

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	26MHz
Connectivity	I ² C, SCI
Peripherals	POR, PWM, WDT
Number of I/O	104
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LFBGA
Supplier Device Package	176-LFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2506br26dv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 2 CPU

Origin of			Vector Address*		
Interrupt Source	Interrupt Source	Vector Number	Advanced Mode	- IPR	Priority
SCI channel 2	TXI2 (transmit data empty 2)	90	H'0168	IPRK2 to IPRK0	High
	TEI2 (transmit end 2)	91	H'016C	_	≜
8-bit timer	CMIA2 (compare-match A2)	92	H'0170	IPRL6 to IPRL4	_
channel 2	CMIB2 (compare-match B2)	93	H'0174	-	
	OVI2 (overflow 2)	94	H'0178	-	
_	Reserved	95	H'017C	-	
8-bit timer	CMIA3 (compare-match A3)	96	H'0180	-	
channel 3	CMIB3 (compare-match B3)	97	H'0184	-	
	OVI3 (overflow 3)	98	H'0188	-	
	Reserved	99	H'018C	-	
IEB	IERSI (reception status)	104	H'01A0	IPRM6 to IPRM4	-
(H8S/2552 Group only)	IERxI (RxRDY)	105	H'01A4	-	
Group only)	IETxI (TxRDY)	106	H'01A8	-	
	IETSI (transmission status)	107	H'01AC	-	
HCAN	ERS0, OVR0, RM1, SLE0	108	H'01B0	IPRM2 to IPRM0	-
(H8S/2556 Group only)	RM0	109	H'01B4	-	
IIC2 channel 0	IICI0 (1-byte transmission/ reception completion)	110	H'01B8	-	
IIC2 channel 1	IICI1 (1-byte transmission/ reception completion)	111	H'01BC	-	
SCI channel 3	ERI3 (receive error 3)	120	H'01E0	IPRO6 to IPRO4	-
	RXI3 (receive completion 3)	121	H'01E4	-	
	TXI3 (transmit data empty 3)	122	H'01E8	-	
	TEI3 (transmit end 3)	123	H'01EC	-	
SCI channel 4	ERI4 (receive error 4)	124	H'01F0	IPRO2 to IPRO0	-
	RXI4 (receive completion 4)	125	H'01F4	_	
	TXI4 (transmit data empty 4)	126	H'01F8	_	Ļ
	TEI4 (transmit end 4)	127	H'01FC	-	Low

RENESAS

Note: * Indicates lower 16 bits of the start address.

7.2 Input/Output Pins

Table 7.1 summarizes the pins of the bus controller.

Table 7.1Pin Configuration

Name	Symbol	I/O	Function
Address strove	ĀS	Output	Strobe signal indicating that address output on address bus is enabled.
Read	RD	Output	Strobe signal indicating that external address space is being read.
High write	HWR	Output	Strobe signal indicating that external address space is to be written, and upper half (D15 to D8) of data bus is enabled.
Low write	LWR	Output	Strobe signal indicating that external address space is to be written, and lower half (D7 to D0) of data bus is enabled.
Chip select 0 to 7	$\overline{\text{CS0}}$ to $\overline{\text{CS7}}*$	Output	Strobe signal indicating that areas 0 to 7 are selected.
Wait	WAIT	Input	Wait request signal when accessing external 3-state access space.
Bus mastership request	BREQ	Input	Request signal that releases bus to external device.
Bus mastership request acknowledge	BACK	Output	Acknowledge signal indicating that bus has been released.

Note: * $\overline{\text{CS1}}$ and $\overline{\text{CS2}}$ are not provided in the H8S/2556 Group.

7.3 **Register Descriptions**

The bus controller has the following registers.

- Bus width control register (ABWCR)
- Access state control register (ASTCR)
- Wait control register H (WCRH)
- Wait control register L (WCRL)
- Bus control register H (BCRH)
- Bus control register L (BCRL)
- Pin function control register (PFCR)

7.3.3 Wait Control Registers H and L (WCRH, WCRL)

WCRH and WCRL select the number of program wait states for each area.

Program wait states are not inserted in the case of on-chip memory or internal I/O registers.

• WCRH

		Initial		
Bit	Bit Name	Value	R/W	Description
7	W71	1	R/W	Area 7 Wait Control 1 and 0
6	W70	1	R/W	These bits select the number of program wait states when area 7 in external address space is accessed while the AST7 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted
5	W61	1	R/W	Area 6 Wait Control 1 and 0
4	W60	1	R/W	These bits select the number of program wait states when area 6 in external address space is accessed while the AST6 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted
3	W51	1	R/W	Area 5 Wait Control 1 and 0
2	W50	1	R/W	These bits select the number of program wait states when area 5 in external address space is accessed while the AST5 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted

Write after Read: If an external write occurs after an external read while the ICIS0 bit in BCRH is set to 1, an idle cycle is inserted at the start of the write cycle.

Figure 7.28 shows an example of the operation in this case. In this example, bus cycle A is a read cycle from ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented.

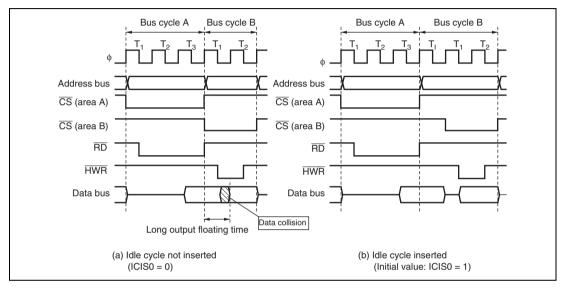
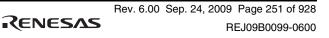


Figure 7.28 Example of Idle Cycle Operation (2)

9.13 Port F

Port F is an 8-bit I/O port and has the following registers.


- Port F data direction register (PFDDR)
- Port F data register (PFDR)
- Port F register (PORTF)

9.13.1 Port F Data Direction Register (PFDDR)

PFDDR specifies input or output the port F pins using the individual bits. PFDDR cannot be read; if it is, the read value is undefined. Since this register is a write-only register, bit-manipulation instructions should not be used when writing. See section 2.9.4, Access Method for Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	PF7DDR	0/1*	W	When a pin is specified as a general purpose I/O
6	PF6DDR	0	W	port, setting this bit to 1 makes the corresponding port F pin an output pin. Clearing this bit to 0 makes
5	PF5DDR	0	W	the pin an input pin.
4	PF4DDR	0	W	
3	PF3DDR	0	W	
2	PF2DDR	0	W	
1	PF1DDR	0	W	
0	PF0DDR	0	W	

Note: * PF7DDR is initialized to 1 in mode 6 and 0 in mode 7.

10.3.1 Timer Control Register (TCR)

The TCR registers control the TCNT operation for each channel. The TPU has a total of six TCR registers, one for each channel (channels 0 to 5). TCR register settings should be conducted only when TCNT operation is stopped.

Bit	Bit Name	Initial value	R/W	Description
7	CCLR2	0	R/W	Counter Clear 2 to 0
6	CCLR1	0	R/W	These bits select the TCNT counter clearing source. See
5	CCLR0	0	R/W	tables 10.3 and 10.4 for details.
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	These bits select the input clock edge. When the input clock is counted using both edges, the input clock period is halved (e.g. $\phi/4$ both edges = $\phi/2$ rising edge). If phase counting mode is used on channels 1, 2, 4, and 5, this setting is ignored and the phase counting mode setting has priority. Internal clock edge selection is valid when the input clock is $\phi/4$ or slower. This setting is ignored if the input clock is $\phi/4$, or when overflow/underflow of another channel is selected. (The clock is counted at the falling edge when $\phi/1$ is selected.)
				00: Count at rising edge
				01: Count at falling edge
				1X: Count at both edges
				Legend: X: Don't care
2	TPSC2	0	R/W	Time Prescaler 2 to 0
1	TPSC1	0	R/W	These bits select the TCNT counter clock. The clock
0	TPSC0	0	R/W	source can be selected independently for each channel. See tables 10.5 to 10.10 for details.

• TIORH_0, TIOR_1, TIOR_2, TIORH_3, TIOR_4, TIOR_5

Bit	Bit Name	Initial value	R/W	Description
7	IOB3	0	R/W	I/O Control B3 to B0
6	IOB2	0	R/W	Specify the function of TGRB. See tables 10.12, 10.14,
5	IOB1	0	R/W	10.15, 10.16, 10.18, and 10.19 for details.
4	IOB0	0	R/W	
3	IOA3	0	R/W	I/O Control A3 to A0
2	IOA2	0	R/W	Specify the function of TGRA. See tables 10.20, 10,22,
1	IOA1	0	R/W	10.23, 10.24, 10.26, and 10.27 for details.
0	IOA0	0	R/W	

• TIORL_0, TIORL_3

Bit	Bit Name	Initial value	R/W	Description
7	IOD3	0	R/W	I/O Control D3 to D0
6	IOD2	0	R/W	Specify the function of TGRD. See tables 10.13, and 10.17
5	IOD1	0	R/W	for details.
4	IOD0	0	R/W	
3	IOC3	0	R/W	I/O Control C3 to C0
2	IOC2	0	R/W	Specify the function of TGRC. See tables 10.21, and 10.25
1	IOC1	0	R/W	for details.
0	IOC0	0	R/W	



Figure 10.23 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode.

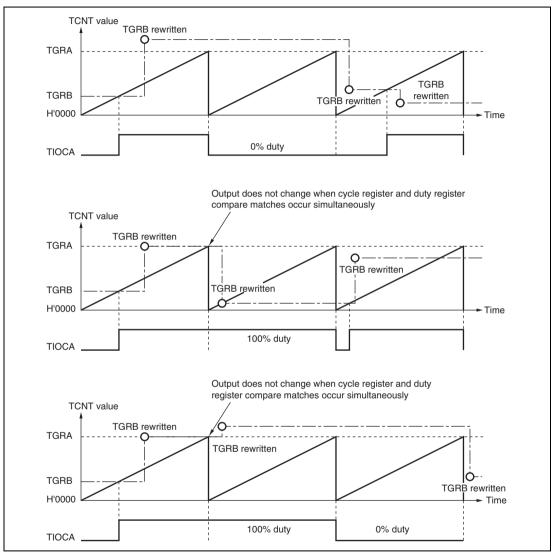
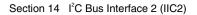



Figure 10.23 Example of PWM Mode Operation (3)

Bit	Bit Name	Initial Value	R/W	Description
7	ICE	0	R/W	I ² C Bus Interface Enable
				0: This module is halted. (SCL and SDA pins are set to port function.)
				1: This bit is enabled for transfer operations. (SCL and SDA pins are bus drive state.)
6	RCVD	0	R/W	Reception Disable
				This bit enables or disables the next receive operation while TRS is 0 and until ICDRR is read.
				0: Enables next reception
				1: Disables next reception
5	MST	0	R/W	Master/Slave Select
4	TRS	0	R/W	Transmit/Receive Select
				In master mode with the I ² C bus format, when arbitration is lost, MST and TRS are both reset by hardware, causing a transition to slave receive mode. Modification of the TRS bit should be made between transfer frames.
				After data receive has been started in slave receive mode, when the first seven bits of the receive data agree with the slave address that is set to SAR and the eighth bit is 1, TRS is automatically set to 1. If an overrun error occurs in master mode with the clock synchronous serial format, MST is cleared to 0 and slave receive mode is entered.
				Operating modes are described below according to MST and TRS combination. When clocked synchronous serial format is selected and MST is 1, clock is output.
				00: Slave receive mode
				01: Slave transmit mode
				10: Master receive mode
				11: Master transmit mode
3	CKS3	0	R/W	Transfer Clock Select 3 to 0
2	CKS2	0	R/W	Set these bits according to the necessary transfer rate in
1	CKS1	0	R/W	master mode (see table 14.2). During slave mode, these bits are specified to ensure enough time for data setup in
0	CKS0	0	R/W	transmit mode. When CKS3 is 0, the time is 10 tcyc, and CKS3 is 1, 20 tcyc.

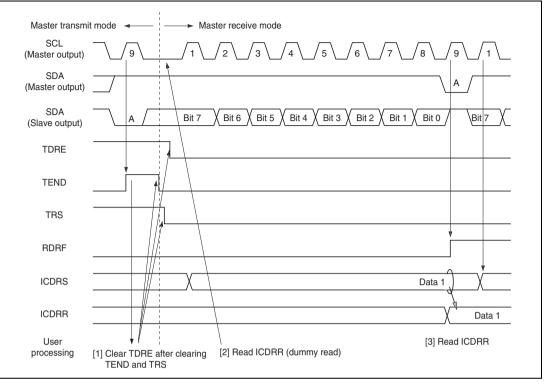


Figure 14.7 Master Receive Mode Operation Timing (1)

17.3.4 IEBus Master Unit Address Register 1 (IEAR1)

IEAR1 sets the lower 4 bits of the master unit address and communications mode. In master communications, the master unit address becomes the master address field value. In slave communications, the master unit address is compared with the received slave address field.

Bit	Bit Name	Initial Value	R/W	Description
BIL	Bit Name	value	R/W	Description
7	IAR3	0	R/W	Lower 4 Bits of IEBus Master Unit Address
6	IAR2	0	R/W	Set the lower 4 bits of the master unit address.
5	IAR1	0	R/W	
4	IAR0	0	R/W	
3	IMD1	0	R/W	IEBus Communications Mode
2	IMD0	0	R/W	Set IEBus communications mode.
				00: Communications mode 0
				01: Communications mode 1
				10: Communications mode 2
				11: Setting prohibited
1	_	0		Reserved
				This bit is always read as 0 and cannot be modified.
0	STE	0	R/W	Slave Transmission Setting
				Sets bit 4 in the slave status register. Transmitting the slave status register informs the master unit that the slave transmission enabled state is entered by setting this bit to 1. Note that this bit only sets the slave status register value and does not affect slave transmission directly.
				0: Bit 4 in the slave status register is 0 (slave transmission stop state)
				1: Bit 4 in the slave status register is 1 (slave transmission enabled state)

(4) RO Flag

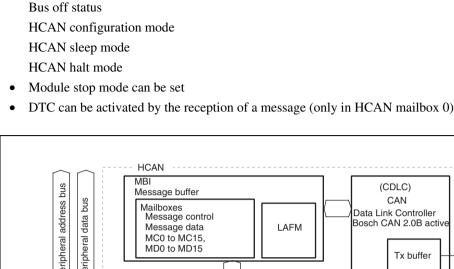
When retransfer is performed up to the maximum number of transfer bytes defined by the protocol because of reception of a NAK from the receive side during data field transmission, the number of transferred bytes may be less than that of bytes specified by the message length. At this time the RO flag is set. Moreover, when the value of the message length bits is greater than the maximum number of transfer bytes, the RO flag is also set. The RO flag is not set if the maximum number of transfer bytes defined by the protocol is specified (for example, 32-byte message length is specified in mode 1) and the transfer is performed correctly.

If the RO flag is set to 1, the TxE flag is set to 1 and the wait state is entered.

(5) ACK Flag

- If a NAK is received in an acknowledge bit before the message length field transmission, the ACK flag is set, the TxE flag is set, and then the wait state is entered.
- If a NAK is received in an acknowledge bit of the data field, data is automatically retransmitted up to the maximum number of transfer bytes defined by the protocol. If an ACK is received in an acknowledge bit during retransfer and the following data is transmitted correctly, the ACK flag is not set. If a NAK is received in the last data transfer during the retransfer for the maximum number of transfer bytes, the ACK flag is set to 1 and the wait state is entered.
- Note: Even if a NAK is received from the receive side during the data field transmission, retransfer is performed up to the maximum number of transfer bytes defined by the protocol, and the number of transferred bytes is less than that of bytes specified by the message length bits, an ACK may be received in the acknowledge bit in the last data transfer. In this case, the ACK flag is not set although the RO flag is set.

17.6.5 Error Flags in IEREF


(1) OVE Flag

When the OVE flag is set, the RxE flag is also set. If an overrun error is cleared and the OVE flag is also cleared, the IEBus receive operation is continued. For details, see section 17.6.3, RxRDY Flag and Overrun Error.

(2) RTME Flag

If a timing error occurs during data reception after reception starts (the RxS flag is set to 1), the RTME flag is set to 1, RxE flag is set to 1, and the wait state is entered. When a timing error occurs before reception starts, this flag is not set and the reception frame is discarded.

RENESAS

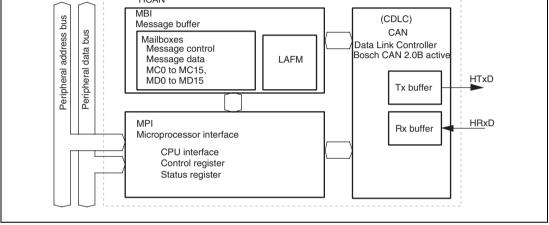


Figure 18.1 HCAN Block Diagram

• Message Buffer Interface (MBI)

The MBI, consisting of mailboxes and a local acceptance filter mask (LAFM), stores CAN transmit/receive messages (identifiers, data, etc.) Transmit messages are written by the CPU. For receive messages, the data received by the CDLC is stored automatically.

• Microprocessor Interface (MPI)

The MPI, consisting of a bus interface, control register, status register, etc., controls HCAN internal data, status, and so forth.

• CAN Data Link Controller (CDLC)

The CDLC transmits and receives of messages conforming to the Bosch CAN Ver. 2.0B active standard (data frames, remote frames, error frames, overload frames, inter-frame spacing), as well as CRC checking, bus arbitration, and other functions.

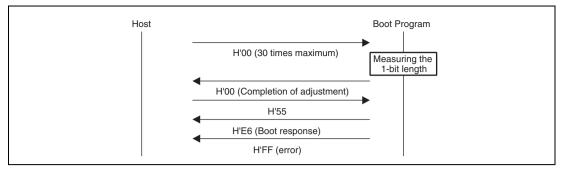


Figure 20.24 Bit-Rate-Adjustment Sequence

(3) Communications Protocol

After adjustment of the bit rate, the protocol for communications between the host and the boot program is as shown below.

1. One-byte commands and one-byte responses

These commands and responses are comprised of a single byte. These are consists of the inquiries and the ACK for successful completion.

2. n-byte commands or n-byte responses

These commands and responses are comprised of n bytes of data. These are selections and responses to inquiries.

The amount of programming data is not included under this heading because it is determined in another command.

3. Error response

The error response is a response to inquiries that consists of an error response and an error code. The response comes in two bytes.

4. Programming of 128 bytes

The size is not specified in commands. The size of n is indicated in response to the programming unit inquiry.

5. Memory read response

This response consists of four bytes of data.

• SUM (one byte): Sum check for data being transmitted

(14) User-Program Sum Check

The boot program will return the byte-by-byte total of the contents of the bytes of the user program.

Command H'4B

• Command, H'4B, (one byte): Sum check for user program

Response	H'5B	Size	Checksum of user program	SUM

- Response, H'5B, (one byte): Response to the sum check of the user program
- Size (one byte): The number of bytes that represents the checksum This is fixed to 4.
- Checksum of user boot program (four bytes): Checksum of user MATs The total of the data is obtained in byte units.
- SUM (one byte): Sum check for data being transmitted

(15) User Boot MAT Blank Check

The boot program will check whether or not all user boot MATs are blank and return the result.

Command H'4C

• Command, H'4C, (one byte): Blank check for user boot MAT

Response H'06

• Response, H'06, (one byte): Response to the blank check of user boot MAT If all user MATs are blank (H'FF), the boot program will return ACK.

Error Response

H'CC H'52

- Error Response, H'CC, (one byte): Response to blank check for user boot MAT
- Error Code, H'52, (one byte): Erasure has not been completed.

(16) User MAT Blank Check

The boot program will check whether or not all user MATs are blank and return the result.

Command H'4D

• Command, H'4D, (one byte): Blank check for user MATs

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TCSR_0	OVF	WT / ĪT	TME	_	_	CKS2	CKS1	CKS0	WDT_0
TCNT_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
RSTCSR	WOVF	RSTE	RSTS	_	_	_	_	_	-
SMR_0*1	C/Ā (GM)	CHR (BLK)	PE (PE)	0/Ē (0/Ē)	STOP (BCP1)	MP (BCP0)	CKS1 (CKS1)	CKS0 (CKS0)	SCI_0
BRR_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCR_0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SSR_0*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	-
RDR_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
SCMR_0	_	_	_		SDIR	SINV	_	SMIF	-
SMR_1*1	C/Ā (GM)	CHR (BLK)	PE (PE)	O/Ē (O/Ē)	STOP (BCP1)	MP (BCP0)	CKS1 (CKS1)	CKS0 (CKS0)	SCI_1
BRR_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCR_1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
TDR_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
SSR_1*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	_
RDR_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
SCMR_1	_	_	_	_	SDIR	SINV	_	SMIF	-
SMR_2*1	C/Ā (GM)	CHR (BLK)	PE (PE)	0/Ē (0/Ē)	STOP (BCP1)	MP (BCP0)	CKS1 (CKS1)	CKS0 (CKS0)	SCI_2
BRR_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCR_2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SSR_2*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	-
RDR_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCMR_2	_	_	_	_	SDIR	SINV		SMIF	-

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
ADDRAH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D
ADDRAL	AD1	AD0	_		—		_	_	converter
ADDRBH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_
ADDRBL	AD1	AD0	_						_
ADDRCH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_
ADDRCL	AD1	AD0	_	_	_			_	_
ADDRDH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_
ADDRDL	AD1	AD0	_	_	_			_	_
ADCSR	ADF	ADIE	ADST	SCAN	СНЗ	CH2	CH1	CH0	_
ADCR	TRGS1	TRGS0	_	_	CKS1	CKS0	_	_	_
TCSR_1	OVF	WT/IT	TME	PSS	RST/NMI	CKS2	CKS1	CKS0	WDT_1
TCNT_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
FCCS	_	_	_	FLER	_	_	_	SCO	FLASH
FPCS	_	_	_	_	_			PPVS	-
FECS	_	_	_	_	_	_	_	EPVB	_
FKEY	K7	K6	K5	K4	K3	K2	K1	K0	_
FMATS	MS7	MS6	MS5	MS4	MS3	MS2	MS1	MS0	_
FTDAR	TDER	TDA6	TDA5	TDA4	TDA3	TDA2	TDA1	TDA0	_
FVACR	FVCHGE		_	_	_	_	_	_	_
FVADRR	Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24	_
FVADRE	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16	_
FVADRH	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
FVADRL	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
PORT1	P17	P16	P15	P14	P13	P12	P11	P10	PORT
PORT2	P27	P26	P25	P24	P23	P22	P21	P20	_
PORT3	P37	P36	P35	P34	P33	P32	P31	P30	_
PORT4	P47	P46	P45	P44	P43	P42	P41	P40	
PORT5	_	_	_	_	_	P52	P51	P50	_
PORT7	P77	P76	P75	P74	P73	P72	P71	P70	_
PORT9	P97	P96	P95	P94	P93	P92	P91	P90	_
PORTA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	_

RENESAS

Item	Symbo	ol Min.	Max.	Unit	Test Conditions
NMI setup time	t _{nmis}	250	_	ns	Figure 24.8
NMI hold time	t _{nmin}	10	_	ns	
NMI pulse width (exiting software standby mode)	t _{nmiw}	200	—	ns	
IRQ setup time	t _{irqs}	250	_	ns	
IRQ hold time	t _{irqh}	10	_	ns	
IRQ pulse width (exiting software standby mode)	t _{iRQW}	200	_	ns	

Note: * The regular specifications are supported in the H8S/2506 Group only.

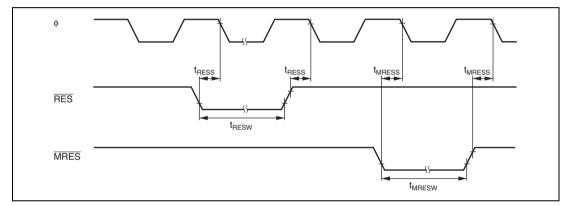


Figure 24.7 Reset Input Timing

Appendix

