6
R _{PD}	Internal pulldown resistors	20		50	kΩ	7

Table 12. DC electrical specifications at 5.0 V Range

1. For reset pads, same V_{ih} levels are applicable

2. For reset pads, same V_{il} levels are applicable

- 3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.
- 4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

Table 17. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	—	1	—	MΩ	
R _S	Series resistor					
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	—	0	—	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3
	Low-gain mode (HGO=0)	_	1.0	_	V	1
	High-gain mode (HGO=1)	—	3.3	—	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_{crit}$. The gm_crit is defined as:

gm_crit = 4 * ESR * $(2\pi F)^2$ * $(C_0 + C_L)^2$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C1, C2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- 3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 21. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
T _{startup}	Startup Time	—		20	μs

6.2.5 SPLL electrical specifications

Table 22. SPLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8	—	16	MHz
F _{SPLL_Input} ²	PLL Input Frequency	8	—	40	MHz
F _{VCO_CLK}	VCO output frequency	180	—	320	MHz
F _{SPLL_CLK}	PLL output frequency	90	—	160	MHz
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³				
	at F _{VCO_CLK} 180 MHz	_	120	_	ps
	at F _{VCO_CLK} 320 MHz	—	75	_	ps
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (RMS) ³				
	at F _{VCO_CLK} 180 MHz	_	1350	_	ps
	at F _{VCO_CLK} 320 MHz	—	600	—	ps
D _{UNL}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%
T _{SPLL_LOCK}	Lock detector detection time ⁴	_		150 × 10 ⁻⁶ + 1075(1/F _{SPLL_REF})	S

1. F_{SPLL_REF} is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.

 F_{SPLL_Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary

4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3 Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

Symbol	Description	on ¹	S32	K116	S3	2K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3,4
		48 KB EEPROM backup	_	_	_	—		
		64 KB EEPROM backup	-	-	_	_		
t _{quickwr} 32-bit Quick Write execution time: Time from CCIF clearing (s the write) until CCIF	32-bit Quick Write	1st 32-bit write	200	550	200	550	μs	4,5,6
	execution time: Time from CCIF clearing (start the write) until CCIF	2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550		
	complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
t _{quickwrClnup}	Quick Write Cleanup execution time		_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

Table 24. Flash command timing specifications for S32K11x (continued)

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
When using as Program and Data Flash					-	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	—	—	years	1
n _{nvmcycp}	Cycling endurance	1 K		_	cycles	2, 3

Table continues on the next page ...

Table 25.	NVM reliability	/ S	pecifications	(continued))
-----------	-----------------	-----	---------------	-------------	---

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
When using FlexMemory feature : FlexRAM as Emulated EEPROM						
t _{nvmretee}	Data retention	5	—	—	years	4
n _{nvmwree16}	Write endurance EEPROM backup to FlexRAM ratio = 16 	100 K	_	_	writes	5, 6, 7
n _{nvmwree256}	 EEPROM backup to FlexRAM ratio = 256 	1.6 M	—	—	writes	

- 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.
- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.
- FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

Figure 9. QuadSPI input timing (SDR mode) diagram

Figure 10. QuadSPI output timing (SDR mode) diagram

TIS-Setup Time TIH-Hold Time

Figure 11. QuadSPI input timing (HyperRAM mode) diagram

Table 36. RMII signal switching specifications (continued)

Symbol	Description	Min.	Max.	Unit
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	2	—	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid		15	ns

Figure 26. RMII receive diagram

The following table describes the MDIO electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- MDIO pin must have external Pull-up.

Table 37.	MDIO	timing	specifications
-----------	------	--------	----------------

Symbol	Description	Min.	Max.	Unit
	MDC Clock Frequency		2.5	MHz

Table continues on the next page...

	Symbol	ymbol Description RUN Mode		HSRUN Mode		VLPR Mode	Unit		
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast p	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
ads	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow p	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

Table 39. Trace specifications (continued)

6.6.3 JTAG electrical specifications

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package

Rating	Conditions	Symbol	Package			Val	ues			Unit
				S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
Thermal resistance, Junction to Ambient	Single layer	R _{θJA}	32	93	NA	NA	NA	NA	NA	°C/W
(Natural Convection) ^{1, 2}	board (1s)		48	79	71	NA	NA	NA	NA	
			64	NA	62	61	61	59	NA	
			100	NA	NA	53	52	51	NA	
			144	NA	NA	NA	NA	51	44	
			176	NA	NA	NA	NA	NA	42	
Thermal resistance, Junction to Ambient	Two layer	R _{θJA}	32	50	NA	NA	NA	NA	NA	
(Natural Convection) ¹	board (1s1p)		48	58	50	NA	NA	NA	NA	
			64	NA	46	45	45	44	NA	
			100	NA	NA	42	42	40	NA	
			144	NA	NA	NA	NA	44	37	
			176	NA	NA	NA	NA	NA	36	
Thermal resistance, Junction to Ambient	Four layer board (2s2p)	/er R _{θJA} s2p)	32	32	NA	NA	NA	NA	NA	
(Natural Convection) ^{1, 2}			48	55	47	NA	NA	NA	NA	-
			64	NA	44	43	43	41	NA	
			100	NA	NA	40	40	39	NA	
			144	NA	NA	NA	NA	42	36	
			176	NA	NA	NA	NA	NA	35	
Thermal resistance, Junction to Ambient	Single layer	R _{θJMA}	32	77	NA	NA	NA	NA	NA	
(@200 ft/min) ^{1, 3}	board (1s)		48	66	58	NA	NA	NA	NA	
			64	NA	50	49	49	48	NA	
			100	NA	NA	43	42	41	NA	
			144	NA	NA	NA	NA	42	36	
			176	NA	NA	NA	NA	NA	34	
Thermal resistance, Junction to Ambient	Two layer	R _{0JMA}	32	43	NA	NA	NA	NA	NA	
(@200 ft/min)'	board (1s1p)		48	51	43	NA	NA	NA	NA	
			64	NA	39	38	38	37	NA	
			100	NA	NA	35	35	34	NA	

Table continues on the next page...

69

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued)

Rating	Conditions	Symbol	Package			Val	ues			Unit
				S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
Thermal resistance, Junction to Package Top ⁷	Natural Convection	Ψյт	32	1	NA	NA	NA	NA	NA	
			48	4	2	NA	NA	NA	NA	
			64	NA	2	2	2	2	NA	
			100	NA	NA	2	2	2	NA	
			144	NA	NA	NA	NA	2	1	
			176	NA	NA	NA	NA	NA	1	

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

6. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.

7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	 Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings : Added footnote to I_{INJPAD_DC} Updated description, max and min values for I_{INJSUM} Updated description, max and VIN Updated footnote V_{IDD_OFF} Removed V_{INA} and V_{IN} Added footnote "Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V Removed I_{NJSUM_AF} Updated footnote "With PMC_REGSC[CLKBIASDIS] " Updated conditions for VLPR Removed ldd/MHz for S32K142 Updated numbers for S32K142 Updated numbers for S32K142 and S32K148 Removed use case footnotes In section Modes configuration : Replaced table "Modes _Grifications at 3.3 V Range : Added footnotes to V_{ih} Input Buffer High Voltage and V_{ih} Input Buffer Low Voltage

Table 43. Revision History

Table continues on the next page...

	. .	
Hev. No.	Date	Substantial Changes
		 Updated values for V_{REFH} and V_{REFL} to add refernce to the section "voltage and current operating requirments" for Min and Max values Updated footnote to Typ. Removed footnote from RAS Analog source resistance Updated figure: ADC input impedance equivalency diagram In table: 12-bit ADC characteristics (2.7 V to 3 V) (V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed number for TUE Updated footnote to Typ. In table: Comparator with 8-bit DAC electrical specifications Updated Typ. of I_{DDLS} Supply current, Low-speed mode Updated Typ. of I_{DLSB} Propagation delay, Low-speed mode Updated Typ. of I_{DLSB} Propagation delay, High-speed mode Updated footnote Updated Typ. I I_{DLSB} Propagation delay, High-speed mode Updated footnote Updated footnote Updated section LPSPI electrical specifications Added row for t_{DDAC} Initialization and switching settling time Updated section: Clockout frequency Added section: Clockout frequency Added section: Trace electrical specifications Updated table: Table 41 : Updated numbers for S32K142 and S32K148 Updated Document number for 32-pin QFN in topic Obtaining package dimensions
3	14 March 2017	 In Table 2 Updated min. value of V_{DD_OFF} Added parameter I_{INJSUM_AF} Updated Power mode transition operating behaviors Updated Power consumption Updated footnote to T_{SPLL_LOCK} in SPLL electrical specifications In 12-bit ADC electrical characteristics Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC}, TUE, DNL, and INL Added min. value to SMPLTS Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Thermoved footnote 'All the parameters in this table '
4	02 June 2017	 In section: Block diagram, added block diagram for S32K11x series. Updated figure: S32K1xx product series comparison. In section: Selecting orderable part number, added reference to attachement S32K_Part_Numbers.xlsx. In section: Ordering information Updated figure: Ordering information. In Table 1,

Table 43. Revision History (continued)

Table continues on the next page...

Rev. No.	Date	Substantial Changes
		 Updated note 'All the limits defined' Updated parameter 'I_{INJPAD_DC_ABS},' 'VIN_DC', I_{INJSUM_DC_ABS}. In Table 2, Updated parameter I_{INJPAD_DC_OP} and I_{INJSUM_DC_OP}. In Table 5, updated TBDs for V_{LVR_HYST}, V_{LVD_HYST}, and v_{LVW_HYST} In Power mode transition operating behaviors, Added VLPR → VLPS Added VLPS → VLPR Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup, and STOP2 → Asynchronous DMA Wakeup In Table 7, updated the specifications for S32K144. Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx. In Table 15, removed C_{IN_A}. In Table 17, Updated specificatins for g_{mXOSC}. Removed I_{DDSIRC} In Table 19, Added parameter ΔF125. Removed I_{DDFIRC} In Table 21, removed I_{LPO} Updated TBDs for I_{DDA_ADC} and TUE in Table 28 Updated TBDs for I_{DDA_ADC} and TUE in Table 29 In section: QuadSPI AC specifications, updated TBDs for I_{DDA_ADC} and TUE in Table 27. In section: CMP with 8-bit DAC electrical specifications, added note 'For comparator I'A spinals adjacent'
5	06 Dec 2017	 Removed S32K148 from 'Caution' Updated figure: S32K1xx product series comparison for 'EEPROM emulated by FlexRAM' of S32K148 (Added content to footnote) Added support for LIN protocol version 2.2 A In Absolute maximum ratings : Added note 'Unless otherwise ' Added parameter 'Added note 'T_{ramp_MCU}' Updated footnote for 'T_{ramp}' In Voltage and current operating requirements : Added footnote 'V_{DD} and V_{DDA} must be shorted ' against parameter 'V_{DD}- V_{DDA}' Updated footnote 'V_{DD} and V_{DDA} must be shorted ' against parameter diagrams. Updated footnote 'V_{DD} and V_{DDA} must be shorted'

Table 43. Revision History (continued)

Table continues on the next page ...

Table 43.	Revision	History
-----------	----------	---------

Rev. No.	Date	Substantial Changes	
		 Added footnote 'For S32K11x – FIRC/SOSC/FIRC/LPO; For S32K14x 	
		- FIRC/SOSC/FIRC/LPO/SPLL' to 'VLPS Mode: All clock sources	
		disabled'	
		Updated numbers for: A VI PP - VI PS	
		 VLFN → VLFS VLPS → VLPB 	
		 'BLIN → Compute operation' 	
		 BUN → VLPS 	
		 RUN → VLPR 	
		In Power consumption :	
		 Updated specs for S32K142, S32K144, and S32K148 	
		 Updated footnote 'Typical current numbers are indicative' 	
		 Updated footnote 'The S32K148 data' 	
		Removed footnote 'Above S32K148 data is preliminary targets only'	
		Added new table 'Power consumption at 3.3 V'	
		In General AC Specifications : Indated may value and footnote of WERST	
		Undated symbol for not filtered pulse to 'WNERST' undated min value	
		removed max, value, and added footnote	
		Fixed naming conventions to align with DS in DC electrical specifications at	
		3.3 V Range and DC electrical specifications at 5.0 V Range	
		 Updated specs for AC electrical specifications at 3.3 V range and AC 	
		electrical specifications at 5 V range	
		In Device clock specifications :	
		Updated f _{BUS} to 48 for 11x	
		Added footnote to f _{BUS} for 14x	
		In External System Oscillator frequency specifications : Added space for S32K11y	
		Updated 'te stal' for \$32K14x	
		 Added footnote 'Frequecies below ' to 'fec extal' and 'tdc extal' 	
		 Splitted Flash timing specifications — commands for S32K14x and S32K11x 	
		 Updated Flash timing specifications — commands for S32K14x 	
		In Reliability specifications :	
		 Added footnote 'Data retention period ' for 'tnvmretp1k' and 	
		'Invmretee'	
		In OuadSPLAC specifications:	
		Updated 'MCB[SCI KCEG[5]]' value to 0	
		Updated 'Data Input Setup Time' HSRUN Internal DQS PAD Loopback	
		value to 1.6	
		 Updated 'Data Input Setup Time' DDR External DQS min. value to 2 	
		 Updated 'Data Input Hold Time' DDR External DQS min. value to 20 	
		Upadted figure 'QuadSPI output timing (SDR mode) diagram' and	
		'QuadSPI input timing (HyperHAM mode) diagram'	
		In 12-bit ADC electrical characteristics : Added note 'On reduced nin packages where '	
		Removed max, value of 'look app'	
		Added note 'Due to triple '	
		• In 12-bit ADC operating conditions, removed parameter ' ΔV_{DDA} '	
		In CMP with 8-bit DAC electrical specifications :	
		 Updated Typ. and Max. values of 'I_{DDLS}' 	
		 Upadted Typ. value of 't_{DHSB}' 	
		 Updated Typ. value of 'V_{HYST1}', 'V_{HYST2}', and 'V_{HYST3}' 	
		In LPSPI electrical specifications :	
		• Updated Tperiph and Top', and TSPSCK	

Table continues on the next page...