

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In-System Reprogrammable™ (ISR™) CMOS
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	-
Number of Macrocells	128
Number of Gates	-
Number of I/O	69
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy37128p100-125axit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Speed Bins

Device	200	167	154	143	125	100	83	66
CY37032V				Х		Х		
CY37064V				Х		Х		
CY37128V					Х		Х	
CY37192V						Х		Х
CY37256V						Х		Х
CY37384V							Х	Х
CY37512V							Х	Х

Device-Package Offering and I/O Count

Device	44- Lead TQFP	44- Lead CLCC	48- Lead FBGA	84- Lead CLCC	100- Lead TQFP	100- Lead FBGA	160- Lead TQFP	160- Lead CQFP	208- Lead PQFP	208- Lead CQFP	292- Lead PBGA	256- Lead FBGA	388- Lead PBGA	400- Lead FBGA
CY37032V	37		37											
CY37064V	37	37	37		69	69								
CY37128V				69	69	85	133							
CY37192V							125							
CY37256V							133	133	165		197	197		
CY37384V									165		197			
CY37512V									165	165	197		269	269

Architecture Overview of Ultra37000 Family

Programmable Interconnect Matrix

The PIM consists of a completely global routing matrix for signals from I/O pins and feedbacks from the logic blocks. The PIM provides extremely robust interconnection to avoid fitting and density limitations.

The inputs to the PIM consist of all I/O and dedicated input pins and all macrocell feedbacks from within the logic blocks. The number of PIM inputs increases with pin count and the number of logic blocks. The outputs from the PIM are signals routed to the appropriate logic blocks. Each logic block receives 36 inputs from the PIM and their complements, allowing for 32-bit operations to be implemented in a single pass through the device. The wide number of inputs to the logic block also improves the routing capacity of the Ultra37000 family.

An important feature of the PIM is its simple timing. The propagation delay through the PIM is accounted for in the timing specifications for each device. There is no additional delay for traveling through the PIM. In fact, all inputs travel through the PIM. As a result, there are no route-dependent timing parameters on the Ultra37000 devices. The worst-case PIM delays are incorporated in all appropriate Ultra37000 specifications.

Routing signals through the PIM is completely invisible to the user. All routing is accomplished by software—no hand routing is necessary. $Warp^{\otimes}$ and third-party development packages automatically route designs for the Ultra37000 family in a matter of minutes. Finally, the rich routing resources of the Ultra37000 family accommodate last minute logic changes while maintaining fixed pin assignments.

Logic Block

The logic block is the basic building block of the Ultra37000 architecture. It consists of a product term array, an intelligent product-term allocator, 16 macrocells, and a number of I/O cells. The number of I/O cells varies depending on the device used. Refer to *Figure 1* for the block diagram.

Product Term Array

Each logic block features a 72 x 87 programmable product term array. This array accepts 36 inputs from the PIM, which originate from macrocell feedbacks and device pins. Active LOW and active HIGH versions of each of these inputs are generated to create the full 72-input field. The 87 product terms in the array can be created from any of the 72 inputs.

Of the 87 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Four of the remaining seven product terms in the logic block are output enable (OE) product terms. Each of the OE product terms controls up to eight of the 16 macrocells and is selectable on an individual macrocell basis. In other words, each I/O cell can select between one of two OE product terms to control the output buffer. The first two of these four OE product terms are available to the upper half of the I/O macrocells in a logic block. The other two OE product terms are available to the lower half of the I/O macrocells in a logic block.

The next two product terms in each logic block are dedicated asynchronous set and asynchronous reset product terms. The final product term is the product term clock. The set, reset, OE and product term clock have polarity control to realize OR functions in a single pass through the array.

resources for pinout flexibility, and a simple timing model for consistent system performance.

REGISTERED SIGNAL

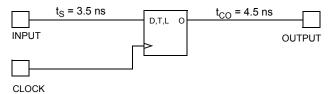


Figure 5. Timing Model for CY37128

JTAG and PCI Standards

PCI Compliance

5V operation of the Ultra37000 is fully compliant with the PCI Local Bus Specification published by the PCI Special Interest Group. The 3.3V products meet all PCI requirements except for the output 3.3V clamp, which is in direct conflict with 5V tolerance. The Ultra37000 family's simple and predictable timing model ensures compliance with the PCI AC specifications independent of the design.

IEEE 1149.1-compliant JTAG

The Ultra37000 family has an IEEE 1149.1 JTAG interface for both Boundary Scan and ISR.

Boundary Scan

The Ultra37000 family supports Bypass, Sample/Preload, Extest, Idcode, and Usercode boundary scan instructions. The JTAG interface is shown in *Figure 6*.

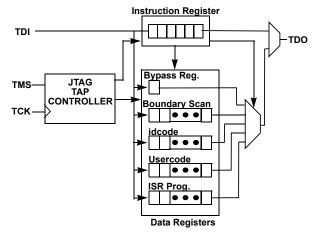


Figure 6. JTAG Interface

In-System Reprogramming (ISR)

In-System Reprogramming is the combination of the capability to program or reprogram a device on-board, and the ability to support design changes without changing the system timing or device pinout. This combination means design changes during debug or field upgrades do not cause board respins. The Ultra37000 family implements ISR by providing a JTAG compliant interface for on-board programming, robust routing

Development Software Support

Warp

Warp is a state-of-the-art compiler and complete CPLD design tool. For design entry, Warp provides an IEEE-STD-1076/1164 VHDL text editor, an IEEE-STD-1364 Verilog text editor, and a graphical finite state machine editor. It provides optimized synthesis and fitting by replacing basic circuits with ones pre-optimized for the target device, by implementing logic in unused memory and by perfect communication between fitting and synthesis. To facilitate design and debugging, Warp provides graphical timing simulation and analysis.

Warp Professional™

Warp Professional contains several additional features. It provides an extra method of design entry with its graphical block diagram editor. It allows up to 5 ms timing simulation instead of only 2 ms. It allows comparison of waveforms before and after design changes.

Warp Enterprise™

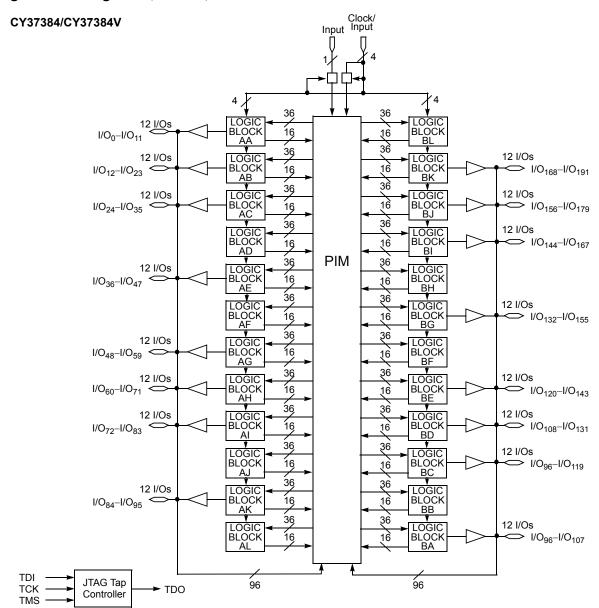
Warp Enterprise provides even more features. It provides unlimited timing simulation and source-level behavioral simulation as well as a debugger. It has the ability to generate graphical HDL blocks from HDL text. It can even generate testbenches.

Warp is available for PC and UNIX platforms. Some features are not available in the UNIX version. For further information see the Warp for PC, Warp for UNIX, Warp Professional and Warp Enterprise data sheets on Cypress's web site (www.cypress.com).

Third-Party Software

Although *Warp* is a complete CPLD development tool on its own, it interfaces with nearly every third party EDA tool. All major third-party software vendors provide support for the Ultra37000 family of devices. Refer to the third-party software data sheet or contact your local sales office for a list of currently supported third-party vendors.

Programming


There are four programming options available for Ultra37000 devices. The first method is to use a PC with the 37000 UltraISR programming cable and software. With this method, the ISR pins of the Ultra37000 devices are routed to a connector at the edge of the printed circuit board. The 37000 UltraISR programming cable is then connected between the parallel port of the PC and this connector. A simple configuration file instructs the ISR software of the programming operations to be performed on each of the Ultra37000 devices in the system. The ISR software then automatically completes all of the necessary data manipulations required to accomplish the programming, reading, verifying, and other ISR functions. For more information on the Cypress ISR Interface, see the ISR Programming Kit data sheet (CY3700i).

The second method for programming Ultra37000 devices is on automatic test equipment (ATE). This is accomplished through a file created by the ISR software. Check the Cypress website for the latest ISR software download information.

Logic Block Diagrams (continued)

5.0V Device Characteristics Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +7.0V

DC Voltage Applied to Outputs	0.5)/47.0)/
in High-Z State	–0.5V to +7.0V
DC Input Voltage	0.5V to +7.0V
DC Program Voltage	4.5 to 5.5V
Current into Outputs	16 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

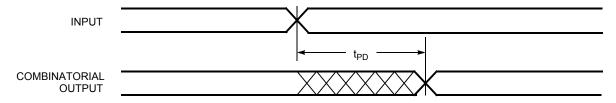
Operating Range^[2]

Range	Ambient Temperature ^[2]	Junction Temperature	Output Condition	V _{cc}	V _{cco}
Commercial	0°C to +70°C	0°C to +90°C	5V	5V ± 0.25V	5V ± 0.25V
			3.3V	5V ± 0.25V	$3.3V\pm0.3V$
Industrial	–40°C to +85°C	–40°C to +105°C	5V	5V ± 0.5V	5V ± 0.5V
			3.3V	$5V \pm 0.5V$	$3.3V\pm0.3V$
Military ^[3]	–55°C to +125°C	–55°C to +130°C	5V	$5V \pm 0.5V$	5V ± 0.5V
			3.3V	5V ± 0.5V	$3.3V\pm0.3V$

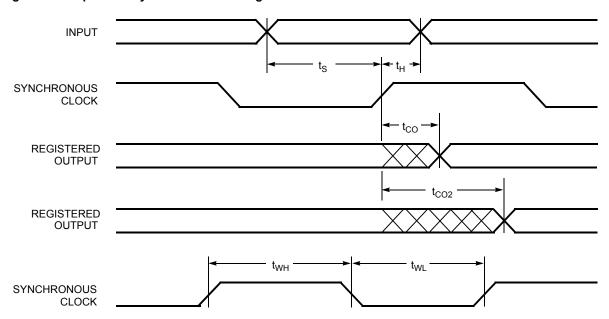
5.0V Device Electrical Characteristics Over the Operating Range

Parameter	Description	Test Cor	nditions	Min.	Тур.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min.	$I_{OH} = -3.2 \text{ mA (Com'l/Ind)}^{[4]}$	2.4			V
			$I_{OH} = -2.0 \text{ mA } (Mil)^{[4]}$	2.4			V
V _{OHZ}	Output HIGH Voltage with	V _{CC} = Max.	$I_{OH} = 0 \mu A (Com'l)^{[6]}$			4.2	V
	Output Disabled ^[5]		$I_{OH} = 0 \mu A (Ind/Mil)^{[6]}$			4.5	V
			$I_{OH} = -100 \mu A (Com'I)^{[6]}$			3.6	V
			$I_{OH} = -150 \mu A (Ind/Mil)^{[6]}$			3.6	V
V_{OL}	Output LOW Voltage	V _{CC} = Min.	I _{OL} = 16 mA (Com'l/Ind) ^[4]			0.5	V
			I _{OL} = 12 mA (Mil) ^[4]			0.5	V
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIG	GH Voltage for all Inputs ^[7]	2.0		V_{CCmax}	V
V_{IL}	Input LOW Voltage	Guaranteed Input Logical LO	W Voltage for all Inputs ^[7]	-0.5		0.8	V
I _{IX}	Input Load Current	V_I = GND OR V_{CC} , Bus-Hold	Disabled	-10		10	μА
I _{OZ}	Output Leakage Current	V_O = GND or V_{CC} , Output Di	sabled, Bus-Hold Disabled	-50		50	μА
Ios	Output Short Circuit Current ^[5,8]	V_{CC} = Max., V_{OUT} = 0.5V		-30		-160	mA
I _{BHL}	Input Bus-Hold LOW Sustaining Current	V _{CC} = Min., V _{IL} = 0.8V		+75			μА
I _{ВНН}	Input Bus-Hold HIGH Sustaining Current	V _{CC} = Min., V _{IH} = 2.0V		-75			μА
I _{BHLO}	Input Bus-Hold LOW Overdrive Current	V _{CC} = Max.				+500	μА
Івнно	Input Bus-Hold HIGH Overdrive Current	V _{CC} = Max.				-500	μА

- Normal Programming Conditions apply across Ambient Temperature Range for specified programming methods. For more information on programming the Ultra37000 Family devices, please refer to the Application Note titled "An Introduction to In System Reprogramming with the Ultra37000."
- 3. TA is the "Instant On" case temperature.
- 4. I_{OH} = -2 mA, I_{OL} = 2 mA for TDO.
 5. Tested initially and after any design or process changes that may affect these parameters.
- When the I/O is output disabled, the bus-hold circuit can weakly pull the I/O to above 3.6V if no leakage current is allowed. Note that all I/Os are output disabled during ISR programming. Refer to the application note "Understanding Bus-Hold" for additional information.
- These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
- Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.



$\textbf{Switching Characteristics} \ \, \text{Over the Operating Range (continued)}^{[12]}$

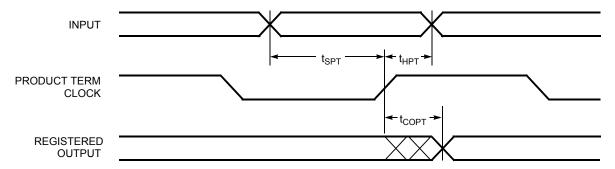

	200	MHz	167	MHz	154	MHz	143	MHz	125 I	MHz	100 N	ИHz	83 M	Hz	66 1	ИHz	
Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
t _{RO} ^[13, 14, 15]		12		13		13		14		15		18		21		26	ns
t_{PW}	8		8		8		8		10		12		15		20		ns
t _{PR} ^[13]	10		10		10		10		12		14		17		22		ns
t _{PO} ^[13, 14, 15]		12		13		13		14		15		18		21		26	ns
User Option P	aram	eters															•
t _{LP}		2.5		2.5		2.5		2.5		2.5		2.5		2.5		2.5	ns
t _{SLEW}		3		3		3		3		3		3		3		3	ns
t _{3.31O} ^[19]		0.3		0.3		0.3		0.3		0.3		0.3		0.3		0.3	ns
JTAG Timing F	Paran	neters															•
t _{S JTAG}	0		0		0		0		0		0		0		0		ns
t _{H JTAG}	20		20		20		20		20		20		20		20		ns
t _{CO JTAG}		20		20		20		20		20		20		20		20	ns
f_{JTAG}		20		20		20		20		20		20		20		20	MHz

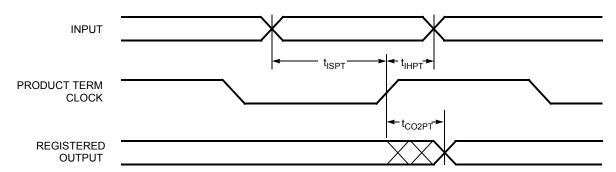
Switching Waveforms

Combinatorial Output

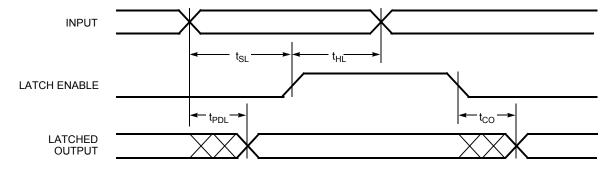
Registered Output with Synchronous Clocking

Note:

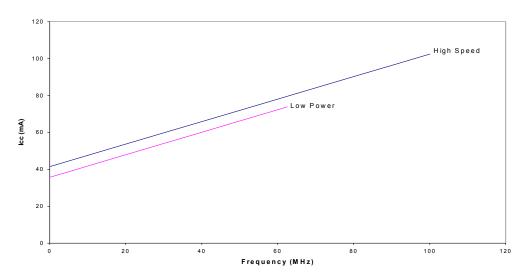

19. Only applicable to the 5V devices.

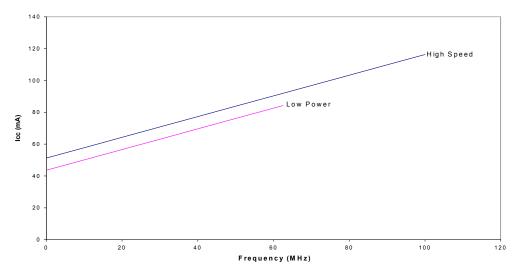


Switching Waveforms (continued)


Registered Output with Product Term Clocking Input Going Through the Array

Registered Output with Product Term Clocking Input Coming From Adjacent Buried Register


Latched Output



Typical 3.3V Power Consumption (continued) **CY37192V**

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{\rm CC}$ = 3.3V, $T_{\rm A}$ = Room Temperature

CY37256V

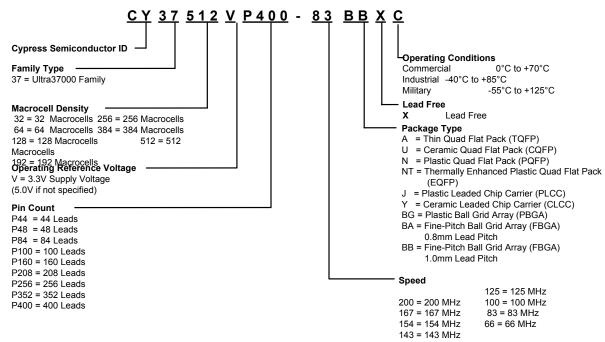
The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{\rm CC} = 3.3V,\,T_A = Room\,Temperature$

Pin Configurations^[20] (continued)

292-Ball PBGA (BG292) Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Α	GND	I/O ₂₁	NC	I/O ₁₆	I/O ₁₂	I/O ₉	I/O ₇	I/O ₄	I/O ₀	I/O ₁₉₀	I/O ₁₈₉	I/O ₁₈₆	I/O ₁₈₂	NC	I/O ₁₇₈	I/O ₁₇₅	NC	NC	I/O ₁₆₉	I/O ₁₆₈	Α
В	I/O ₂₃	I/O ₂₀	I/O ₁₉	I/O ₁₈	I/O ₁₅	I/O ₁₁	I/O ₈	I/O ₅	I/O ₁	I/O ₁₉₁	I/O ₁₈₇	I/O ₁₈₅	I/O ₁₈₁	NC	NC	I/O ₁₇₄	I/O ₁₇₁	I/O ₁₇₀	NC	I/O ₁₆₆	В
С	NC	NC	I/O ₂₂	NC	I/O ₁₇	I/O ₁₄	I/O ₁₀	I/O ₆	I/O ₂	NC	I/O ₁₈₈	I/O ₁₈₄	I/O ₁₈₀	I/O ₁₇₉	I/O ₁₇₆	I/O ₁₇₃	I/O ₁₇₂	I/O ₁₆₇	I/O ₁₆₅	I/O ₁₆₂	С
D	I/O ₂₄	NC	NC	GND	NC	V _{CCO}	I/O ₁₃	GND	I/O ₃	NC	V _{CC}	I/O ₁₈₃	GND	I/O ₁₇₇	V _{CCO}	NC	GND	I/O ₁₆₄	TDI	I/O ₁₆₀	D
E	I/O ₂₇	I/O ₂₆	I/O ₂₅	NC													I/O ₁₆₃	I/O ₁₆₁	I/O ₁₅₉	I/O ₁₅₆	Е
F	I/O ₃₀	TCK	I/O ₂₈	V _{CCO}													V _{CCO}	I/O ₁₅₈	NC	I/O ₁₅₄	F
G	I/O ₃₃	I/O ₃₂	I/O ₃₁	I/O ₂₉													I/O ₁₅₇	I/O ₁₅₅	I/O ₁₅₃	I/O ₁₅₂	G
Н	I/O ₃₅	NC	I/O ₃₄	GND				GND	GND	GND	GND	GND	GND				GND	I/O ₁₅₁	I/O ₁₅₀	I/O ₁₄₉	Н
J	I/O ₃₉	I/O ₃₈	I/O ₃₇	I/O ₃₆				GND	GND	GND	GND	GND	GND				I/O ₁₄₈	I/O ₁₄₇	I/O ₁₄₆	I/O ₁₄₅	J
K	I/O ₄₂	I/O ₄₀	I/O ₄₁	V _{CC}				GND	GND	GND	GND	GND	GND				I/O ₁₄₄	CLK ₃ /I ₄	NC	NC	K
L	I/O ₄₃	I/O ₄₄	I/O ₄₅	I/O ₄₆				GND	GND	GND	GND	GND	GND				V _{CC}	CLK ₂ /I ₃	I/O ₁₄₃	NC	L
M	I/O ₄₇	CLK ₀ /I ₀	CLK ₁ /I ₁	I/O ₄₈				GND	GND	GND	GND	GND	GND				I/O ₁₃₉	I/O ₁₄₀	I/O ₁₄₁	I/O ₁₄₂	М
N	I/O ₄₉	I/O ₅₀	I/O ₅₁	GND				GND	GND	GND	GND	GND	GND				GND	I/O ₁₃₆	I/O ₁₃₇	I/O ₁₃₈	N
Р	I/O ₅₂	I/O ₅₃	I/O ₅₅	I/O ₅₈										-			I/O ₁₃₁	I/O ₁₃₃	I/O ₁₃₄	I/O ₁₃₅	Р
R	I/O ₅₄	I/O ₅₆	I/O ₅₉	V _{cco}													V _{cco}	I/O ₁₃₀	NC	I/O ₁₃₂	R
Т	I/O ₅₇	I/O ₆₀	I/O ₆₂	I/O ₆₅													I/O ₁₂₄	I/O ₁₂₇	I/O ₁₂₈	I/O ₁₂₉	Т
U	I/O ₆₁	I/O ₆₃	I/O ₆₆	GND	I/O ₇₆	V _{cco}	I/O ₈₂	GND	I/O ₉₁	V _{CC}	I/O ₉₈	I/O ₁₀₂	GND	I/O ₁₁₂	V _{cco}	NC	GND	I/O ₁₂₃	I/O ₁₂₂	I/O ₁₂₆	U
V	I/O ₆₄	I/O ₆₇	I/O ₆₉	I/O ₇₅	I/O ₇₈	I/O ₈₁	I/O ₈₅	I/O ₈₈	I/O ₉₂	l ₂	I/O ₉₇	I/O ₁₀₁	I/O ₁₀₅	I/O ₁₀₉	I/O ₁₁₃	TDO	I/O ₁₁₄	I/O ₁₁₇	I/O ₁₂₁	I/O ₁₂₅	٧
W	I/O ₆₈	I/O ₇₀	I/O ₇₂	I/O ₇₄	I/O ₇₉	I/O ₈₃	I/O ₈₆	I/O ₈₉	I/O ₉₃	I/O ₉₅	I/O ₉₆	I/O ₁₀₀	I/O ₁₀₄	I/O ₁₀₇	I/O ₁₁₀	NC	NC	I/O ₁₁₅	I/O ₁₁₈	I/O ₁₂₀	W
Y	I/O ₇₁	I/O ₇₃	I/O ₇₇	TMS	I/O ₈₀	I/O ₈₄	I/O ₈₇	I/O ₉₀	I/O ₉₄	NC	NC	I/O ₉₉	I/O ₁₀₃	I/O ₁₀₆	I/O ₁₀₈	I/O ₁₁₁	NC	NC	I/O ₁₁₆	I/O ₁₁₉	Υ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Pin Configurations^[20] (continued)


388-Lead PBGA (BG388) Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Α	GND	GND	I/O ₁₉	I/O ₁₅	I/O ₁₃	I/O ₃₄	I/O ₃₁	I/O ₂₈	I/O ₂₅	I/O ₁₀	I/O ₇	I/O ₄	I/O ₁	I/O ₂₆₃	I/O ₂₆₀	I/O ₂₅₇	I/O ₂₅₄	I/O ₂₃₉	I/O ₂₃₇	I/O ₂₃₂	I/O ₂₂₉	I/O ₂₅₀	I/O ₂₄₈	I/O ₂₄₄	GND	GND
В	GND	NC	I/O ₁₈	I/O ₁₇	I/O ₁₄	I/O ₃₅	I/O ₃₂	I/O ₂₉	I/O ₂₆	I/O ₁₁	I/O ₈	I/O ₅	I/O ₂	V _{CC}	I/O ₂₆₁	I/O ₂₅₈	I/O ₂₅₅	I/O ₂₅₂	I/O ₂₃₄	I/O ₂₃₁	I/O ₂₂₈	I/O ₂₄₉	I/O ₂₄₆	I/O ₂₄₅	I/O ₂₄₀	GND
С	I/O ₂₃	I/O ₃₈	I/O ₃₇	I/O ₁₆	I/O ₁₂	I/O ₃₃	I/O ₃₀	I/O ₂₇	I/O ₂₄	I/O ₉	I/O ₆	I/O ₃	I/O ₀	I/O ₂₆₂	I/O ₂₅₉	I/O ₂₅₆	I/O ₂₅₃	I/O ₂₃₈	I/O ₂₃₅	I/O ₂₃₃	I/O ₂₃₀	I/O ₂₅₁	I/O ₂₄₇	I/O ₂₂₅	I/O ₂₂₄	I/O ₂₂₇
D	I/O ₃₉	I/O ₄₀	I/O ₃₆	NC	NC	I/O ₂₁	I/O ₂₀	V _{CCO}	V _{CCO}	NC	GND	GND	V _{CCO}	V _{CCO}	GND	GND	NC	V _{CCO}	V _{CCO}	I/O ₂₃₆	I/O ₂₄₃	NC	NC	I/O ₂₂₆	I/O ₂₂₂	I/O ₂₂₃
Е	I/O ₄₂	TCK	I/O ₄₁	NC																			NC	TDI	I/O ₂₂₁	I/O ₂₂₀
F	I/O ₄₅	I/O ₄₄	I/O ₄₃	I/O ₂₂																		•	I/O ₂₄₂	I/O ₂₁₉	I/O ₂₁₈	I/O ₂₁₇
G	I/O ₄₈	I/O ₄₇	I/O ₄₆	I/O ₆₃																			I/O ₂₄₁	I/O ₂₁₆	I/O ₂₁₅	I/O ₂₁₄
Н	I/O ₄₉	I/O ₅₀	I/O ₅₁	V _{cco}																		•	V _{CCO}	I/O ₂₁₁	I/O ₂₁₂	I/O ₂₁₃
J	I/O ₅₂	I/O ₅₃	I/O ₅₄	V _{cco}																		•	V _{CCO}	I/O ₂₀₈	I/O ₂₀₉	I/O ₂₁₀
K	I/O ₅₅	I/O ₅₆	I/O ₅₇	NC																		•	NC	I/O ₂₀₅	I/O ₂₀₆	I/O ₂₀₇
L	10	I/O ₅₉	I/O ₅₈	GND							GND	GND	GND	GND	GND	GND							GND	I/O ₂₀₄	14	I/O ₁₉₇
М	I/O ₆₁	I/O ₆₀	I1	GND							GND	GND	GND	GND	GND	GND							GND	13	I/O ₂₀₃	I/O ₂₀₂
N	I/O ₆₄	V _{CC}	I/O ₆₂	V _{cco}							GND	GND	GND	GND	GND	GND						•	V _{CCO}	I/O ₂₀₁	I/O ₂₀₀	I/O ₁₉₉
Р	I/O ₆₅	I/O ₆₆	I/O ₆₇	V _{cco}							GND	GND	GND	GND	GND	GND						•	V _{CCO}	I/O ₁₉₆	V _{CC}	I/O ₁₉₈
R	I/O ₆₈	I/O ₆₉	I/O ₇₀	GND							GND	GND	GND	GND	GND	GND							GND	I/O ₁₉₃	I/O ₁₉₄	I/O ₁₉₅
Т	I/O ₇₁	I/O ₈₄	I/O ₈₅	GND							GND	GND	GND	GND	GND	GND						•	GND	I/O ₁₇₈	I/O ₁₇₉	I/O ₁₉₂
U	I/O ₈₈	I/O ₈₇	I/O ₈₆	NC						•							_'						NC	I/O ₁₇₇	I/O ₁₇₆	I/O ₁₇₅
٧	I/O ₉₁	I/O ₉₀	I/O ₈₉	V _{cco}																			V _{CCO}	I/O ₁₇₄	I/O ₁₇₃	I/O ₁₇₂
W	I/O ₉₄	I/O ₉₃	I/O ₉₂	V _{cco}																			V _{CCO}	I/O ₁₇₁	I/O ₁₇₀	I/O ₁₆₉
Υ	I/O ₉₅	I/O ₇₂	I/O ₇₃	I/O ₁₁₀																			I/O ₁₅₃	I/O ₁₉₀	I/O ₁₉₁	I/O ₁₆₈
AA	I/O ₇₄	I/O ₇₅	I/O ₇₆	I/O ₁₁₁																			I/O ₁₅₂	I/O ₁₈₇	I/O ₁₈₈	I/O ₁₈₉
AB	I/O ₇₇	I/O ₇₈	I/O ₇₉	N/C																			NC	I/O ₁₈₄	I/O ₁₈₅	I/O ₁₈₆
AC	I/O ₈₁	I/O ₈₀	I/O ₁₀₈	N/C	NC	I/O ₁₁₂	I/O ₁₁₃	V _{CCO}	V _{CCO}	NC	GND	GND	V _{CCO}	V _{CCO}	GND	GND	NC	V _{CCO}	V _{cco}	I/O ₁₅₀	I/O ₁₅₁	NC	NC	I/O ₁₅₅	I/O ₁₈₃	I/O ₁₈₂
AD	I/O ₁₀₉	I/O ₈₂	I/O ₈₃	I/O ₁₁₇	I/O ₉₇	I/O ₁₀₀	I/O ₁₀₂	I/O ₁₀₅	I/O ₁₂₀	I/O ₁₂₃	I/O ₁₂₆	I/O ₁₂₉	12	I/O ₁₃₃	I/O ₁₃₆	I/O ₁₃₉	I/O ₁₄₂	I/O ₁₅₇	I/O ₁₅₉	I/O ₁₆₁	I/O ₁₆₃	I/O ₁₆₆	I/O ₁₄₆	I/O ₁₈₀	I/O ₁₈₁	I/O ₁₅₄
AE	GND	NC	I/O ₁₁₅	I/O ₁₁₆	I/O ₁₁₉	I/O ₉₈	I/O ₁₀₁	I/O ₁₀₃	I/O ₁₀₆	I/O ₁₂₁	I/O ₁₂₄	I/O ₁₂₇	V _{CC}	I/O ₁₃₀	I/O ₁₃₄	I/O ₁₃₇	I/O ₁₄₀	I/O ₁₄₃	I/O ₁₆₀	I/O ₁₆₂	I/O ₁₆₅	I/O ₁₄₄	I/O ₁₄₇	I/O ₁₄₈	NC	GND
AF	GND	GND	I/O ₁₁₄	I/O ₁₁₈	I/O ₉₆	I/O ₉₉	TMS	I/O ₁₀₄	I/O ₁₀₇	I/O ₁₂₂	I/O ₁₂₅	I/O ₁₂₈	I/O ₁₃₁	I/O ₁₃₂	I/O ₁₃₅	I/O ₁₃₈	I/O ₁₄₁	I/O ₁₅₆	I/O ₁₅₈	TDO	I/O ₁₆₄	I/O ₁₆₇	I/O ₁₄₅	I/O ₁₄₉	GND	GND

Ordering Information

5.0V Ordering Information

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
32	200	CY37032P44-200AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032P44-200AXC	A44	44-Lead Lead Free Thin Quad Flat Pack]
		CY37032P44-200JC	J67	44-Lead Plastic Leaded Chip Carrier]
		CY37032P44-200JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	
	154	CY37032P44-154AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032P44-154JC	J67	44-Lead Plastic Leaded Chip Carrier]
		CY37032P44-154AI	A44	44-Lead Thin Quad Flat Pack	Industrial
		CY37032P44-154AXI	A44	44-Lead Lead Free Thin Quad Flat Pack	1
		CY37032P44-154JI	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37032P44-154JXI	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	1
	125	CY37032P44-125AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032P44-125AXC	A44	44-Lead Lead Free Thin Quad Flat Pack	1
		CY37032P44-125JC	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37032P44-125JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	1
		CY37032P44-125AI	A44	44-Lead Thin Quad Flat Pack	Industrial
		CY37032P44-125JI	J67	44-Lead Plastic Leaded Chip Carrier	1
64	200	CY37064P44-200AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37064P44-200AXC	A44	44-Lead Lead Free Thin Quad Flat Pack	1
		CY37064P44-200JC	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37064P44-200JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	
		CY37064P84-200JC	J83	84-Lead Plastic Leaded Chip Carrier	1
		CY37064P100-200AC	A100	100-Lead Thin Quad Flat Pack	1
		CY37064P100-200AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	

5.0V Ordering Information (continued)

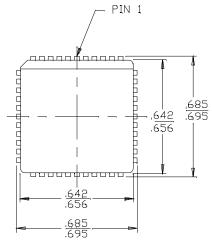
Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
512	125	CY37512P208-125NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37512P256-125BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37512P352-125BGC	BG388	388-Ball Plastic Ball Grid Array	
	100	CY37512P208-100NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37512P256-100BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37512P352-100BGC	BG388	388-Ball Plastic Ball Grid Array	
		CY37512P208-100NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37512P256-100BGI	BG292	292-Ball Plastic Ball Grid Array	
		CY37512P352-100BGI	BG388	388-Ball Plastic Ball Grid Array	
		5962-9952502QZC	U208	208-Lead Ceramic Quad Flat Pack	Military
	83	CY37512P208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37512P256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37512P352-83BGC	BG388	388-Ball Plastic Ball Grid Array	
		CY37512P208-83NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37512P256-83BGI	BG292	292-Ball Plastic Ball Grid Array	
		CY37512P352-83BGI	BG388	388-Ball Plastic Ball Grid Array	
		5962-9952501QZC	U208	208-Lead Ceramic Quad Flat Pack	Military

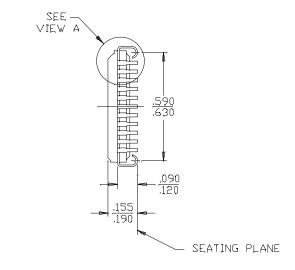
3.3V Ordering Information

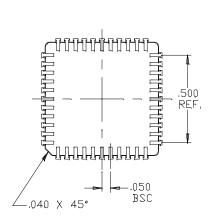
Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
32	143	CY37032VP44-143AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032VP44-143AXC	A44	44-Lead Lead Free Thin Quad Flat Pack]
		CY37032VP48-143BAC	BA50	48-Ball Fine Pitch Ball Grid Array]
	100	CY37032VP44-100AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032VP44-100AXC	A44	44-Lead Lead Free Thin Quad Flat Pack]
		CY37032VP48-100BAC	BA50	48-Ball Fine Pitch Ball Grid Array]
		CY37032VP44-100AI	A44	44-Lead Thin Quad Flat Pack	Industrial
		CY37032VP44-100AXI	A44	44-Lead Lead Free Thin Quad Flat Pack]
		CY37032VP48-100BAI	BA50	48-Ball Fine Pitch Ball Grid Array]
		CY37032VP44-100JI	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37032VP44-100JXI	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	1

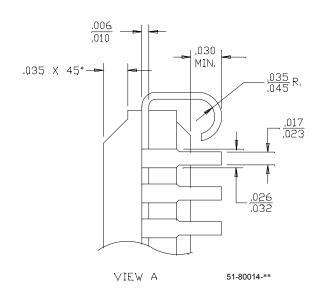
3.3V Ordering Information (continued)

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
64	143	CY37064VP44-143AC	A44	44-Lead Thin Quad Flatpack	Commercia
		CY37064VP44-143AXC	A44	44-Lead Lead Free Thin Quad Flatpack	
		CY37064VP48-143BAC	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-143AC	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-143AXC	A100	100-Lead Lead Free Thin Quad Flatpack	
		CY37064VP100-143BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
	100	CY37064VP44-100AC	A44	44-Lead Thin Quad Flatpack	Commercia
		CY37064VP44-100AXC	A44	44-Lead Lead Free Thin Quad Flatpack	
		CY37064VP48-100BAC	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100AC	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-100AXC	A100	100-Lead Lead Free Thin Quad Flatpack	
		CY37064VP100-100BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37064VP44-100AI	A44	44-Lead Thin Quad Flatpack	Industrial
		CY37064VP44-100AXI	A44	44-Lead Lead Free Thin Quad Flatpack	
		CY37064VP48-100BAI	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100BBI	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100AI	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-100AXI	A100	100-Lead Lead Free Thin Quad Flatpack	
		5962-9952001QYA	Y67	44-Lead Ceramic Leaded Chip Carrier	Military
128	125	CY37128VP100-125AC	A100	100-Lead Thin Quad Flat Pack	Commercia
		CY37128VP100-125AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-125BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37128VP160-125AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP160-125AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37128VP160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
	83	CY37128VP100-83AC	A100	100-Lead Thin Quad Flat Pack	Commercia
		CY37128VP100-83AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-83BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37128VP160-83AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-83AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-83AI	A100	100-Lead Thin Quad Flat Pack	Industrial
		CY37128VP100-83AXI	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-83BBI	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37128VP160-83AI	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-83AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		5962-9952201QYA	Y84	84-Lead Ceramic Leaded Chip Carrier	Military
192	100	CY37192VP160-100AC	A160	160-Lead Thin Quad Flat Pack	Commercia
102		CY37192VP160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
	66	CY37192VP160-66AC	A160	160-Lead Thin Quad Flat Pack	Commercia
		CY37192VP160-66AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37192VP160-66AI	A160	160-Lead Thin Quad Flat Pack	Industrial

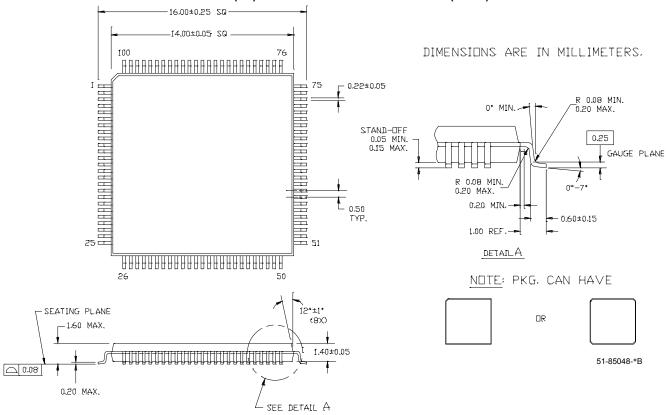

3.3V Ordering Information (continued)


Macrocells Speed (MHz)		Ordering Code	Package Name	Package Type	Operating Range	
256	100	CY37256VP160-100AC	A160	160-Lead Thin Quad Flat Pack	Commercial	
		CY37256VP160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack		
		CY37256VP208-100NC	N208	208-Lead Plastic Quad Flat Pack		
		CY37256VP256-100BGC	BG292	292-Ball Plastic Ball Grid Array		
		CY37256VP256-100BBC	BB256	256-Ball Fine-Pitch Ball Grid Array		
		CY37256VP160-100AI	A160	160-Lead Thin Quad Flat Pack	Industrial	
		CY37256VP160-100AXI	A160	160-Lead Lead Free Thin Quad Flat Pack		
	66	CY37256VP160-66AC	A160	160-Lead Thin Quad Flat Pack	Commercial	
		CY37256VP160-66AXC	A160	160-Lead Lead Free Thin Quad Flat Pack		
		CY37256VP208-66NC	N208	208-Lead Plastic Quad Flat Pack		
		CY37256VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array		
		CY37256VP256-66BBC	BB256	256-Ball Fine-Pitch Ball Grid Array		
		CY37256VP160-66AI	A160	160-Lead Thin Quad Flat Pack	Industrial	
		CY37256VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array		
		CY37256VP256-66BBI	BB256	256-Ball Fine-Pitch Ball Grid Array		
		5962-9952401QZC	U162	160-Lead Ceramic Quad Flat Pack	Military	
384	83	CY37384VP208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial	
		CY37384VP256-83BGC	BG292	292-Ball Plastic Ball Grid Array		
	66	CY37384VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	Commercial	
		CY37384VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array		
		CY37384VP208-66NI	N208	208-Lead Plastic Quad Flat Pack	Industrial	
		CY37384VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array		
512	83	CY37512VP208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial	
		CY37512VP256-83BGC	BG292	292-Ball Plastic Ball Grid Array		
		CY37512VP352-83BGC	BG388	388-Ball Plastic Ball Grid Array		
		CY37512VP400-83BBC	BB400	400-Ball Fine-Pitch Ball Grid Array		
	66	CY37512VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	Commercial	
		CY37512VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array		
		CY37512VP352-66BGC	BG388	388-Ball Plastic Ball Grid Array		
		CY37512VP400-66BBC	BB400	400-Ball Fine-Pitch Ball Grid Array		
		CY37512VP208-66NI	N208	208-Lead Plastic Quad Flat Pack	Industrial	
		CY37512VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array		
		CY37512VP352-66BGI	BG388	388-Ball Plastic Ball Grid Array		
		CY37512VP400-66BBI	BB400	400-Ball Fine-Pitch Ball Grid Array		
		5962-9952601QZC	U208	208-Lead Ceramic Quad Flat Pack	Military	

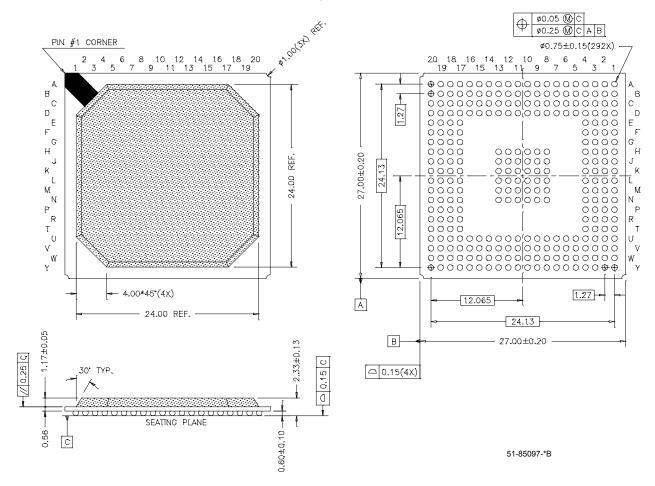


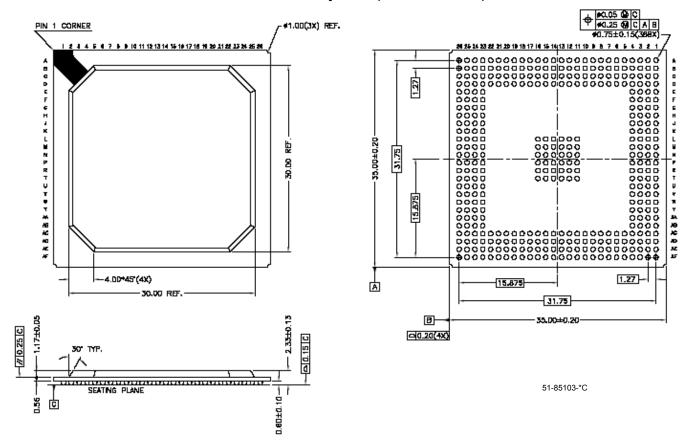


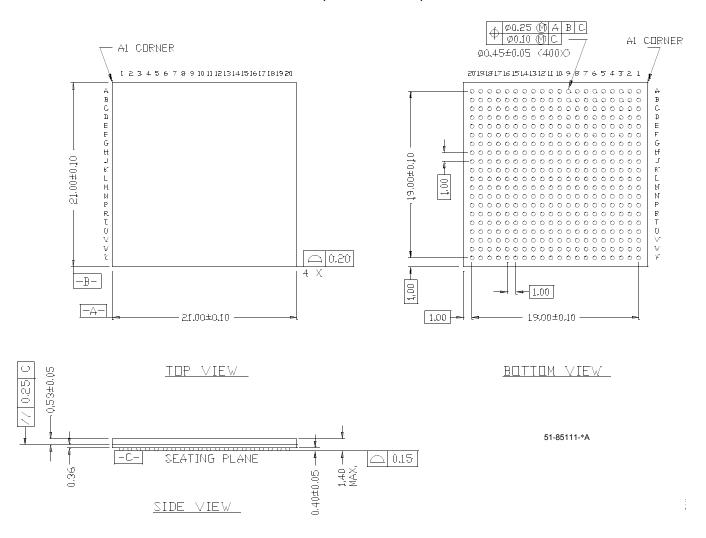
44-Lead Ceramic Leaded Chip Carrier Y67



100-Lead Lead (Pb)-Free Thin Plastic Quad Flat Pack (TQFP) A100


160-Lead Lead (Pb)-Free Thin Plastic Quad Flat Pack (24 x 24 x 1.4 mm) (TQFP) A160


292-Ball Plastic Ball Grid Array PBGA (27 x 27 x 2.33 mm) BG292


388-Ball Plastic Ball Grid Array PBGA (35 x 35 x 2.33 mm) BG388

400-Ball FBGA (21 x 21 x 1.4 mm) BB400

ViewDraw and SpeedWave are trademarks of ViewLogic. Windows is a registered trademark of Microsoft Corporation. *Warp* is a registered trademark, and In-System Reprogrammable, ISR, *Warp* Professional, *Warp* Enterprise, and Ultra37000 are trademarks, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: Ultra37000 CPLD Family 5V, 3.3V, ISR™ High-Performance CPLDs Document Number: 38-03007						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	106272	04/18/01	SZV	Change from Spec number: 38-00475 to 38-03007		
*A	124942	03/21/03	OOR	Updated 3.3V V _{CC} requirements for –144 speeds Added an Addendum		
*B	126262	05/09/03	TEH	Changed pinout for CY37128V BB100 package		
*C	128125	07/16/03	НОМ	Obsoleted following 3.3V PLCC packaged devices: CY37032VP44-143JC CY37032VP44-100JC CY37064VP44-143JC CY37064VP84-143JC CY37064VP44-100JC CY37064VP44-100JC CY37064VP84-100JI CY37064VP44-100JI CY37064VP84-100JI CY37128VP84-83JC CY37128VP84-83JI		
*D	282709	See ECN	YDT	Changed package diagrams and labels for consistency Added Lead (Pb)-free logo on first page, as well as a note in Features Added Lead (Pb)-free package diagram labels Added Lead-free Parts to Ordering Information CY37032P44-200AXC, CY37032P44-200JXC, CY37032P44-154AXI, CY37032P44-154JXI, CY37032P44-125AXC, CY37032P44-125JXC, CY37064P44-200AXC, CY37064P44-200JXC, CY37064P100-200AXC, CY37064P44-154JXI, CY37064P44-200JXC, CY37064P44-125AXC, CY37064P44-125JXC, CY37064P44-154JXI, CY37064P44-125AXC, CY37064P44-125JXC, CY37064P100-125AXC, CY37064P44-125AXI, CY37064P100-125AXI, CY37128P84-167JXC, CY37128P100-167AXC, CY37128P160-167AXC, CY37128P84-125JXI, CY37128P100-125AXI, CY37128P160-125AXI, CY37128P84-125JXI, CY37128P100-125AXI, CY37128P160-125AXI, CY37128P84-100JXC, CY37128P100-100AXC, CY37128P160-125AXC, CY37128P100-100AXI, CY37192P160-154AXC, CY37192P160-125AXC, CY37192P160-125AXI, CY37192P160-83AXC, CY37192P160-83AXI, CY37256P160-154AXC, CY37256P160-125AXI, CY37032VP44-100JXI, CY37064VP44-100AXC, CY37032VP44-100AXI, CY37034VP44-100AXC, CY37064VP100-100AXC, CY37064VP44-100AXI, CY37064VP44-100AXC, CY37064VP100-100AXC, CY37064VP44-100AXI, CY37064VP44-100AXI, CY37128VP100-25AXC, CY37128VP160-125AXC, CY37128VP160-125AXI, CY37128VP100-83AXC, CY37128VP160-125AXC, CY37128VP160-66AXC, CY37128VP160-83AXI, CY37128VP160-125AXI, CY37128VP160-66AXC, CY37256VP160-100AXC, CY37256VP160-100AXI, CY37256VP160-66AXC		
*E	321635	See ECN	PCX	Added Package Diagram BG292 Updated all PBGA package type information (BG292 & BG388)		