

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In-System Reprogrammable™ (ISR™) CMOS
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	-
Number of Macrocells	256
Number of Gates	-
Number of I/O	133
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	160-LQFP
Supplier Device Package	160-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy37256p160-125axc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ultra37000 CPLD Family

Speed Bins

Device	200	167	154	143	125	100	83	66
CY37032V				Х		Х		
CY37064V				Х		Х		
CY37128V					Х		Х	
CY37192V						Х		Х
CY37256V						Х		Х
CY37384V							Х	Х
CY37512V							Х	Х

Device-Package Offering and I/O Count

Device	44- Lead TQFP	44- Lead CLCC	48- Lead FBGA	84- Lead CLCC	100- Lead TQFP	100- Lead FBGA	160- Lead TQFP	160- Lead CQFP	208- Lead PQFP	208- Lead CQFP	292- Lead PBGA	256- Lead FBGA	388- Lead PBGA	400- Lead FBGA
CY37032V	37		37											
CY37064V	37	37	37		69	69								
CY37128V				69	69	85	133							
CY37192V							125							
CY37256V							133	133	165		197	197		
CY37384V									165		197			
CY37512V									165	165	197		269	269

Architecture Overview of Ultra37000 Family

Programmable Interconnect Matrix

The PIM consists of a completely global routing matrix for signals from I/O pins and feedbacks from the logic blocks. The PIM provides extremely robust interconnection to avoid fitting and density limitations.

The inputs to the PIM consist of all I/O and dedicated input pins and all macrocell feedbacks from within the logic blocks. The number of PIM inputs increases with pin count and the number of logic blocks. The outputs from the PIM are signals routed to the appropriate logic blocks. Each logic block receives 36 inputs from the PIM and their complements, allowing for 32-bit operations to be implemented in a single pass through the device. The wide number of inputs to the logic block also improves the routing capacity of the Ultra37000 family.

An important feature of the PIM is its simple timing. The propagation delay through the PIM is accounted for in the timing specifications for each device. There is no additional delay for traveling through the PIM. In fact, all inputs travel through the PIM. As a result, there are no route-dependent timing parameters on the Ultra37000 devices. The worst-case PIM delays are incorporated in all appropriate Ultra37000 specifications.

Routing signals through the PIM is completely invisible to the user. All routing is accomplished by software—no hand routing is necessary. $Warp^{\otimes}$ and third-party development packages automatically route designs for the Ultra37000 family in a matter of minutes. Finally, the rich routing resources of the Ultra37000 family accommodate last minute logic changes while maintaining fixed pin assignments.

Logic Block

The logic block is the basic building block of the Ultra37000 architecture. It consists of a product term array, an intelligent product-term allocator, 16 macrocells, and a number of I/O cells. The number of I/O cells varies depending on the device used. Refer to *Figure 1* for the block diagram.

Product Term Array

Each logic block features a 72 x 87 programmable product term array. This array accepts 36 inputs from the PIM, which originate from macrocell feedbacks and device pins. Active LOW and active HIGH versions of each of these inputs are generated to create the full 72-input field. The 87 product terms in the array can be created from any of the 72 inputs.

Of the 87 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Four of the remaining seven product terms in the logic block are output enable (OE) product terms. Each of the OE product terms controls up to eight of the 16 macrocells and is selectable on an individual macrocell basis. In other words, each I/O cell can select between one of two OE product terms to control the output buffer. The first two of these four OE product terms are available to the upper half of the I/O macrocells in a logic block. The other two OE product terms are available to the lower half of the I/O macrocells in a logic block.

The next two product terms in each logic block are dedicated asynchronous set and asynchronous reset product terms. The final product term is the product term clock. The set, reset, OE and product term clock have polarity control to realize OR functions in a single pass through the array.

The buried macrocell also supports input register capability. The buried macrocell can be configured to act as an input register (D-type or latch) whose input comes from the I/O pin associated with the neighboring macrocell. The output of all buried macrocells is sent directly to the PIM regardless of its configuration.

I/O Macrocell

Figure 2 illustrates the architecture of the I/O macrocell. The I/O macrocell supports the same functions as the buried macrocell with the addition of I/O capability. At the output of the macrocell, a polarity control mux is available to select active LOW or active HIGH signals. This has the added advantage of allowing significant logic reduction to occur in many applications.

The Ultra37000 macrocell features a feedback path to the PIM separate from the I/O pin input path. This means that if the macrocell is buried (fed back internally only), the associated I/O pin can still be used as an input.

Bus Hold Capabilities on all I/Os

Bus-hold, which is an improved version of the popular internal pull-up resistor, is a weak latch connected to the pin that does not degrade the device's performance. As a latch, bus-hold maintains the last state of a pin when the pin is placed in a high-impedance state, thus reducing system noise in bus-interface applications. Bus-hold additionally allows unused device pins to remain unconnected on the board, which is particularly useful during prototyping as designers can route new signals to the device without cutting trace connections to $V_{\rm CC}$ or GND. For more information, see the application note *Understanding Bus-Hold—A Feature of Cypress CPLDs*.

Programmable Slew Rate Control

Each output has a programmable configuration bit, which sets the output slew rate to fast or slow. For designs concerned with meeting FCC emissions standards the slow edge provides for lower system noise. For designs requiring very high performance the fast edge rate provides maximum system performance.

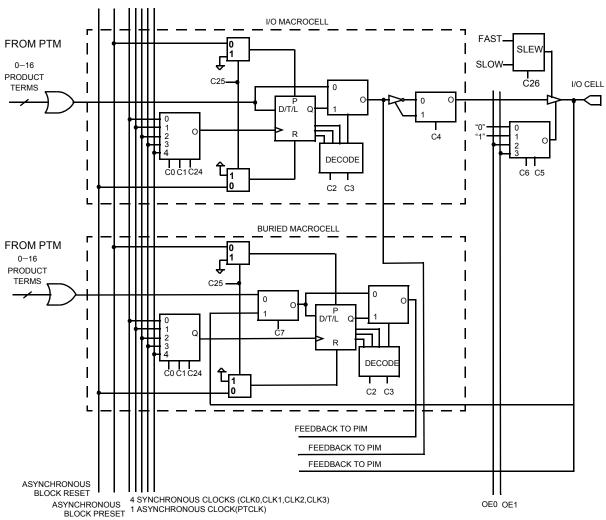


Figure 2. I/O and Buried Macrocells

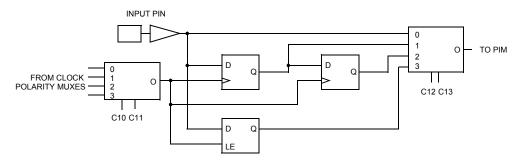


Figure 3. Input Macrocell

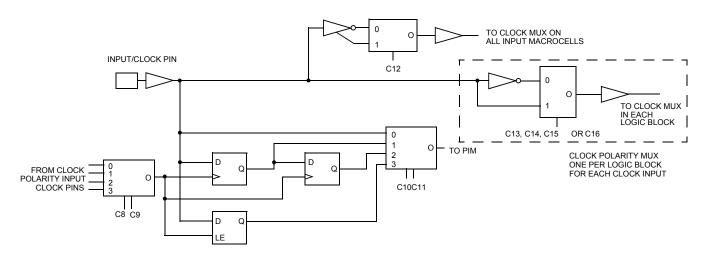


Figure 4. Input/Clock Macrocell

Clocking

Each I/O and buried macrocell has access to four synchronous clocks (CLK0, CLK1, CLK2 and CLK3) as well as an asynchronous product term clock PTCLK. Each input macrocell has access to all four synchronous clocks.

Dedicated Inputs/Clocks

Five pins on each member of the Ultra37000 family are designated as input-only. There are two types of dedicated inputs on Ultra37000 devices: input pins and input/clock pins. *Figure 3* illustrates the architecture for input pins. Four input options are available for the user: combinatorial, registered, double-registered, or latched. If a registered or latched option is selected, any one of the input clocks can be selected for control

Figure 4 illustrates the architecture for the input/clock pins. Like the input pins, input/clock pins can be combinatorial, registered, double-registered, or latched. In addition, these pins feed the clocking structures throughout the device. The clock path at the input has user-configurable polarity.

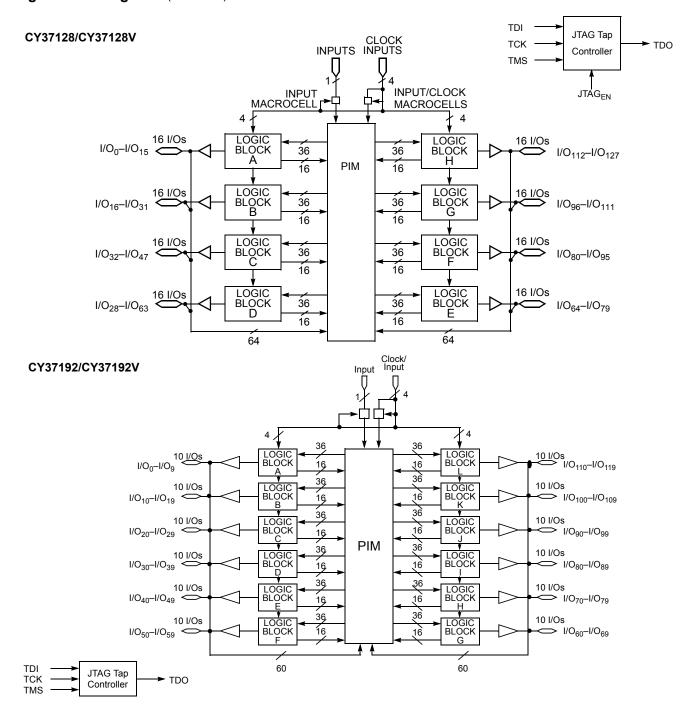
Product Term Clocking

In addition to the four synchronous clocks, the Ultra37000 family also has a product term clock for asynchronous clocking. Each logic block has an independent product term clock which is available to all 16 macrocells. Each product term clock also supports user configurable polarity selection.

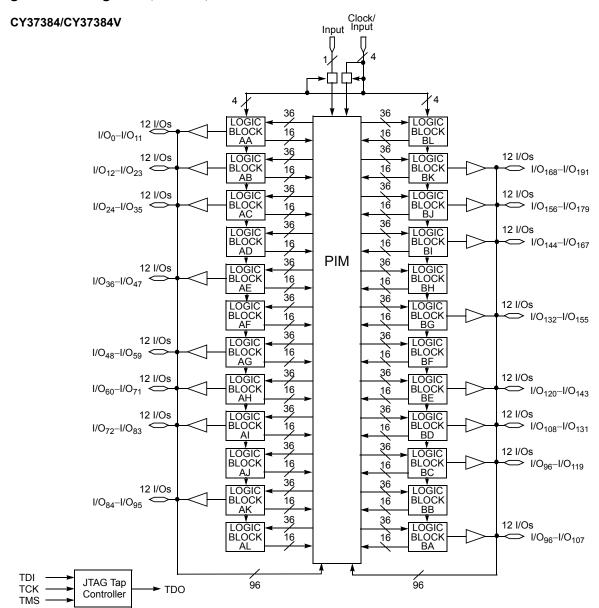
Timing Model

One of the most important features of the Ultra37000 family is the simplicity of its timing. All delays are worst case and system performance is unaffected by the features used. Figure 5 illustrates the true timing model for the 167-MHz devices in high speed mode. For combinatorial paths, any input to any output incurs a 6.5-ns worst-case delay regardless of the amount of logic used. For synchronous systems, the input set-up time to the output macrocells for any input is 3.5 ns and the clock to output time is also 4.0 ns. These measurements are for any output and synchronous clock, regardless of the logic used.

The Ultra37000 features:


- · No fanout delays
- · No expander delays
- · No dedicated vs. I/O pin delays
- · No additional delay through PIM
- No penalty for using 0–16 product terms
- · No added delay for steering product terms
- · No added delay for sharing product terms
- · No routing delays
- · No output bypass delays

The simple timing model of the Ultra37000 family eliminates unexpected performance penalties.


Logic Block Diagrams (continued)

Logic Block Diagrams (continued)

Ultra37000 CPLD Family

5.0V Device Characteristics Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +7.0V

DC Voltage Applied to Outputs	0.5)/47.0)/
in High-Z State	–0.5V to +7.0V
DC Input Voltage	0.5V to +7.0V
DC Program Voltage	4.5 to 5.5V
Current into Outputs	16 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range^[2]

Range	Ambient Temperature ^[2]	Junction Temperature	Output Condition	V _{cc}	V _{cco}
Commercial	0°C to +70°C	0°C to +90°C	5V	5V ± 0.25V	5V ± 0.25V
			3.3V	5V ± 0.25V	$3.3V\pm0.3V$
Industrial	–40°C to +85°C	–40°C to +105°C	5V	5V ± 0.5V	5V ± 0.5V
			3.3V	$5V \pm 0.5V$	$3.3V\pm0.3V$
Military ^[3]	–55°C to +125°C	–55°C to +130°C	5V	$5V \pm 0.5V$	5V ± 0.5V
			3.3V	5V ± 0.5V	$3.3V\pm0.3V$

5.0V Device Electrical Characteristics Over the Operating Range

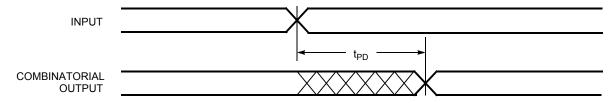
Parameter	Description	Test Cor	nditions	Min.	Тур.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min.	$I_{OH} = -3.2 \text{ mA (Com'l/Ind)}^{[4]}$	2.4			V
			$I_{OH} = -2.0 \text{ mA } (Mil)^{[4]}$	2.4			V
V _{OHZ}	Output HIGH Voltage with	V _{CC} = Max.	$I_{OH} = 0 \mu A (Com'l)^{[6]}$			4.2	V
	Output Disabled ^[5]		$I_{OH} = 0 \mu A (Ind/Mil)^{[6]}$			4.5	V
			$I_{OH} = -100 \mu A (Com'I)^{[6]}$			3.6	V
			$I_{OH} = -150 \mu A (Ind/Mil)^{[6]}$			3.6	V
V_{OL}	Output LOW Voltage	V _{CC} = Min.	I _{OL} = 16 mA (Com'l/Ind) ^[4]			0.5	V
			I _{OL} = 12 mA (Mil) ^[4]			0.5	V
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIG	GH Voltage for all Inputs ^[7]	2.0		V_{CCmax}	V
V_{IL}	Input LOW Voltage	Guaranteed Input Logical LO	W Voltage for all Inputs ^[7]	-0.5		0.8	V
I _{IX}	Input Load Current	V_I = GND OR V_{CC} , Bus-Hold	Disabled	-10		10	μА
I _{OZ}	Output Leakage Current	V_O = GND or V_{CC} , Output Di	sabled, Bus-Hold Disabled	-50		50	μА
Ios	Output Short Circuit Current ^[5,8]	V_{CC} = Max., V_{OUT} = 0.5V		-30		-160	mA
I _{BHL}	Input Bus-Hold LOW Sustaining Current	V _{CC} = Min., V _{IL} = 0.8V		+75			μА
I _{ВНН}	Input Bus-Hold HIGH Sustaining Current	V _{CC} = Min., V _{IH} = 2.0V		-75			μА
I _{BHLO}	Input Bus-Hold LOW Overdrive Current	V _{CC} = Max.				+500	μА
Івнно	Input Bus-Hold HIGH Overdrive Current	V _{CC} = Max.				-500	μА

- Normal Programming Conditions apply across Ambient Temperature Range for specified programming methods. For more information on programming the Ultra37000 Family devices, please refer to the Application Note titled "An Introduction to In System Reprogramming with the Ultra37000."
- 3. TA is the "Instant On" case temperature.
- 4. I_{OH} = -2 mA, I_{OL} = 2 mA for TDO.
 5. Tested initially and after any design or process changes that may affect these parameters.
- When the I/O is output disabled, the bus-hold circuit can weakly pull the I/O to above 3.6V if no leakage current is allowed. Note that all I/Os are output disabled during ISR programming. Refer to the application note "Understanding Bus-Hold" for additional information.
- These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
- Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.

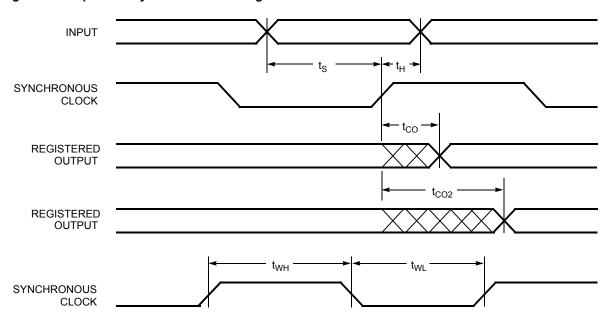
Ultra37000 CPLD Family

$\textbf{Switching Characteristics} \ \, \text{Over the Operating Range (continued)}^{[12]}$

Parameter	Description	Unit
Product Term Clo	cking Parameters	1
t _{COPT} [13, 14, 15]	Product Term Clock or Latch Enable (PTCLK) to Output	ns
t _{SPT}	Set-Up Time from Input to Product Term Clock or Latch Enable (PTCLK)	ns
t _{HPT}	Register or Latch Data Hold Time	ns
t _{ISPT} ^[13]	Set-Up Time for Buried Register used as an Input Register from Input to Product Term Clock or Latch Enable (PTCLK)	ns
t _{IHPT}	Buried Register Used as an Input Register or Latch Data Hold Time	ns
t _{CO2PT} ^[13, 14, 15]	Product Term Clock or Latch Enable (PTCLK) to Output Delay (Through Logic Array)	ns
Pipelined Mode P	arameters	1
t _{ICS} ^[13]	Input Register Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3) to Output Register Synchronous Clock (CLK_0 , CLK_1 , CLK_2 , or CLK_3)	ns
Operating Freque	ncy Parameters	
f _{MAX1}	Maximum Frequency with Internal Feedback (Lesser of $1/t_{SCS}$, $1/(t_{S} + t_{H})$, or $1/t_{CO}$) ^[5]	MHz
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(t_W + t_W)$, $1/(t_S + t_H)$, or $1/(t_{CO})^{[5]}$	MHz
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of 1/(t _{CO} + t _S) or 1/(t _{WL} + t _{WH}) ^[5]	MHz
f _{MAX4}	Maximum Frequency in Pipelined Mode (Lesser of 1/(t_{CO} + t_{IS}), 1/ t_{ICS} , 1/(t_{WL} + t_{WH}), 1/(t_{IS} + t_{IH}), or 1/ t_{SCS}) ^[5]	MHz
Reset/Preset Para	ameters	
t _{RW}	Asynchronous Reset Width ^[5]	ns
t _{RR} ^[13]	Asynchronous Reset Recovery Time ^[5]	ns
t _{RO} ^[13, 14, 15]	Asynchronous Reset to Output	ns
t _{PW}	Asynchronous Preset Width ^[5]	ns
t _{PR} ^[13]	Asynchronous Preset Recovery Time ^[5]	ns
t _{PO} ^[13, 14, 15]	Asynchronous Preset to Output	ns
User Option Para	meters	
t _{LP}	Low Power Adder	ns
t _{SLEW}	Slow Output Slew Rate Adder	ns
t _{3.310}	3.3V I/O Mode Timing Adder ^[5]	ns
JTAG Timing Pa	rameters	•
t _{S JTAG}	Set-up Time from TDI and TMS to TCK ^[5]	ns
t _{H JTAG}	Hold Time on TDI and TMS ^[5]	ns
t _{CO JTAG}	Falling Edge of TCK to TDO ^[5]	ns
f_{JTAG}	Maximum JTAG Tap Controller Frequency ^[5]	ns



$\textbf{Switching Characteristics} \ \, \text{Over the Operating Range (continued)}^{[12]}$

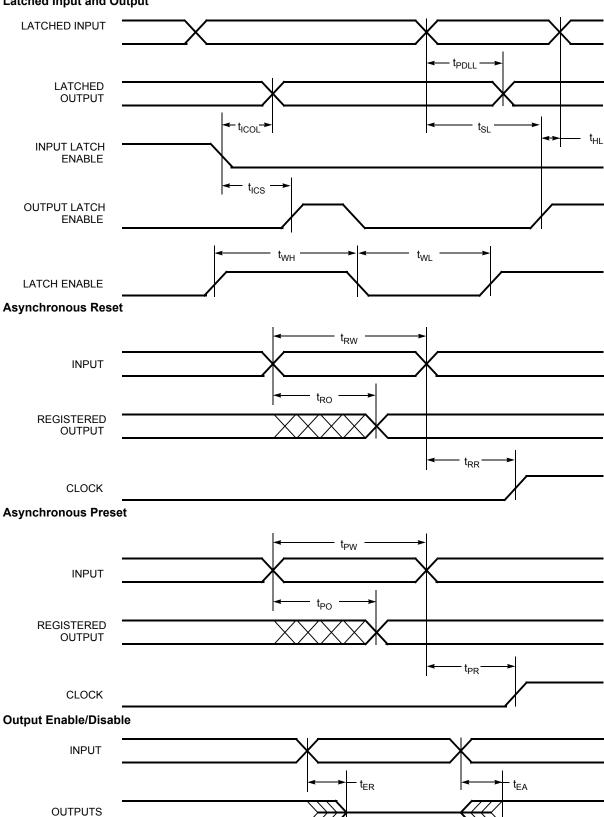

	200	MHz	167	MHz	154	MHz	143	MHz	125 I	MHz	100 N	ИHz	83 M	Hz	66 1	ИHz	
Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
t _{RO} ^[13, 14, 15]		12		13		13		14		15		18		21		26	ns
t_{PW}	8		8		8		8		10		12		15		20		ns
t _{PR} ^[13]	10		10		10		10		12		14		17		22		ns
t _{PO} ^[13, 14, 15]		12		13		13		14		15		18		21		26	ns
User Option P	aram	eters															•
t _{LP}		2.5		2.5		2.5		2.5		2.5		2.5		2.5		2.5	ns
t _{SLEW}		3		3		3		3		3		3		3		3	ns
t _{3.31O} ^[19]		0.3		0.3		0.3		0.3		0.3		0.3		0.3		0.3	ns
JTAG Timing F	Paran	neters															•
t _{S JTAG}	0		0		0		0		0		0		0		0		ns
t _{H JTAG}	20		20		20		20		20		20		20		20		ns
t _{CO JTAG}		20		20		20		20		20		20		20		20	ns
f_{JTAG}		20		20		20		20		20		20		20		20	MHz

Switching Waveforms

Combinatorial Output

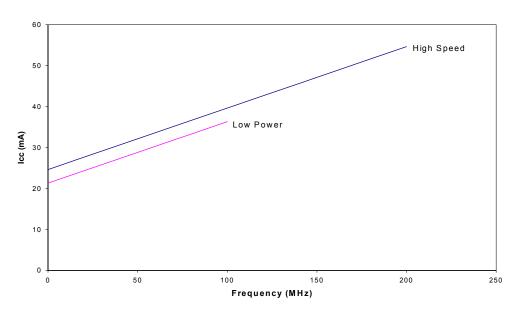
Registered Output with Synchronous Clocking

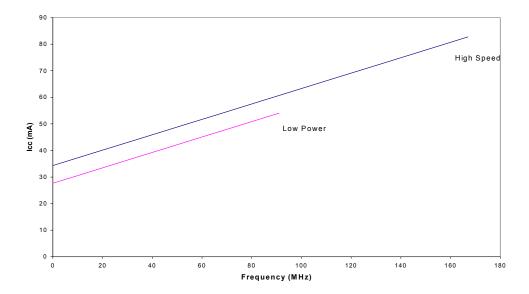
Note:


19. Only applicable to the 5V devices.

Switching Waveforms (continued)

Latched Input and Output

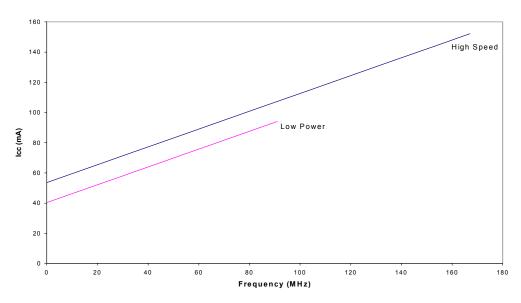



Power Consumption

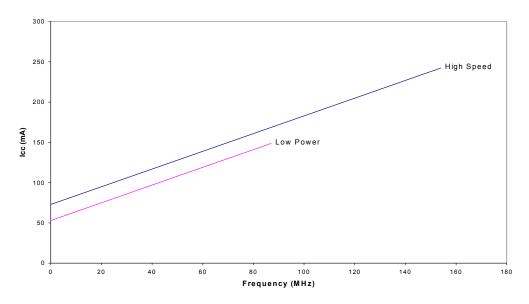
Typical 5.0V Power Consumption CY37032

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{CC} = 5.0V, \, T_A = Room \, Temperature$

CY37064



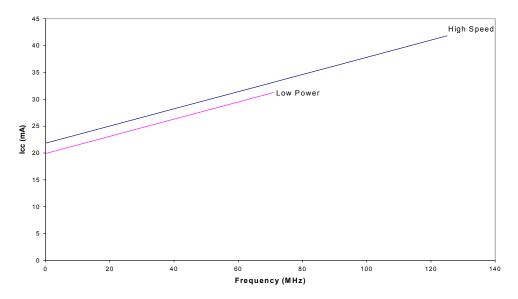
The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{CC} = 5.0V, \, T_A = Room \, Temperature$



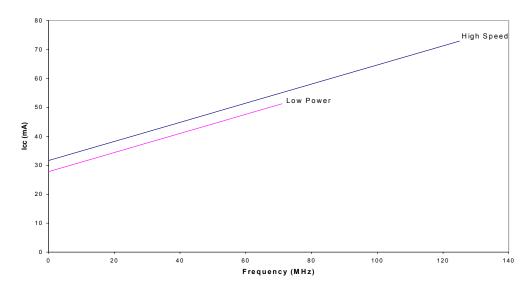
Typical 5.0V Power Consumption (continued) **CY37128**

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{CC} = 5.0V,\, T_A = Room\, Temperature$

CY37192



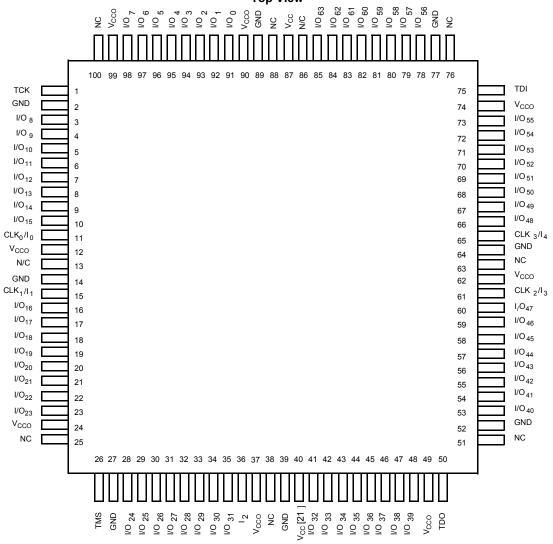
The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. V_{CC} = 5.0V, T_A = Room Temperature



Typical 3.3V Power Consumption (continued) **CY37064V**

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{CC} = 3.3V,\, T_A = Room\, Temperature$

CY37128V


The typical pattern is a 16-bit up counter, per logic block, with outputs disabled. $V_{CC} = 3.3V,\, T_A = Room\, Temperature$

Pin Configurations^[20] (continued)

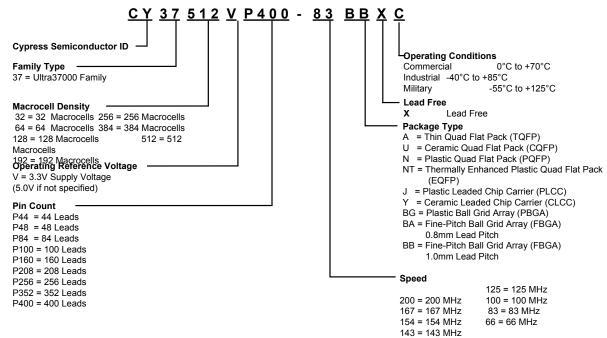
100-lead TQFP (A100) Top View

Pin Configurations^[20] (continued)

292-Ball PBGA (BG292) Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Α	GND	I/O ₂₁	NC	I/O ₁₆	I/O ₁₂	I/O ₉	I/O ₇	I/O ₄	I/O ₀	I/O ₁₉₀	I/O ₁₈₉	I/O ₁₈₆	I/O ₁₈₂	NC	I/O ₁₇₈	I/O ₁₇₅	NC	NC	I/O ₁₆₉	I/O ₁₆₈	Α
В	I/O ₂₃	I/O ₂₀	I/O ₁₉	I/O ₁₈	I/O ₁₅	I/O ₁₁	I/O ₈	I/O ₅	I/O ₁	I/O ₁₉₁	I/O ₁₈₇	I/O ₁₈₅	I/O ₁₈₁	NC	NC	I/O ₁₇₄	I/O ₁₇₁	I/O ₁₇₀	NC	I/O ₁₆₆	В
С	NC	NC	I/O ₂₂	NC	I/O ₁₇	I/O ₁₄	I/O ₁₀	I/O ₆	I/O ₂	NC	I/O ₁₈₈	I/O ₁₈₄	I/O ₁₈₀	I/O ₁₇₉	I/O ₁₇₆	I/O ₁₇₃	I/O ₁₇₂	I/O ₁₆₇	I/O ₁₆₅	I/O ₁₆₂	С
D	I/O ₂₄	NC	NC	GND	NC	V _{CCO}	I/O ₁₃	GND	I/O ₃	NC	V _{CC}	I/O ₁₈₃	GND	I/O ₁₇₇	V _{CCO}	NC	GND	I/O ₁₆₄	TDI	I/O ₁₆₀	D
E	I/O ₂₇	I/O ₂₆	I/O ₂₅	NC													I/O ₁₆₃	I/O ₁₆₁	I/O ₁₅₉	I/O ₁₅₆	Е
F	I/O ₃₀	TCK	I/O ₂₈	V _{CCO}													V _{CCO}	I/O ₁₅₈	NC	I/O ₁₅₄	F
G	I/O ₃₃	I/O ₃₂	I/O ₃₁	I/O ₂₉													I/O ₁₅₇	I/O ₁₅₅	I/O ₁₅₃	I/O ₁₅₂	G
Н	I/O ₃₅	NC	I/O ₃₄	GND				GND	GND	GND	GND	GND	GND				GND	I/O ₁₅₁	I/O ₁₅₀	I/O ₁₄₉	Н
J	I/O ₃₉	I/O ₃₈	I/O ₃₇	I/O ₃₆				GND	GND	GND	GND	GND	GND				I/O ₁₄₈	I/O ₁₄₇	I/O ₁₄₆	I/O ₁₄₅	J
K	I/O ₄₂	I/O ₄₀	I/O ₄₁	V _{CC}				GND	GND	GND	GND	GND	GND				I/O ₁₄₄	CLK ₃ /I ₄	NC	NC	K
L	I/O ₄₃	I/O ₄₄	I/O ₄₅	I/O ₄₆				GND	GND	GND	GND	GND	GND				V _{CC}	CLK ₂ /I ₃	I/O ₁₄₃	NC	L
M	I/O ₄₇	CLK ₀ /I ₀	CLK ₁ /I ₁	I/O ₄₈				GND	GND	GND	GND	GND	GND				I/O ₁₃₉	I/O ₁₄₀	I/O ₁₄₁	I/O ₁₄₂	М
N	I/O ₄₉	I/O ₅₀	I/O ₅₁	GND				GND	GND	GND	GND	GND	GND				GND	I/O ₁₃₆	I/O ₁₃₇	I/O ₁₃₈	N
Р	I/O ₅₂	I/O ₅₃	I/O ₅₅	I/O ₅₈										-			I/O ₁₃₁	I/O ₁₃₃	I/O ₁₃₄	I/O ₁₃₅	Р
R	I/O ₅₄	I/O ₅₆	I/O ₅₉	V _{cco}													V _{cco}	I/O ₁₃₀	NC	I/O ₁₃₂	R
Т	I/O ₅₇	I/O ₆₀	I/O ₆₂	I/O ₆₅													I/O ₁₂₄	I/O ₁₂₇	I/O ₁₂₈	I/O ₁₂₉	Т
U	I/O ₆₁	I/O ₆₃	I/O ₆₆	GND	I/O ₇₆	V _{cco}	I/O ₈₂	GND	I/O ₉₁	V _{CC}	I/O ₉₈	I/O ₁₀₂	GND	I/O ₁₁₂	V _{cco}	NC	GND	I/O ₁₂₃	I/O ₁₂₂	I/O ₁₂₆	U
V	I/O ₆₄	I/O ₆₇	I/O ₆₉	I/O ₇₅	I/O ₇₈	I/O ₈₁	I/O ₈₅	I/O ₈₈	I/O ₉₂	l ₂	I/O ₉₇	I/O ₁₀₁	I/O ₁₀₅	I/O ₁₀₉	I/O ₁₁₃	TDO	I/O ₁₁₄	I/O ₁₁₇	I/O ₁₂₁	I/O ₁₂₅	٧
W	I/O ₆₈	I/O ₇₀	I/O ₇₂	I/O ₇₄	I/O ₇₉	I/O ₈₃	I/O ₈₆	I/O ₈₉	I/O ₉₃	I/O ₉₅	I/O ₉₆	I/O ₁₀₀	I/O ₁₀₄	I/O ₁₀₇	I/O ₁₁₀	NC	NC	I/O ₁₁₅	I/O ₁₁₈	I/O ₁₂₀	W
Y	I/O ₇₁	I/O ₇₃	I/O ₇₇	TMS	I/O ₈₀	I/O ₈₄	I/O ₈₇	I/O ₉₀	I/O ₉₄	NC	NC	I/O ₉₉	I/O ₁₀₃	I/O ₁₀₆	I/O ₁₀₈	I/O ₁₁₁	NC	NC	I/O ₁₁₆	I/O ₁₁₉	Υ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Pin Configurations^[20] (continued)


400-Ball Fine-Pitch BGA (BB400) Top View

Α	GND	GND	NC	I/O ₁₇	I/O ₁₆	I/O ₁₄	I/O ₂₉	V _{CC}	I/O ₁₁	GND	GND	I/O ₂₅₇	V _{CC}	I/O ₂₃₉	I/O ₂₃₃	I/O ₂₃₂	I/O ₂₃₀	NC	GND	GND
В	GND	GND	GND	NC	I/O ₁₅	I/O ₁₃	I/O ₂₈	V _{CC}	I/O ₁₀	GND	GND	I/O ₂₅₆	V _{CC}	I/O ₂₃₈	I/O ₂₃₁	I/O ₂₂₉	NC	GND	GND	GND
С	NC	GND	GND	GND	I/O ₂₀	I/O ₁₂	I/O ₂₇	V _{CC}	I/O ₉	GND	GND	I/O ₂₅₅	V _{CC}	I/O ₂₃₇	I/O ₂₂₈	I/O ₂₄₅	GND	GND	GND	NC
D	I/O ₄₄	NC	GND	I/O ₂₁	I/O ₁₉	I/O ₁₈	I/O ₂₆	I/O ₂₅	I/O ₈	GND	GND	I/O ₂₅₄	I/O ₂₃₅	I/O ₂₃₆	I/O ₂₅₁	I/O ₂₄₄	I/O ₂₄₃	GND	NC	I/O ₂₂₇
Е	I/O ₄₆	I/O ₄₃	I/O ₂₃	I/O ₂₂	NC	I/O ₃₅	I/O ₃₄	I/O ₂₄	I/O ₇	I/O ₄	I/O ₂₆₃	I/O ₂₅₃	I/O ₂₃₄	I/O ₂₅₀	I/O ₂₄₈	NC	I/O ₂₄₁	I/O ₂₄₂	I/O ₂₂₅	I/O ₂₂₆
F	I/O ₄₇	I/O ₄₅	I/O ₄₂	I/O ₄₁	I/O ₄₀	NC	I/O ₃₃	I/O ₃₂	I/O ₆	I/O ₃	I/O ₂₆₂	I/O ₂₅₂	I/O ₂₄₉	I/O ₂₄₇	I/O ₂₂₀	I/O ₂₂₁	I/O ₂₄₀	I/O ₂₂₂	I/O ₂₂₃	I/O ₂₂₄
G	I/O ₅₃	I/O ₅₂	I/O ₅₁	I/O ₅₀	I/O ₃₉	I/O ₃₈	I/O ₃₇	I/O ₃₁	I/O ₅	I/O ₂	I/O ₂₆₁	V _{CC}	I/O ₂₄₆	I/O ₂₁₇	I/O ₂₁₈	I/O ₂₁₉	I/O ₂₁₂	I/O ₂₁₃	I/O ₂₁₄	I/O ₂₁₅
Н	V _{CC}	V _{CC}	V _{CC}	I/O ₄₉	I/O ₄₈	I/O ₃₆	TCK	V _{CC}	I/O ₃₀	I/O ₁	I/O ₂₅₉	I/O ₂₆₀	V _{CC}	TDI	I/O ₂₁₆	I/O ₂₁₀	I/O ₂₁₁	V _{CC}	V _{CC}	V _{CC}
J	I/O ₅₉	I/O ₅₈	I/O ₅₇	I/O ₅₆	I/O ₅₅	I/O ₅₄	V _{CC}	I/O ₆₂	I/O ₆₀	I/O ₀	I/O ₂₅₈	I/O ₂₀₂	I/O ₂₀₃	CLK ₃ /I ₄	I/O ₂₀₄	I/O ₂₀₅	I/O ₂₀₆	I/O ₂₀₇	I/O ₂₀₈	I/O ₂₀₉
K	GND	GND	GND	GND	I/O ₆₅	I/O ₆₄	CLK ₀ /I ₀	I/O ₆₃	I/O ₆₁	GND	GND	I/O ₁₉₈	I/O ₁₉₉	CLK ₂ /I ₃	I/O ₂₀₀	I/O ₂₀₁	GND	GND	GND	GND
L	GND	GND	GND	GND	I/O ₆₉	I/O ₆₈	NC	I/O ₆₇	I/O ₆₆	GND	GND	I/O ₁₉₃	I/O ₁₉₅	l ₂	I/O ₁₉₆	I/O ₁₉₇	GND	GND	GND	GND
М	I/O ₈₉	I/O ₈₈	I/O ₈₇	I/O ₈₆	I/O ₈₅	I/O ₈₄	CLK ₁ /I ₁	I/O ₇₁	I/O ₇₀	I/O ₁₂₆	I/O ₁₃₂	I/O ₁₉₂	I/O ₁₉₄	V _{CC}	I/O ₁₇₄	I/O ₁₇₅	I/O ₁₇₆	I/O ₁₇₇	I/O ₁₇₈	I/O ₁₇₉
N	V _{CC}	V _{CC}	V _{CC}	I/O ₉₁	I/O ₉₀	I/O ₇₂	TMS	V _{CC}	I/O ₁₂₈	I/O ₁₂₇	I/O ₁₃₃	I/O ₁₆₂	V _{CC}	TDO	I/O ₁₈₀	I/O ₁₆₈	I/O ₁₆₉	V _{CC}	V _{CC}	V _{CC}
Р	I/O ₉₅	I/O ₉₄	I/O ₉₃	I/O ₉₂	I/O ₇₅	I/O ₇₄	I/O ₇₃	I/O ₁₁₄	V _{CC}	I/O ₁₂₉	I/O ₁₃₄	I/O ₁₃₇	I/O ₁₆₃	I/O ₁₈₁	I/O ₁₈₂	I/O ₁₈₃	I/O ₁₇₀	I/O ₁₇₁	I/O ₁₇₂	I/O ₁₇₃
R	I/O ₈₀	I/O ₇₉	I/O ₇₈	I/O ₁₀₈	I/O ₇₇	I/O ₇₆	I/O ₁₁₅	I/O ₁₁₇	I/O ₁₂₀	I/O ₁₃₀	I/O ₁₃₅	I/O ₁₃₈	I/O ₁₆₄	I/O ₁₆₅	NC	I/O ₁₈₄	I/O ₁₈₅	I/O ₁₈₆	I/O ₁₈₉	I/O ₁₉₁
T	I/O ₈₂	I/O ₈₁	I/O ₁₁₀	I/O ₁₀₉	NC	I/O ₁₁₆	I/O ₁₁₈	I/O ₁₀₂	I/O ₁₂₁	I/O ₁₃₁	I/O ₁₃₆	I/O ₁₃₉	I/O ₁₅₆	I/O ₁₆₆	I/O ₁₆₇	NC	I/O ₁₅₄	I/O ₁₅₅	I/O ₁₈₇	I/O ₁₉₀
U	I/O ₈₃	NC	GND	I/O ₁₁₁	I/O ₁₁₂	I/O ₁₁₉	I/O ₁₀₄	I/O ₁₀₃	I/O ₁₂₂	GND	GND	I/O ₁₄₀	I/O ₁₅₇	I/O ₁₅₈	I/O ₁₅₀	I/O ₁₅₁	I/O ₁₅₃	GND	NC	I/O ₁₈₈
V	NC	GND	GND	GND	I/O ₁₁₃	I/O ₉₆	I/O ₁₀₅	V _{CC}	I/O ₁₂₃	GND	GND	I/O ₁₄₁	V _{CC}	I/O ₁₅₉	I/O14 4	I/O ₁₅₂	GND	GND	GND	NC
W	GND	GND	GND	NC	I/O ₉₇	I/O ₉₉	I/O ₁₀₆	V _{CC}	I/O ₁₂₄	GND	GND	I/O ₁₄₂	V _{CC}	I/O ₁₆₀	I/O ₁₄₅	I/O ₁₄₇	NC	GND	GND	GND
Υ	GND	GND	NC	I/O ₉₈	I/O ₁₀₀	I/O ₁₀₁	I/O ₁₀₇	V _{CC}	I/O ₁₂₅	GND	GND	I/O ₁₄₃	V _{CC}	I/O ₁₆₁	I/O ₁₄₆	I/O ₁₄₈	I/O ₁₄₉	NC	GND	GND

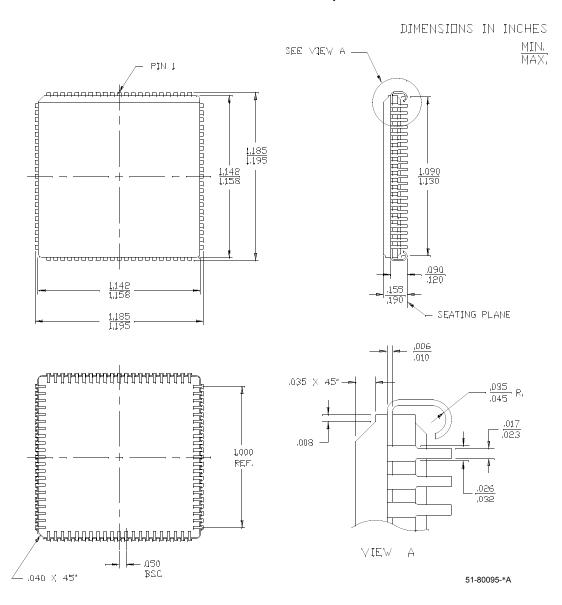
Ordering Information

5.0V Ordering Information

Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
32	200	CY37032P44-200AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032P44-200AXC	A44	44-Lead Lead Free Thin Quad Flat Pack	
		CY37032P44-200JC	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37032P44-200JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	1
	154	CY37032P44-154AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032P44-154JC	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37032P44-154AI	A44	44-Lead Thin Quad Flat Pack	Industrial
		CY37032P44-154AXI	A44	44-Lead Lead Free Thin Quad Flat Pack	1
		CY37032P44-154JI	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37032P44-154JXI	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	
	125	CY37032P44-125AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37032P44-125AXC	A44	44-Lead Lead Free Thin Quad Flat Pack	1
		CY37032P44-125JC	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37032P44-125JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	1
		CY37032P44-125AI	A44	44-Lead Thin Quad Flat Pack	Industrial
		CY37032P44-125JI	J67	44-Lead Plastic Leaded Chip Carrier	1
64	200	CY37064P44-200AC	A44	44-Lead Thin Quad Flat Pack	Commercial
		CY37064P44-200AXC	A44	44-Lead Lead Free Thin Quad Flat Pack	1
		CY37064P44-200JC	J67	44-Lead Plastic Leaded Chip Carrier	1
		CY37064P44-200JXC	J67	44-Lead Lead Free Plastic Leaded Chip Carrier	7
		CY37064P84-200JC	J83	84-Lead Plastic Leaded Chip Carrier	7
		CY37064P100-200AC	A100	100-Lead Thin Quad Flat Pack	1
		CY37064P100-200AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	7

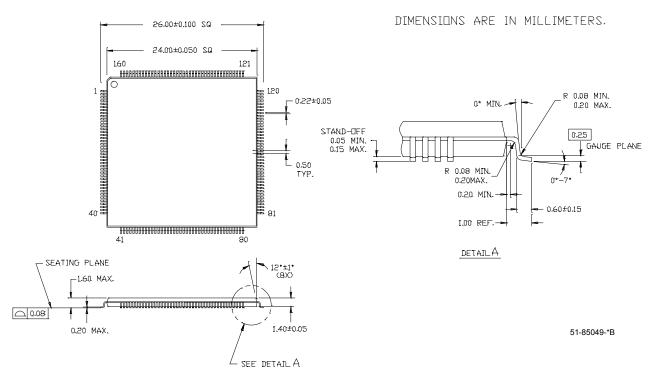
Ultra37000 CPLD Family

5.0V Ordering Information (continued)


Macrocells	Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
128	167	CY37128P84-167JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
		CY37128P84-167JXC	J83	84-Lead Lead Free Plastic Leaded Chip Carrier	1
		CY37128P100-167AC	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-167AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128P160-167AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128P160-167AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
	125	CY37128P84-125JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercia
		CY37128P84-125JXC	J83	84-Lead Lead Free Plastic Leaded Chip Carrier	
		CY37128P100-125AC	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-125AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	1
		CY37128P160-125AC	A160	160-Lead Thin Quad Flat Pack	1
		CY37128P160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	1
		CY37128P84-125JI	J83	84-Lead Plastic Leaded Chip Carrier	Industrial
		CY37128P84-125JXI	J83	84-Lead Lead Free Plastic Leaded Chip Carrier	1
		CY37128P100-125AI	A100	100-Lead Thin Quad Flat Pack	1
		CY37128P100-125AXI	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128P160-125AI	A160	160-Lead Thin Quad Flat Pack	
		CY37128P160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	
		5962-9952102QYA	Y84	84-Lead Ceramic Leaded Chip Carrier	Military
	100	CY37128P84-100JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercia
		CY37128P84-100JXC	J83	84-Lead Lead Free Plastic Leaded Chip Carrier	1
		CY37128P100-100AC	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-100AXC	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128P160-100AC	A160	160-Lead Thin Quad Flat Pack	
		CY37128P160-100AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37128P84-100JI	J83	84-Lead Plastic Leaded Chip Carrier	Industrial
		CY37128P100-100AI	A100	100-Lead Thin Quad Flat Pack	
		CY37128P100-100AXI	A100	100-Lead Lead Free Thin Quad Flat Pack	
		CY37128P160-100AI	A160	160-Lead Thin Quad Flat Pack	
		5962-9952101QYA	Y84	84-Lead Ceramic Leaded Chip Carrier	Military
192	154	CY37192P160-154AC	A160	160-Lead Thin Quad Flat Pack	Commercia
		CY37192P160-154AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
	125	CY37192P160-125AC	A160	160-Lead Thin Quad Flat Pack	Commercia
		CY37192P160-125AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	
		CY37192P160-125AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37192P160-125AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	1
	83	CY37192P160-83AC	A160	160-Lead Thin Quad Flat Pack	Commercia
		CY37192P160-83AXC	A160	160-Lead Lead Free Thin Quad Flat Pack	1
		CY37192P160-83AI	A160	160-Lead Thin Quad Flat Pack	Industrial
		CY37192P160-83AXI	A160	160-Lead Lead Free Thin Quad Flat Pack	†

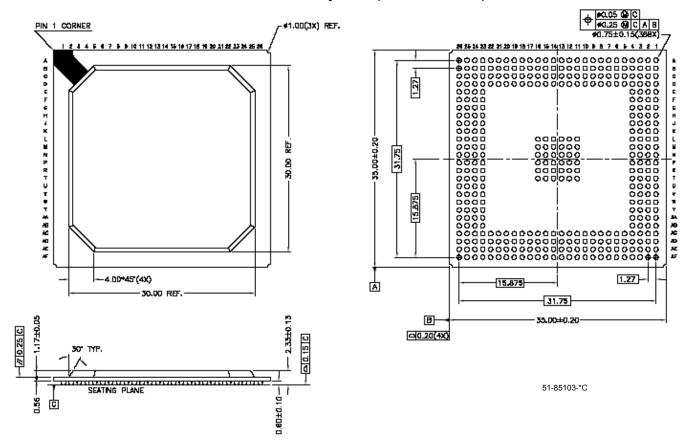
Package Diagrams (continued)

84-Lead Ceramic Leaded Chip Carrier Y84



Package Diagrams (continued)

160-Lead Lead (Pb)-Free Thin Plastic Quad Flat Pack (24 x 24 x 1.4 mm) (TQFP) A160



Package Diagrams (continued)

388-Ball Plastic Ball Grid Array PBGA (35 x 35 x 2.33 mm) BG388

