

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In-System Reprogrammable™ (ISR™) CMOS
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	-
Number of Macrocells	64
Number of Gates	-
Number of I/O	37
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.61x16.61)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy37064p44-125jxct

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ultra37000 CPLD Family

Selection Guide

5.0V Selection Guide

General Information

Device	Macrocells	Dedicated Inputs	I/O Pins	Speed (t _{PD})	Speed (f _{MAX})
CY37032	32	5	32	6	200
CY37064	64	5	32/64	6	200
CY37128	128	5	64/128	6.5	167
CY37192	192	5	120	7.5	154
CY37256	256	5	128/160/192	7.5	154
CY37384	384	5	160/192	10	118
CY37512	512	5	160/192/264	10	118

Speed Bins

Device	200	167	154	143	125	100	83	66
CY37032	Х		Х		Х			
CY37064	Х		Х		Х			
CY37128		Х			Х	Х		
CY37192			Х		Х		Х	
CY37256			Х		Х		Х	
CY37384					Х		Х	
CY37512					Х	Х	Х	

Device-Package Offering and I/O Count

Device	44- Lead TQFP	44- Lead PLCC	44- Lead CLCC	84- Lead PLCC	84- Lead CLCC	100- Lead TQFP	160- Lead TQFP	160- Lead CQFP	208- Lead PQFP	208- Lead CQFP	292- Lead PBGA	388- Lead PBGA
CY37032	37	37										
CY37064	37	37	37	69		69						
CY37128				69	69	69	133					
CY37192							125					
CY37256							133	133	165		197	
CY37384									165		197	
CY37512									165	165	197	269

3.3V Selection Guide

General Information

Device	Macrocells	Dedicated Inputs	I/O Pins	Speed (t _{PD})	Speed (f _{MAX})
CY37032V	32	5	32	8.5	143
CY37064V	64	5	32/64	8.5	143
CY37128V	128	5	64/80/128	10	125
CY37192V	192	5	120	12	100
CY37256V	256	5	128/160/192	12	100
CY37384V	384	5	160/192	15	83
CY37512V	512	5	160/192/264	15	83

Speed Bins

Device	200	167	154	143	125	100	83	66
CY37032V				Х		Х		
CY37064V				Х		Х		
CY37128V					Х		Х	
CY37192V						Х		Х
CY37256V						Х		Х
CY37384V							Х	Х
CY37512V							Х	Х

Device-Package Offering and I/O Count

YPRESS

Device	44- Lead TQFP	44- Lead CLCC	48- Lead FBGA	84- Lead CLCC	100- Lead TQFP	100- Lead FBGA	160- Lead TQFP	160- Lead CQFP	208- Lead PQFP	208- Lead CQFP	292- Lead PBGA	256- Lead FBGA	388- Lead PBGA	400- Lead FBGA
CY37032V	37		37											
CY37064V	37	37	37		69	69								
CY37128V				69	69	85	133							
CY37192V							125							
CY37256V							133	133	165		197	197		
CY37384V									165		197			
CY37512V									165	165	197		269	269

Architecture Overview of Ultra37000 Family

Programmable Interconnect Matrix

The PIM consists of a completely global routing matrix for signals from I/O pins and feedbacks from the logic blocks. The PIM provides extremely robust interconnection to avoid fitting and density limitations.

The inputs to the PIM consist of all I/O and dedicated input pins and all macrocell feedbacks from within the logic blocks. The number of PIM inputs increases with pin count and the number of logic blocks. The outputs from the PIM are signals routed to the appropriate logic blocks. Each logic block receives 36 inputs from the PIM and their complements, allowing for 32-bit operations to be implemented in a single pass through the device. The wide number of inputs to the logic block also improves the routing capacity of the Ultra37000 family.

An important feature of the PIM is its simple timing. The propagation delay through the PIM is accounted for in the timing specifications for each device. There is no additional delay for traveling through the PIM. In fact, all inputs travel through the PIM. As a result, there are no route-dependent timing parameters on the Ultra37000 devices. The worst-case PIM delays are incorporated in all appropriate Ultra37000 specifications.

Routing signals through the PIM is completely invisible to the user. All routing is accomplished by software—no hand routing is necessary. *Warp*[®] and third-party development packages automatically route designs for the Ultra37000 family in a matter of minutes. Finally, the rich routing resources of the Ultra37000 family accommodate last minute logic changes while maintaining fixed pin assignments.

Logic Block

The logic block is the basic building block of the Ultra37000 architecture. It consists of a product term array, an intelligent product-term allocator, 16 macrocells, and a number of I/O cells. The number of I/O cells varies depending on the device used. Refer to *Figure 1* for the block diagram.

Product Term Array

Each logic block features a 72 x 87 programmable product term array. This array accepts 36 inputs from the PIM, which originate from macrocell feedbacks and device pins. Active LOW and active HIGH versions of each of these inputs are generated to create the full 72-input field. The 87 product terms in the array can be created from any of the 72 inputs.

Of the 87 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Four of the remaining seven product terms in the logic block are output enable (OE) product terms. Each of the OE product terms controls up to eight of the 16 macrocells and is selectable on an individual macrocell basis. In other words, each I/O cell can select between one of two OE product terms to control the output buffer. The first two of these four OE product terms are available to the upper half of the I/O macrocells in a logic block. The other two OE product terms are available to the lower half of the I/O macrocells in a logic block.

The next two product terms in each logic block are dedicated asynchronous set and asynchronous reset product terms. The final product term is the product term clock. The set, reset, OE and product term clock have polarity control to realize OR functions in a single pass through the array.

Ultra37000 CPLD Family

Figure 3. Input Macrocell

Figure 4. Input/Clock Macrocell

Clocking

Each I/O and buried macrocell has access to four synchronous clocks (CLK0, CLK1, CLK2 and CLK3) as well as an asynchronous product term clock PTCLK. Each input macrocell has access to all four synchronous clocks.

Dedicated Inputs/Clocks

Five pins on each member of the Ultra37000 family are designated as input-only. There are two types of dedicated inputs on Ultra37000 devices: input pins and input/clock pins. *Figure 3* illustrates the architecture for input pins. Four input options are available for the user: combinatorial, registered, double-registered, or latched. If a registered or latched option is selected, any one of the input clocks can be selected for control.

Figure 4 illustrates the architecture for the input/clock pins. Like the input pins, input/clock pins can be combinatorial, registered, double-registered, or latched. In addition, these pins feed the clocking structures throughout the device. The clock path at the input has user-configurable polarity.

Product Term Clocking

In addition to the four synchronous clocks, the Ultra37000 family also has a product term clock for asynchronous clocking. Each logic block has an independent product term clock which is available to all 16 macrocells. Each product term clock also supports user configurable polarity selection.

Timing Model

One of the most important features of the Ultra37000 family is the simplicity of its timing. All delays are worst case and system performance is unaffected by the features used. *Figure 5* illustrates the true timing model for the 167-MHz devices in high speed mode. For combinatorial paths, any input to any output incurs a 6.5-ns worst-case delay regardless of the amount of logic used. For synchronous systems, the input set-up time to the output macrocells for any input is 3.5 ns and the clock to output time is also 4.0 ns. These measurements are for any output and synchronous clock, regardless of the logic used.

The Ultra37000 features:

- · No fanout delays
- No expander delays
- No dedicated vs. I/O pin delays
- · No additional delay through PIM
- No penalty for using 0–16 product terms
- · No added delay for steering product terms
- · No added delay for sharing product terms
- No routing delays
- No output bypass delays

The simple timing model of the Ultra37000 family eliminates unexpected performance penalties.

Ultra37000 CPLD Family

The third programming option for Ultra37000 devices is to utilize the embedded controller or processor that already exists in the system. The Ultra37000 ISR software assists in this method by converting the device JEDEC maps into the ISR serial stream that contains the ISR instruction information and the addresses and data of locations to be programmed. The embedded controller then simply directs this ISR stream to the chain of Ultra37000 devices to complete the desired reconfiguring or diagnostic operations. Contact your local sales office for information on availability of this option. The fourth method for programming Ultra37000 devices is to use the same programmer that is currently being used to program FLASH370i devices.

For all pinout, electrical, and timing requirements, refer to device data sheets. For ISR cable and software specifications, refer to the UltraISR kit data sheet (CY3700i).

Third-Party Programmers

As with development software, Cypress support is available on a wide variety of third-party programmers. All major third-party programmers (including BP Micro, Data I/O, and SMS) support the Ultra37000 family.

Logic Block Diagrams (continued)

Parameter ^[11]	V _X	Output Waveform—Measurement Level
t _{ER(-)}	1.5V	$V_{OH} \xrightarrow{\downarrow} V_X$
t _{ER(+)}	2.6V	V _{OL} 0.5V V _X
t _{EA(+)}	1.5V	V _X 0.5V V _{OH}
t _{EA(-)}	V _{the}	$V_X \xrightarrow{0.5V_{1}} V_{OL}$

LEAD-FRE

(d) Test Waveforms

Switching Characteristics Over the Operating Range ^[12]

Parameter	Description	Unit
Combinatorial Mod	e Parameters	
t _{PD} ^[13, 14, 15]	Input to Combinatorial Output	ns
t _{PDL} ^[13, 14, 15]	Input to Output Through Transparent Input or Output Latch	ns
t _{PDLL} ^[13, 14, 15]	Input to Output Through Transparent Input and Output Latches	ns
t _{EA} ^[13, 14, 15]	Input to Output Enable	ns
t _{ER} ^[11, 13]	Input to Output Disable	ns
Input Register Para	meters	
t _{WL}	Clock or Latch Enable Input LOW Time ^[8]	ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[8]	ns
t _{IS}	Input Register or Latch Set-up Time	ns
t _{IH}	Input Register or Latch Hold Time	ns
t _{ICO} ^[13, 14, 15]	Input Register Clock or Latch Enable to Combinatorial Output	ns
t _{ICOL} ^[13, 14, 15]	Input Register Clock or Latch Enable to Output Through Transparent Output Latch	ns
Synchronous Clock	king Parameters	
t _{CO} ^[14, 15]	Synchronous Clock (CLK ₀ , CLK ₁ , CLK ₂ , or CLK ₃) or Latch Enable to Output	ns
ts ^[13]	Set-Up Time from Input to Sync. Clk (CLK ₀ , CLK ₁ , CLK ₂ , or CLK ₃) or Latch Enable	ns
t _H	Register or Latch Data Hold Time	ns
t _{CO2} ^[13, 14, 15]	Output Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3) or Latch Enable to Combinatorial Output Delay (Through Logic Array)	ns
tscs ^[13]	Output Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3) or Latch Enable to Output Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3) or Latch Enable (Through Logic Array)	ns
t _{SL} ^[13]	Set-Up Time from Input Through Transparent Latch to Output Register Synchronous Clock (CLK ₀ CLK ₁ , CLK ₂ , or CLK ₃) or Latch Enable	ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3) or Latch Enable	ns

Notes:

11. t_{ER} measured with 5-pF AC Test Load and t_{EA} measured with 35-pF AC Test Load. 12. All AC parameters are measured with two outputs switching and 35-pF AC Test Load. 13. Logic Blocks operating in Low-Power Mode, add t_{LP} to this spec. 14. Outputs using Slow Output Slew Rate, add t_{SLEW} to this spec. 15. When V_{CCO} = 3.3V, add t_{3.3IO} to this spec.

Switching Characteristics Over the Operating Range (continued)^[12]

Parameter	Description	Unit
Product Term Clo	ocking Parameters	<u> </u>
t _{COPT} ^[13, 14, 15]	Product Term Clock or Latch Enable (PTCLK) to Output	ns
t _{SPT}	Set-Up Time from Input to Product Term Clock or Latch Enable (PTCLK)	ns
t _{HPT}	Register or Latch Data Hold Time	ns
t _{ISPT} ^[13]	Set-Up Time for Buried Register used as an Input Register from Input to Product Term Clock or Latch Enable (PTCLK)	ns
t _{IHPT}	Buried Register Used as an Input Register or Latch Data Hold Time	ns
t _{CO2PT} ^[13, 14, 15]	Product Term Clock or Latch Enable (PTCLK) to Output Delay (Through Logic Array)	ns
Pipelined Mode I	Parameters	
t _{ICS} ^[13]	Input Register Synchronous Clock (CLK ₀ , CLK ₁ , CLK ₂ , or CLK ₃) to Output Register Synchronous Clock (CLK ₀ , CLK ₁ , CLK ₂ , or CLK ₃)	ns
Operating Freque	ency Parameters	-
f _{MAX1}	Maximum Frequency with Internal Feedback (Lesser of $1/t_{SCS}$, $1/(t_{S} + t_{H})$, or $1/t_{CO}$) ^[5]	MHz
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(t_{WL} + t_{WH})$, $1/(t_{S} + t_{H})$, or $1/t_{CO}$) ^[5]	MHz
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of $1/(t_{CO} + t_S)$ or $1/(t_{WL} + t_{WH})^{[5]}$	MHz
f _{MAX4}	Maximum Frequency in Pipelined Mode (Lesser of $1/(t_{CO} + t_{IS})$, $1/t_{ICS}$, $1/(t_{WL} + t_{WH})$, $1/(t_{IS} + t_{IH})$, or $1/t_{SCS}$) ^[5]	MHz
Reset/Preset Par	ameters	·
t _{RW}	Asynchronous Reset Width ^[5]	ns
t _{RR} ^[13]	Asynchronous Reset Recovery Time ^[5]	ns
t _{RO} ^[13, 14, 15]	Asynchronous Reset to Output	ns
t _{PW}	Asynchronous Preset Width ^[5]	ns
t _{PR} ^[13]	Asynchronous Preset Recovery Time ^[5]	ns
t _{PO} ^[13, 14, 15]	Asynchronous Preset to Output	ns
User Option Para	imeters	
t _{LP}	Low Power Adder	ns
t _{SLEW}	Slow Output Slew Rate Adder	ns
t _{3.3IO}	3.3V I/O Mode Timing Adder ^[5]	ns
JTAG Timing Pa	rameters	
t _{S JTAG}	Set-up Time from TDI and TMS to TCK ^[5]	ns
t _H JTAG	Hold Time on TDI and TMS ^[5]	ns
t _{CO JTAG}	Falling Edge of TCK to TDO ^[5]	ns
f _{JTAG}	Maximum JTAG Tap Controller Frequency ^[5]	ns

Switching Waveforms (continued)

Registered Input

Power Consumption

CY37064

Typical 5.0V Power Consumption CY37032

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. V_{CC} = 5.0V, T_A = Room Temperature

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. V_{CC} = 5.0V, T_{A} = Room Temperature

Typical 5.0V Power Consumption (continued)

CY37256

LEAD-FRE

Pin Configurations^[20] (continued)

48-ball Fine-Pitch BGA (BA50) Top View

.

	1	2	3	4	5	0	1	0
A	I/O ₅ TCK	V _{CC}	I/O ₃	I/O ₁	I/O ₃₁	I/O ₃₀	V _{CC}	I/O ₂₇ TDI
В	V _{CC}	I/O ₄	I/O ₂	I/O ₀	I/O ₂₉	I/O ₂₈	I/O ₂₆	CLK ₁ / I ₄
С	CLK ₂ / I ₀	I/O ₇	I/O ₆	GND	GND	I/O ₂₅	I/O ₂₄	l ₃
D	JTAG _{EN}	I/O ₈	I/O ₉	GND	GND	I/O ₂₂	I/O ₂₃	CLK ₃ / I ₂
E	CLK ₀ / I ₁	I/O ₁₂	I/O ₁₁	I/O ₁₀	I/O ₁₆	I/O ₂₀	I/O ₂₁	V _{CC}
F	I/O ₁₃ TMS	V _{CC}	I/O ₁₄	I/O ₁₅	I/O ₁₇	I/O ₁₈	V _{CC}	I/O ₁₉ TDO

Note:

20. For 3.3V versions (Ultra37000V), V_{CCO} = V_{CC}.

Note:

21. This pin is a N/C, but Cypress recommends that you connect it to V_{CC} to ensure future compatibility.

5.0V Ordering Information (continued)

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
64	154	CY37064P44-154AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37064P44-154JC	J67	44-Lead Plastic Leaded Chip Carrier	
		CY37064P84-154JC	J83	84-Lead Plastic Leaded Chip Carrier	
		CY37064P100-154AC	A100	100-Lead Thin Quad Flat Pack	
		CY37064P44-154AI	A44	44-Lead Thin Quad Flat Pack	Industrial
		CY37064P44-154AXI	A44	44-Lead Lead Free Thin Quad Flat Pack	
		CY37064P44-154JI	J67	44-Lead Plastic Leaded Chip Carrier	
		CY37064P44-154JXI	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	
		CY37064P84-154JI	J83	84-Lead Plastic Leaded Chip Carrier	
		CY37064P100-154AI	A100	100-Lead Thin Quad Flat Pack	
		5962-9951902QYA	Y67	44-Lead Ceramic Leadless Chip Carrier	Military
	125	CY37064P44-125AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37064P44-125AXC	A44	44-Lead Lead Free Thin Quad Flat Pack	
		CY37064P44-125JC	J67	44-Lead Plastic Leaded Chip Carrier	
		CY37064P44-125JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	
		CY37064P84-125JC	J83	84-Lead Plastic Leaded Chip Carrier	
		CY37064P100-125AC	A100	100-Lead Thin Quad Flat Pack	
		CY37064P100-125AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37064P44-125AI	A44	44-Lead Thin Quad Flat Pack	Industrial
		CY37064P44-125AXI	A44	44-Lead Lead Free Thin Quad Flat Pack	
		CY37064P44-125JI	J67	44-Lead Plastic Leaded Chip Carrier	
		CY37064P84-125JI	J83	84-Lead Plastic Leaded Chip Carrier	
		CY37064P100-125AI	A100	100-Lead Thin Quad Flat Pack]
		CY37064P100-125AXI	A100	100-Lead Lead Free Thin Quad Flat Pack	
		5962-9951901QYA	Y67	44-Lead Ceramic Leadless Chip Carrier	Military

5.0V Ordering Information (continued)

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
128	167	CY37128P84-167JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
		CY37128P84-167JXC	J83	84-Lead Lead Free Plastic Leaded Chip Carrier	
		CY37128P100-167AC	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-167AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128P160-167AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128P160-167AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
	125	CY37128P84-125JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
		CY37128P84-125JXC	J83	84-Lead Lead Free Plastic Leaded Chip Carrier	
		CY37128P100-125AC	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-125AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128P160-125AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128P160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128P84-125JI	J83	84-Lead Plastic Leaded Chip Carrier	Industrial
		CY37128P84-125JXI	J83	84-Lead Lead Free Plastic Leaded Chip Carrier	1
		CY37128P100-125AI	A100	100-Lead Thin Quad Flat Pack	1
		CY37128P100-125AXI	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128P160-125AI	A160	160-Lead Thin Quad Flat Pack	1
		CY37128P160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	1
		5962-9952102QYA	Y84	84-Lead Ceramic Leaded Chip Carrier	Military
	100	CY37128P84-100JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
		CY37128P84-100JXC	J83	84-Lead Lead Free Plastic Leaded Chip Carrier]
		CY37128P100-100AC	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-100AXC	A100	100-Lead Lead Free Thin Quad Flat Pack]
		CY37128P160-100AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128P160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128P84-100JI	J83	84-Lead Plastic Leaded Chip Carrier	Industrial
		CY37128P100-100AI	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-100AXI	A100	100-Lead Lead Free Thin Quad Flat Pack]
		CY37128P160-100AI	A160	160-Lead Thin Quad Flat Pack	
		5962-9952101QYA	Y84	84-Lead Ceramic Leaded Chip Carrier	Military
192	154	CY37192P160-154AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37192P160-154AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
	125	CY37192P160-125AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37192P160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37192P160-125AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37192P160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
	83	CY37192P160-83AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37192P160-83AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37192P160-83AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37192P160-83AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	

5.0V Ordering Information (continued)

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
256	154	CY37256P160-154AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256P160-154AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-154NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-154BGC	BG292	292-Ball Plastic Ball Grid Array	
	125	CY37256P160-125AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256P160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-125NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-125BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256P160-125AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256P160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-125NI	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-125BGI	BG292	292-Ball Plastic Ball Grid Array	
		5962-9952302QZC	U162	160-Lead Ceramic Quad Flat Pack	Military
	83	CY37256P160-83AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256P160-83AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-83NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256P160-83AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256P160-83AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-83NI	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-83BGI	BG292	292-Ball Plastic Ball Grid Array	
		5962-9952301QZC	U162	160-Lead Ceramic Quad Flat Pack	Military
384	125	CY37384P208-125NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384P256-125BGC	BG292	292-Ball Plastic Ball Grid Array	
	83	CY37384P208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384P256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37384P208-83NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37384P256-83BGI	BG292	292-Ball Plastic Ball Grid Array	

3.3V Ordering Information (continued)

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
64	143	CY37064VP44-143AC	A44	44-Lead Thin Quad Flatpack	Commercial
		CY37064VP44-143AXC	A44	44-Lead Lead Free Thin Quad Flatpack	-
		CY37064VP48-143BAC	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-143AC	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-143AXC	A100	100-Lead Lead Free Thin Quad Flatpack	
		CY37064VP100-143BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
	100	CY37064VP44-100AC	A44	44-Lead Thin Quad Flatpack	Commercial
		CY37064VP44-100AXC	A44	44-Lead Lead Free Thin Quad Flatpack	
		CY37064VP48-100BAC	BA50	48-Ball Fine-Pitch Ball Grid Array	-
		CY37064VP100-100AC	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-100AXC	A100	100-Lead Lead Free Thin Quad Flatpack	
		CY37064VP100-100BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37064VP44-100AI	A44	44-Lead Thin Quad Flatpack	Industrial
		CY37064VP44-100AXI	A44	44-Lead Lead Free Thin Quad Flatpack	-
		CY37064VP48-100BAI	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100BBI	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100AI	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-100AXI	A100	100-Lead Lead Free Thin Quad Flatpack	_
		5962-9952001QYA	Y67	44-Lead Ceramic Leaded Chip Carrier	Military
128	125	CY37128VP100-125AC	A100	100-Lead Thin Quad Flat Pack	Commercial
		CY37128VP100-125AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	_
		CY37128VP100-125BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	—
		CY37128VP160-125AC	A160	160-Lead Thin Quad Flat Pack	—
		CY37128VP160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	_
		CY37128VP160-125AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37128VP160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	_
	83	CY37128VP100-83AC	A100	100-Lead Thin Quad Flat Pack	Commercial
		CY37128VP100-83AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	_
		CY37128VP100-83BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	-
		CY37128VP160-83AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-83AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-83AI	A100	100-Lead Thin Quad Flat Pack	Industrial
		CY37128VP100-83AXI	A100	100-Lead Lead Free Thin Quad Flat Pack	1
		CY37128VP100-83BBI	BB100	100-Ball Fine-Pitch Ball Grid Array	_
		CY37128VP160-83AI	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-83AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		5962-9952201QYA	Y84	84-Lead Ceramic Leaded Chip Carrier	Military
192	100	CY37192VP160-100AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37192VP160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	1
	66	CY37192VP160-66AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37192VP160-66AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	1
		CY37192VP160-66AI	A160	160-Lead Thin Quad Flat Pack	Industrial

3.3V Ordering Information (continued)

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
256	100	CY37256VP160-100AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256VP160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	1
		CY37256VP208-100NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256VP256-100BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256VP256-100BBC	BB256	256-Ball Fine-Pitch Ball Grid Array	
		CY37256VP160-100AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256VP160-100AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
	66	CY37256VP160-66AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256VP160-66AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256VP256-66BBC	BB256	256-Ball Fine-Pitch Ball Grid Array	
		CY37256VP160-66AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array	
		CY37256VP256-66BBI	BB256	256-Ball Fine-Pitch Ball Grid Array	
		5962-9952401QZC	U162	160-Lead Ceramic Quad Flat Pack	Military
384	83	CY37384VP208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384VP256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
	66	CY37384VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37384VP208-66NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37384VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array	
512	83	CY37512VP208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37512VP256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37512VP352-83BGC	BG388	388-Ball Plastic Ball Grid Array	_
		CY37512VP400-83BBC	BB400	400-Ball Fine-Pitch Ball Grid Array	
	66	CY37512VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37512VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37512VP352-66BGC	BG388	388-Ball Plastic Ball Grid Array	
		CY37512VP400-66BBC	BB400	400-Ball Fine-Pitch Ball Grid Array	
		CY37512VP208-66NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37512VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array	7
		CY37512VP352-66BGI	BG388	388-Ball Plastic Ball Grid Array	
		CY37512VP400-66BBI	BB400	400-Ball Fine-Pitch Ball Grid Array	
		5962-9952601QZC	U208	208-Lead Ceramic Quad Flat Pack	Military

Package Diagrams

44-Lead Lead (Pb)-Free Plastic Leaded Chip Carrier J67

DIMENSIONS IN INCHES MIN. 000 SEATING PLANE ٥ PIN #1 IDånar 39 1 0.013 0.023 <u>0.650</u> 0.658 <u>0.685</u> 0.695 ł 0.590 0.630 0045 0055 1 Ŧ **p** 5ð 0.023 0.033 28 18 0.020 NIN <u>0.650</u> 0.658 - | <u>0.090</u> 0.120 0.165 0.180 <u>0.685</u> 0.695 51-85003-*A

Package Diagrams (continued)

Package Diagrams (continued)

388-Ball Plastic Ball Grid Array PBGA (35 x 35 x 2.33 mm) BG388

Ultra37000 CPLD Family

Package Diagrams (continued)

400-Ball FBGA (21 x 21 x 1.4 mm) BB400

ViewDraw and SpeedWave are trademarks of ViewLogic. Windows is a registered trademark of Microsoft Corporation. *Warp* is a registered trademark, and In-System Reprogrammable, ISR, *Warp* Professional, *Warp* Enterprise, and Ultra37000 are trademarks, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.