

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In-System Reprogrammable™ (ISR™) CMOS
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	-
Number of Macrocells	128
Number of Gates	-
Number of I/O	133
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	160-LQFP
Supplier Device Package	160-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy37128p160-125ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Selection Guide

5.0V Selection Guide

General Information

Device	Macrocells	Dedicated Inputs	I/O Pins	Speed (t _{PD})	Speed (f _{MAX})
CY37032	32	5	32	6	200
CY37064	64	5	32/64	6	200
CY37128	128	5	64/128	6.5	167
CY37192	192	5	120	7.5	154
CY37256	256	5	128/160/192	7.5	154
CY37384	384	5	160/192	10	118
CY37512	512	5	160/192/264	10	118

Speed Bins

Device	200	167	154	143	125	100	83	66
CY37032	Х		Х		Х			
CY37064	Х		Х		Х			
CY37128		Х			Х	Х		
CY37192			Х		Х		Х	
CY37256			Х		Х		Х	
CY37384					Х		Х	
CY37512					Х	Х	Х	

Device-Package Offering and I/O Count

Device	44- Lead TQFP	44- Lead PLCC	44- Lead CLCC	84- Lead PLCC	84- Lead CLCC	100- Lead TQFP	160- Lead TQFP	160- Lead CQFP	208- Lead PQFP	208- Lead CQFP	292- Lead PBGA	388- Lead PBGA
CY37032	37	37										
CY37064	37	37	37	69		69						
CY37128				69	69	69	133					
CY37192							125					
CY37256							133	133	165		197	
CY37384									165		197	
CY37512									165	165	197	269

3.3V Selection Guide

General Information

Device	Macrocells	Dedicated Inputs	I/O Pins	Speed (t _{PD})	Speed (f _{MAX})
CY37032V	32	5	32	8.5	143
CY37064V	64	5	32/64	8.5	143
CY37128V	128	5	64/80/128	10	125
CY37192V	192	5	120	12	100
CY37256V	256	5	128/160/192	12	100
CY37384V	384	5	160/192	15	83
CY37512V	512	5	160/192/264	15	83

resources for pinout flexibility, and a simple timing model for consistent system performance.

REGISTERED SIGNAL

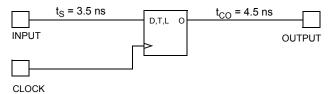


Figure 5. Timing Model for CY37128

JTAG and PCI Standards

PCI Compliance

5V operation of the Ultra37000 is fully compliant with the PCI Local Bus Specification published by the PCI Special Interest Group. The 3.3V products meet all PCI requirements except for the output 3.3V clamp, which is in direct conflict with 5V tolerance. The Ultra37000 family's simple and predictable timing model ensures compliance with the PCI AC specifications independent of the design.

IEEE 1149.1-compliant JTAG

The Ultra37000 family has an IEEE 1149.1 JTAG interface for both Boundary Scan and ISR.

Boundary Scan

The Ultra37000 family supports Bypass, Sample/Preload, Extest, Idcode, and Usercode boundary scan instructions. The JTAG interface is shown in *Figure 6*.

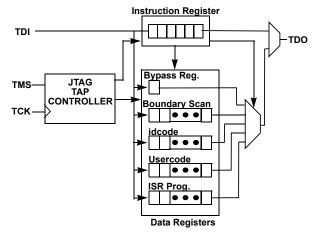


Figure 6. JTAG Interface

In-System Reprogramming (ISR)

In-System Reprogramming is the combination of the capability to program or reprogram a device on-board, and the ability to support design changes without changing the system timing or device pinout. This combination means design changes during debug or field upgrades do not cause board respins. The Ultra37000 family implements ISR by providing a JTAG compliant interface for on-board programming, robust routing

Development Software Support

Warp

Warp is a state-of-the-art compiler and complete CPLD design tool. For design entry, Warp provides an IEEE-STD-1076/1164 VHDL text editor, an IEEE-STD-1364 Verilog text editor, and a graphical finite state machine editor. It provides optimized synthesis and fitting by replacing basic circuits with ones pre-optimized for the target device, by implementing logic in unused memory and by perfect communication between fitting and synthesis. To facilitate design and debugging, Warp provides graphical timing simulation and analysis.

Warp Professional™

Warp Professional contains several additional features. It provides an extra method of design entry with its graphical block diagram editor. It allows up to 5 ms timing simulation instead of only 2 ms. It allows comparison of waveforms before and after design changes.

Warp Enterprise™

Warp Enterprise provides even more features. It provides unlimited timing simulation and source-level behavioral simulation as well as a debugger. It has the ability to generate graphical HDL blocks from HDL text. It can even generate testbenches.

Warp is available for PC and UNIX platforms. Some features are not available in the UNIX version. For further information see the Warp for PC, Warp for UNIX, Warp Professional and Warp Enterprise data sheets on Cypress's web site (www.cypress.com).

Third-Party Software

Although *Warp* is a complete CPLD development tool on its own, it interfaces with nearly every third party EDA tool. All major third-party software vendors provide support for the Ultra37000 family of devices. Refer to the third-party software data sheet or contact your local sales office for a list of currently supported third-party vendors.

Programming

There are four programming options available for Ultra37000 devices. The first method is to use a PC with the 37000 UltraISR programming cable and software. With this method, the ISR pins of the Ultra37000 devices are routed to a connector at the edge of the printed circuit board. The 37000 UltraISR programming cable is then connected between the parallel port of the PC and this connector. A simple configuration file instructs the ISR software of the programming operations to be performed on each of the Ultra37000 devices in the system. The ISR software then automatically completes all of the necessary data manipulations required to accomplish the programming, reading, verifying, and other ISR functions. For more information on the Cypress ISR Interface, see the ISR Programming Kit data sheet (CY3700i).

The second method for programming Ultra37000 devices is on automatic test equipment (ATE). This is accomplished through a file created by the ISR software. Check the Cypress website for the latest ISR software download information.

The third programming option for Ultra37000 devices is to utilize the embedded controller or processor that already exists in the system. The Ultra37000 ISR software assists in this method by converting the device JEDEC maps into the ISR serial stream that contains the ISR instruction information and the addresses and data of locations to be programmed. The embedded controller then simply directs this ISR stream to the chain of Ultra37000 devices to complete the desired reconfiguring or diagnostic operations. Contact your local sales office for information on availability of this option.

The fourth method for programming Ultra37000 devices is to use the same programmer that is currently being used to program FLASH370i devices.

For all pinout, electrical, and timing requirements, refer to device data sheets. For ISR cable and software specifications, refer to the UltraISR kit data sheet (CY3700i).

Third-Party Programmers

As with development software, Cypress support is available on a wide variety of third-party programmers. All major third-party programmers (including BP Micro, Data I/O, and SMS) support the Ultra37000 family.

5.0V Device Characteristics Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +7.0V

DC Voltage Applied to Outputs	0.5)/47.0)/
in High-Z State	–0.5V to +7.0V
DC Input Voltage	0.5V to +7.0V
DC Program Voltage	4.5 to 5.5V
Current into Outputs	16 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range^[2]

Range	Ambient Temperature ^[2]	Junction Temperature	Output Condition	V _{cc}	V _{cco}
Commercial	0°C to +70°C	0°C to +90°C	5V	5V ± 0.25V	5V ± 0.25V
			3.3V	5V ± 0.25V	$3.3V \pm 0.3V$
Industrial	–40°C to +85°C	–40°C to +105°C	5V	5V ± 0.5V	5V ± 0.5V
			3.3V	$5V \pm 0.5V$	$3.3V\pm0.3V$
Military ^[3]	–55°C to +125°C	–55°C to +130°C	5V	$5V \pm 0.5V$	5V ± 0.5V
			3.3V	5V ± 0.5V	$3.3V\pm0.3V$

5.0V Device Electrical Characteristics Over the Operating Range

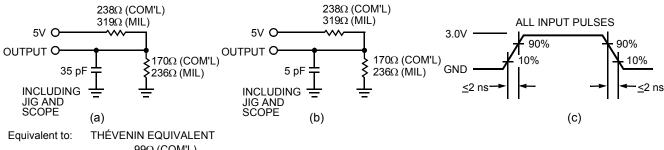
Parameter	Description	Test Cor	nditions	Min.	Тур.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min.	$I_{OH} = -3.2 \text{ mA (Com'l/Ind)}^{[4]}$	2.4			V
			$I_{OH} = -2.0 \text{ mA } (Mil)^{[4]}$	2.4			V
V _{OHZ}	Output HIGH Voltage with	V _{CC} = Max.	$I_{OH} = 0 \mu A (Com'l)^{[6]}$			4.2	V
	Output Disabled ^[5]		$I_{OH} = 0 \mu A (Ind/Mil)^{[6]}$			4.5	V
			$I_{OH} = -100 \mu A (Com'I)^{[6]}$			3.6	V
			$I_{OH} = -150 \mu A (Ind/Mil)^{[6]}$			3.6	V
V_{OL}	Output LOW Voltage	V _{CC} = Min.	I _{OL} = 16 mA (Com'l/Ind) ^[4]			0.5	V
			I _{OL} = 12 mA (Mil) ^[4]			0.5	V
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs ^[7]				V_{CCmax}	V
V_{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs ^[7]		-0.5		0.8	V
I _{IX}	Input Load Current	V_I = GND OR V_{CC} , Bus-Hold	Disabled	-10		10	μА
I _{OZ}	Output Leakage Current	V_O = GND or V_{CC} , Output Di	sabled, Bus-Hold Disabled	-50		50	μА
Ios	Output Short Circuit Current ^[5,8]	V_{CC} = Max., V_{OUT} = 0.5V		-30		-160	mA
I _{BHL}	Input Bus-Hold LOW Sustaining Current	V _{CC} = Min., V _{IL} = 0.8V		+75			μА
I _{ВНН}	Input Bus-Hold HIGH Sustaining Current	V _{CC} = Min., V _{IH} = 2.0V		-75			μА
I _{BHLO}	Input Bus-Hold LOW Overdrive Current	V _{CC} = Max.				+500	μА
Івнно	Input Bus-Hold HIGH Overdrive Current	V _{CC} = Max.				-500	μА

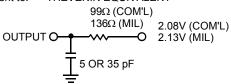
- Normal Programming Conditions apply across Ambient Temperature Range for specified programming methods. For more information on programming the Ultra37000 Family devices, please refer to the Application Note titled "An Introduction to In System Reprogramming with the Ultra37000."
- 3. TA is the "Instant On" case temperature.
- 4. I_{OH} = -2 mA, I_{OL} = 2 mA for TDO.
 5. Tested initially and after any design or process changes that may affect these parameters.
- When the I/O is output disabled, the bus-hold circuit can weakly pull the I/O to above 3.6V if no leakage current is allowed. Note that all I/Os are output disabled during ISR programming. Refer to the application note "Understanding Bus-Hold" for additional information.
- These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
- Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.

Inductance^[5]

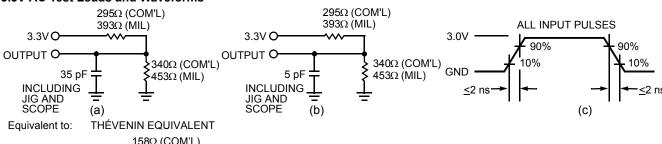
Parameter	Description	Test Conditions	44- Lead TQFP	44- Lead PLCC	44- Lead CLCC	84- Lead PLCC	84- Lead CLCC	100- Lead TQFP	160- Lead TQFP	208- Lead PQFP	Unit
	Maximum Pin Inductance	V _{IN} = 3.3V at f = 1 MHz	2	5	2	8	5	8	9	11	nH

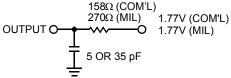
Capacitance^[5]


Parameter	Description	Test Conditions	Max.	Unit
C _{I/O}	Input/Output Capacitance	V_{IN} = 3.3V at f = 1 MHz at T_A = 25°C	8	pF
C _{CLK}	Clock Signal Capacitance	V_{IN} = 3.3V at f = 1 MHz at T_A = 25°C	12	pF
C _{DP}	Dual Functional Pins ^[9]	$V_{IN} = 3.3V$ at f = 1 MHz at $T_A = 25^{\circ}C$	16	pF


Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Тур.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions ^[2]	1,000	10,000	Cycles

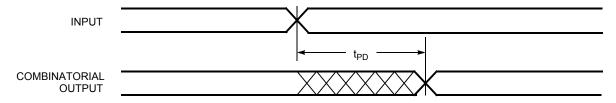

AC Characteristics


5.0V AC Test Loads and Waveforms

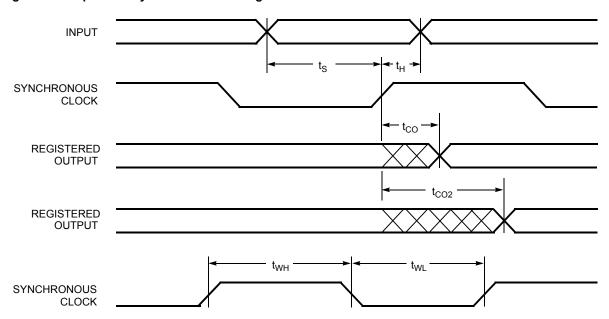
3.3V AC Test Loads and Waveforms

$\textbf{Switching Characteristics} \ \, \text{Over the Operating Range (continued)}^{[12]}$

Parameter	Description	Unit
Product Term Clo	cking Parameters	1
t _{COPT} [13, 14, 15]	Product Term Clock or Latch Enable (PTCLK) to Output	ns
t _{SPT}	Set-Up Time from Input to Product Term Clock or Latch Enable (PTCLK)	ns
t _{HPT}	Register or Latch Data Hold Time	ns
t _{ISPT} ^[13]	Set-Up Time for Buried Register used as an Input Register from Input to Product Term Clock or Latch Enable (PTCLK)	ns
t _{IHPT}	Buried Register Used as an Input Register or Latch Data Hold Time	ns
t _{CO2PT} ^[13, 14, 15]	Product Term Clock or Latch Enable (PTCLK) to Output Delay (Through Logic Array)	ns
Pipelined Mode P	arameters	1
t _{ICS} ^[13]	Input Register Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3) to Output Register Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3)	ns
Operating Freque	ncy Parameters	
f _{MAX1}	Maximum Frequency with Internal Feedback (Lesser of $1/t_{SCS}$, $1/(t_{S} + t_{H})$, or $1/t_{CO}$) ^[5]	MHz
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(t_W + t_W)$, $1/(t_S + t_H)$, or $1/(t_{CO})^{[5]}$	MHz
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of 1/(t _{CO} + t _S) or 1/(t _{WL} + t _{WH}) ^[5]	MHz
f _{MAX4}	Maximum Frequency in Pipelined Mode (Lesser of 1/(t_{CO} + t_{IS}), 1/ t_{ICS} , 1/(t_{WL} + t_{WH}), 1/(t_{IS} + t_{IH}), or 1/ t_{SCS}) ^[5]	MHz
Reset/Preset Para	ameters	
t _{RW}	Asynchronous Reset Width ^[5]	ns
t _{RR} ^[13]	Asynchronous Reset Recovery Time ^[5]	ns
t _{RO} ^[13, 14, 15]	Asynchronous Reset to Output	ns
t _{PW}	Asynchronous Preset Width ^[5]	ns
t _{PR} ^[13]	Asynchronous Preset Recovery Time ^[5]	ns
t _{PO} ^[13, 14, 15]	Asynchronous Preset to Output	ns
User Option Para	meters	
t _{LP}	Low Power Adder	ns
t _{SLEW}	Slow Output Slew Rate Adder	ns
t _{3.310}	3.3V I/O Mode Timing Adder ^[5]	ns
JTAG Timing Pa	rameters	•
t _{S JTAG}	Set-up Time from TDI and TMS to TCK ^[5]	ns
t _{H JTAG}	Hold Time on TDI and TMS ^[5]	ns
t _{CO JTAG}	Falling Edge of TCK to TDO ^[5]	ns
f _{JTAG}	Maximum JTAG Tap Controller Frequency ^[5]	ns



$\textbf{Switching Characteristics} \ \, \text{Over the Operating Range (continued)}^{[12]}$

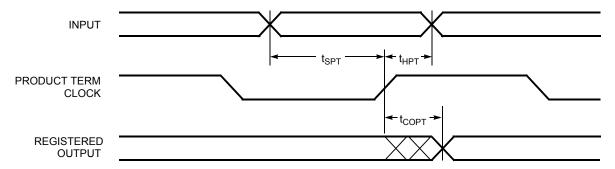

	200	MHz	167	MHz	154	MHz	143	MHz	125	MHz	100 N	ИHz	83 M	Hz	66 1	ИHz	
Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
t _{RO} ^[13, 14, 15]		12		13		13		14		15		18		21		26	ns
t_{PW}	8		8		8		8		10		12		15		20		ns
t _{PR} ^[13]	10		10		10		10		12		14		17		22		ns
t _{PO} ^[13, 14, 15]		12		13		13		14		15		18		21		26	ns
User Option P	aram	eters															•
t _{LP}		2.5		2.5		2.5		2.5		2.5		2.5		2.5		2.5	ns
t _{SLEW}		3		3		3		3		3		3		3		3	ns
t _{3.3IO} ^[19]		0.3		0.3		0.3		0.3		0.3		0.3		0.3		0.3	ns
JTAG Timing F	aran	neters															•
t _{S JTAG}	0		0		0		0		0		0		0		0		ns
t _{H JTAG}	20		20		20		20		20		20		20		20		ns
t _{CO JTAG}		20		20		20		20		20		20		20		20	ns
f_{JTAG}		20		20		20		20		20		20		20		20	MHz

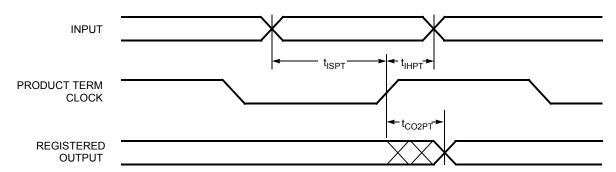
Switching Waveforms

Combinatorial Output

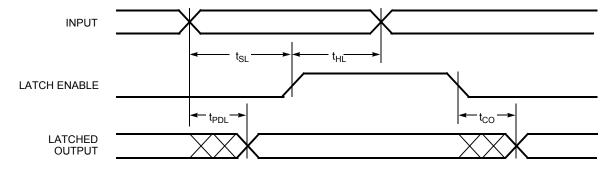
Registered Output with Synchronous Clocking

Note:


19. Only applicable to the 5V devices.

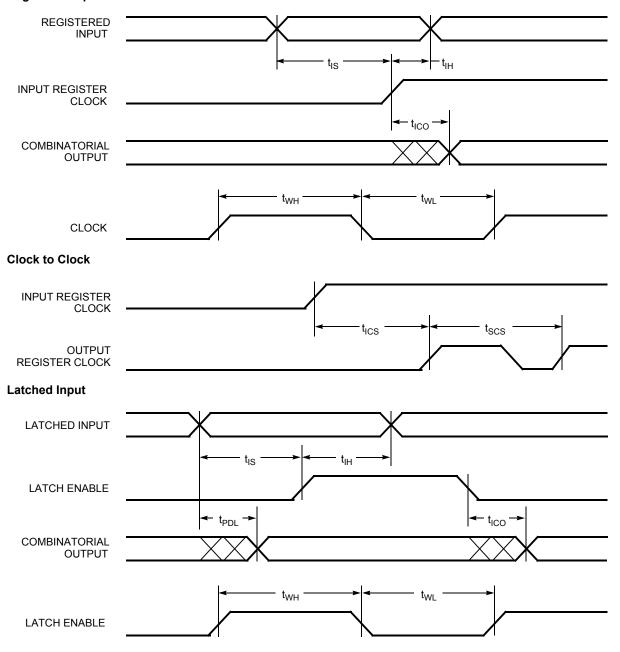


Switching Waveforms (continued)

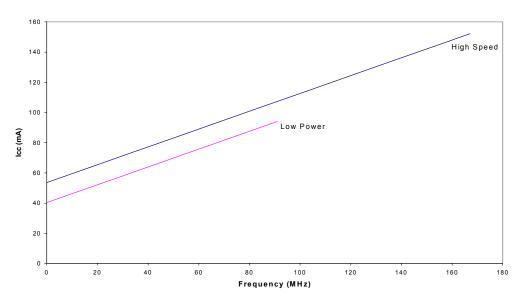

Registered Output with Product Term Clocking Input Going Through the Array

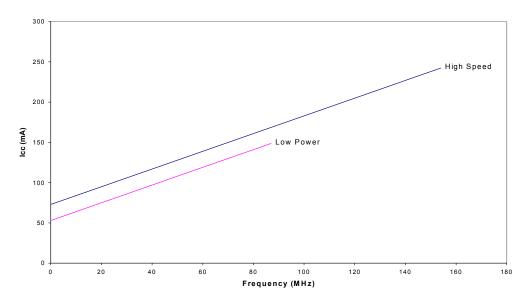
Registered Output with Product Term Clocking Input Coming From Adjacent Buried Register

Latched Output



Switching Waveforms (continued)

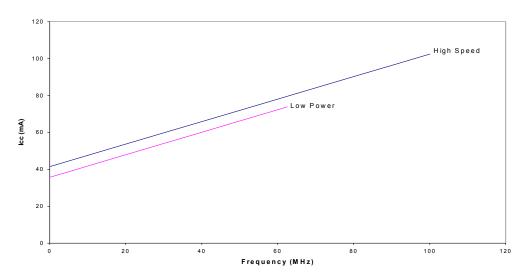

Registered Input



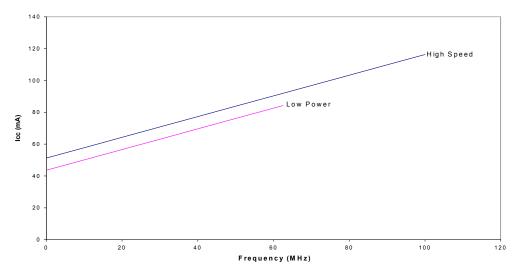
Typical 5.0V Power Consumption (continued) **CY37128**

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{CC} = 5.0V,\, T_A = Room\, Temperature$

CY37192



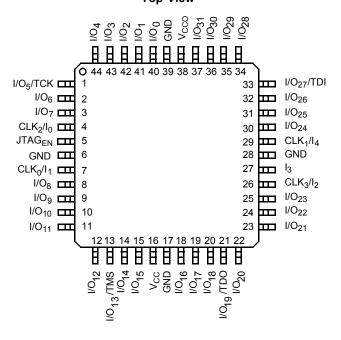
The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. V_{CC} = 5.0V, T_A = Room Temperature



Typical 3.3V Power Consumption (continued) **CY37192V**

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{\rm CC}$ = 3.3V, $T_{\rm A}$ = Room Temperature

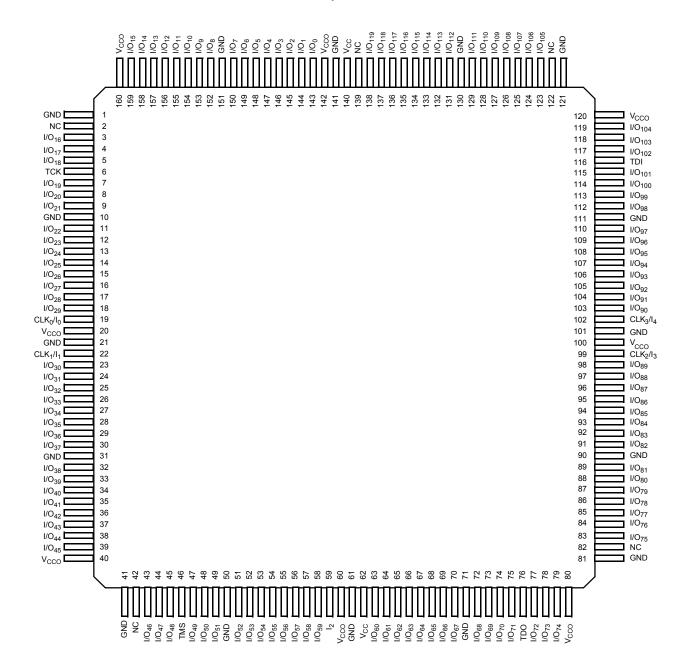
CY37256V



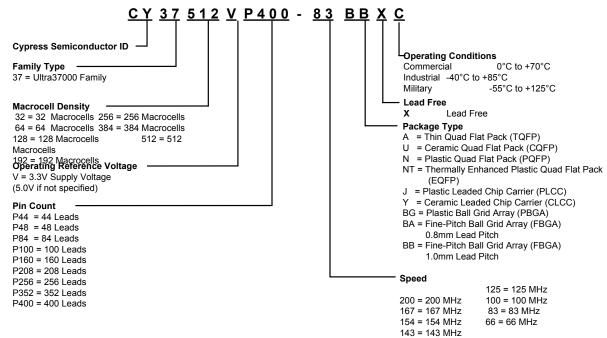
The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{\rm CC} = 3.3V,\,T_A = Room\,Temperature$

44-pin TQFP (A44) Top View

44-pin PLCC (J67) / CLCC (Y67) Top View



Pin Configurations^[20] (continued)


160-Lead TQFP (A160) for CY37192(V) Top View

Ordering Information

5.0V Ordering Information

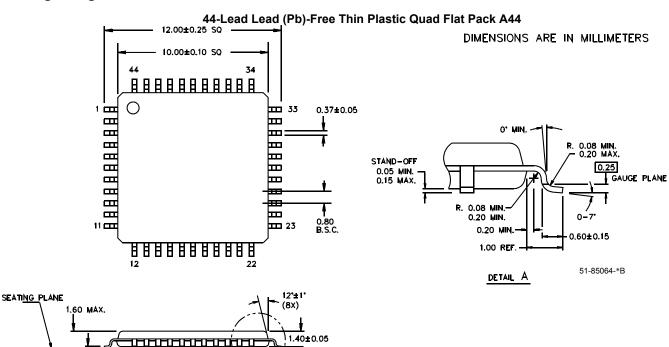
Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range	
32	200	CY37032P44-200AC	A44	44-Lead Thin Quad Flat Pack	Commercial	
		CY37032P44-200AXC	A44	44-Lead Lead Free Thin Quad Flat Pack		
		CY37032P44-200JC	J67	44-Lead Plastic Leaded Chip Carrier	1	
		CY37032P44-200JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	1	
	154	CY37032P44-154AC	A44	44-Lead Thin Quad Flat Pack	Commercial	
		CY37032P44-154JC	J67	44-Lead Plastic Leaded Chip Carrier	1	
		CY37032P44-154AI	A44	44-Lead Thin Quad Flat Pack	Industrial	
		CY37032P44-154AXI	A44	44-Lead Lead Free Thin Quad Flat Pack		
		CY37032P44-154JI	J67	44-Lead Plastic Leaded Chip Carrier	1	
		CY37032P44-154JXI	J67	44-Lead Lead Free Plastic Leaded Chip Carrier		
	125	CY37032P44-125AC	A44	44-Lead Thin Quad Flat Pack	Commercial	
		CY37032P44-125AXC	A44	44-Lead Lead Free Thin Quad Flat Pack	1	
		CY37032P44-125JC	J67	44-Lead Plastic Leaded Chip Carrier	1	
		CY37032P44-125JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	1	
		CY37032P44-125AI	A44	44-Lead Thin Quad Flat Pack	Industrial	
		CY37032P44-125JI	J67	44-Lead Plastic Leaded Chip Carrier	1	
64	200	CY37064P44-200AC	A44	44-Lead Thin Quad Flat Pack	Commercial	
		CY37064P44-200AXC	A44	44-Lead Lead Free Thin Quad Flat Pack		
		CY37064P44-200JC	J67	44-Lead Plastic Leaded Chip Carrier	1	
		CY37064P44-200JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	7	
		CY37064P84-200JC	J83	84-Lead Plastic Leaded Chip Carrier		
		CY37064P100-200AC	A100	100-Lead Thin Quad Flat Pack	1	
		CY37064P100-200AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	7	

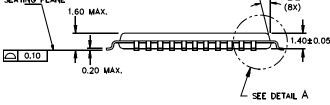
5.0V Ordering Information (continued)

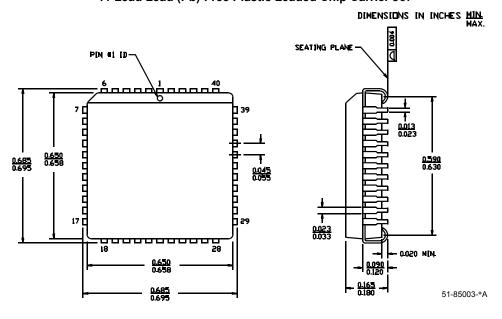
Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
256	154	CY37256P160-154AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256P160-154AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-154NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-154BGC	BG292	292-Ball Plastic Ball Grid Array	
	125	CY37256P160-125AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256P160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-125NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-125BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256P160-125AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256P160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-125NI	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-125BGI	BG292	292-Ball Plastic Ball Grid Array	
		5962-9952302QZC	U162	160-Lead Ceramic Quad Flat Pack	Military
	83	CY37256P160-83AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256P160-83AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-83NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256P160-83AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256P160-83AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256P208-83NI	N208	208-Lead Plastic Quad Flat Pack	
		CY37256P256-83BGI	BG292	292-Ball Plastic Ball Grid Array	
		5962-9952301QZC	U162	160-Lead Ceramic Quad Flat Pack	Military
384	125	CY37384P208-125NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384P256-125BGC	BG292	292-Ball Plastic Ball Grid Array	
	83	CY37384P208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384P256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37384P208-83NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37384P256-83BGI	BG292	292-Ball Plastic Ball Grid Array	

3.3V Ordering Information (continued)

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
64	143	CY37064VP44-143AC	A44	44-Lead Thin Quad Flatpack	Commercia
		CY37064VP44-143AXC	A44	44-Lead Lead Free Thin Quad Flatpack	
		CY37064VP48-143BAC	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-143AC	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-143AXC	A100	100-Lead Lead Free Thin Quad Flatpack	
		CY37064VP100-143BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
	100	CY37064VP44-100AC	A44	44-Lead Thin Quad Flatpack	Commercia
		CY37064VP44-100AXC	A44	44-Lead Lead Free Thin Quad Flatpack	
		CY37064VP48-100BAC	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100AC	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-100AXC	A100	100-Lead Lead Free Thin Quad Flatpack	
		CY37064VP100-100BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37064VP44-100AI	A44	44-Lead Thin Quad Flatpack	Industrial
		CY37064VP44-100AXI	A44	44-Lead Lead Free Thin Quad Flatpack	
		CY37064VP48-100BAI	BA50	48-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100BBI	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37064VP100-100AI	A100	100-Lead Thin Quad Flatpack	
		CY37064VP100-100AXI	A100	100-Lead Lead Free Thin Quad Flatpack	
		5962-9952001QYA	Y67	44-Lead Ceramic Leaded Chip Carrier	Military
128	125	CY37128VP100-125AC	A100	100-Lead Thin Quad Flat Pack	Commercia
		CY37128VP100-125AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-125BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37128VP160-125AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP160-125AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37128VP160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
	83	CY37128VP100-83AC	A100	100-Lead Thin Quad Flat Pack	Commercia
		CY37128VP100-83AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-83BBC	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37128VP160-83AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-83AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-83AI	A100	100-Lead Thin Quad Flat Pack	Industrial
		CY37128VP100-83AXI	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128VP100-83BBI	BB100	100-Ball Fine-Pitch Ball Grid Array	
		CY37128VP160-83AI	A160	160-Lead Thin Quad Flat Pack	
		CY37128VP160-83AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		5962-9952201QYA	Y84	84-Lead Ceramic Leaded Chip Carrier	Military
192	100	CY37192VP160-100AC	A160	160-Lead Thin Quad Flat Pack	Commercia
		CY37192VP160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
	66	CY37192VP160-66AC	A160	160-Lead Thin Quad Flat Pack	Commercia
		CY37192VP160-66AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37192VP160-66AI	A160	160-Lead Thin Quad Flat Pack	Industrial

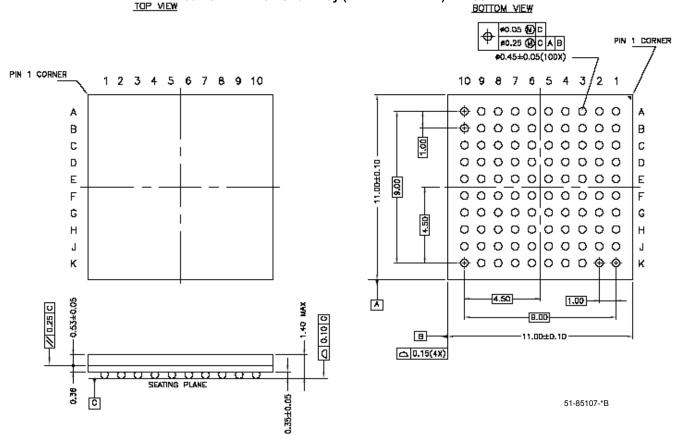

3.3V Ordering Information (continued)


Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
256	100	CY37256VP160-100AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256VP160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256VP208-100NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256VP256-100BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256VP256-100BBC	BB256	256-Ball Fine-Pitch Ball Grid Array	
		CY37256VP160-100AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256VP160-100AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
	66	CY37256VP160-66AC	A160	160-Lead Thin Quad Flat Pack	Commercial
		CY37256VP160-66AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37256VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	
		CY37256VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37256VP256-66BBC	BB256	256-Ball Fine-Pitch Ball Grid Array	
		CY37256VP160-66AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37256VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array	
		CY37256VP256-66BBI	BB256	256-Ball Fine-Pitch Ball Grid Array	
		5962-9952401QZC	U162	160-Lead Ceramic Quad Flat Pack	Military
384	83	CY37384VP208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384VP256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
	66	CY37384VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37384VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37384VP208-66NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37384VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array	
512	83	CY37512VP208-83NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37512VP256-83BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37512VP352-83BGC	BG388	388-Ball Plastic Ball Grid Array	
		CY37512VP400-83BBC	BB400	400-Ball Fine-Pitch Ball Grid Array	
	66	CY37512VP208-66NC	N208	208-Lead Plastic Quad Flat Pack	Commercial
		CY37512VP256-66BGC	BG292	292-Ball Plastic Ball Grid Array	
		CY37512VP352-66BGC	BG388	388-Ball Plastic Ball Grid Array	
		CY37512VP400-66BBC	BB400	400-Ball Fine-Pitch Ball Grid Array	
		CY37512VP208-66NI	N208	208-Lead Plastic Quad Flat Pack	Industrial
		CY37512VP256-66BGI	BG292	292-Ball Plastic Ball Grid Array	
		CY37512VP352-66BGI	BG388	388-Ball Plastic Ball Grid Array	
		CY37512VP400-66BBI	BB400	400-Ball Fine-Pitch Ball Grid Array	
		5962-9952601QZC	U208	208-Lead Ceramic Quad Flat Pack	Military



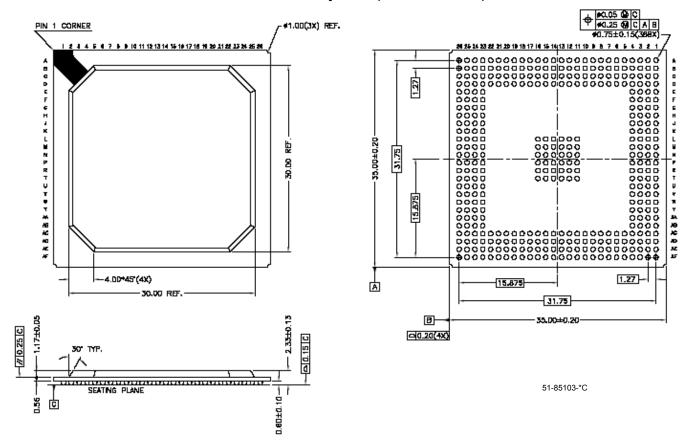
Package Diagrams

44-Lead Lead (Pb)-Free Plastic Leaded Chip Carrier J67



Package Diagrams (continued)

100-Ball Thin Ball Grid Array (11 x 11 x 1.4 mm) BB100



Package Diagrams (continued)

388-Ball Plastic Ball Grid Array PBGA (35 x 35 x 2.33 mm) BG388

