

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

-XF

Product Status	Active
Core Processor	ARM® Cortex®-A5 + Cortex®-M4
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	400MHz, 133MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR2, DDR3, DRAM
Graphics Acceleration	Yes
Display & Interface Controllers	DCU, GPU, LCD, VideoADC, VIU
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 OTG + PHY (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	ARM TZ, Hashing, RNG, RTC, RTIC, Secure JTAG, SNVS, TZ ASC, TZ WDOG
Package / Case	364-LFBGA
Supplier Device Package	364-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/svf522r3k2cmk4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Parameter	Drive strength ¹	Min	Тур	Мах	Unit
		100	30	37	58	
		101	24	30	46	
		110	20	25	38	
		Extra drive strength				
		111	17	20	32	

Table 22. Output Buffer Average Impedance (3.3V power mode) (continued)

1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX Controller chapter of the device reference manual.

7.2 DDR parameters

Table 23. DDR operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
vddi	Core internal supply voltage	1.16	1.23	1.26	V
ovdd	I/O output supply voltage (DDR3 mode)	1.425	1.5	1.575	V
ovdd	I/O output supply voltage (LPDDR2 mode)	1.14	1.2	1.26	V
vdd2p5	I/O PD predriver and level shifters supply voltage	2.25	2.5	2.75	V

Table 24. LPDDR2 mode DC Electrical characteristics

Symbol	Parameter	Test condition	Min	Тур	Max	Unit	Notes
Voh	High-level output voltage		0.9*ovdd			V	Note that the JEDEC
Vol	Low-level output voltage				0.1*ovdd	V	LPDDR2 specification
Vref	Input reference voltage		0.49*ovdd	0.5*ovdd	0.51*ovdd	V	(JESD209_28) supersedes any specification in this document.
Vih(dc)	DC input high voltage		Vref+0.13		ovdd	V	
Vil(dc)	DC input low voltage		OVSS		Vref-0.13	V	
Vih(diff)	DC differential input logic high		0.26		Note ¹	V	
Vil(diff)	DC differential input logic low		Note		-0.26	V	

Table continues on the next page ...

Symbol	Parameter	Test condition	Min	Тур	Max	Unit	Notes
Tri-state I/O supply current ³	lcc-ovdd	Vin = ovdd or 0			5		
Tri-state vdd2p5 supply current ³	lcc-vdd2p5	Vi = vddi or 0			1.5		
Tri-state core supply current ³	Icc-vddi				1		
Driver unit (240 Ohm) calibration resolution	Rres				10	Ohm	

Table 25. DDR3 mode DC Electrical characteristics (continued)

- 1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.
- 2. Vtt is expected to track ovdd/2.
- 3. Typ condition: typ model, 1.5 V, and 25 °C. Max condition: bcs model, 1.575V, and -40 °C. Min condition: wcs model, 1.425V, and max Tj °C 125 °C junction

Table 26.	LPDDR2 mode	AC Electrical	characteristics
-----------	-------------	----------------------	-----------------

Symbol	Parameter	Test condition	Min	Max	Unit	Notes
Vih(ac)	AC input logic high		Vref+0.22	ovdd	V	Note that the Jedec LPDDR2
Vil(ac)	AC input logic low			Vref-0.22	V	specification (JESD209-2B)
Vidh(ac)	AC differential input high voltage		0.44	-	V	specification in this document.
Vidl(ac) ¹	AC differential input low voltage			0.44	V	
Vix(ac) ²	AC differential input crosspoint voltage	Relative to ovdd/2	-0.12	0.12	V	-
Vpeak	Over/undershoot peak			0.35	V	
Varea	Over/undershoot area (above ovdd or below ovss)	at 800MHz data rate		0.3	V*ns	
tsr	Single output slew rate		0.4	2	V/ns	
tskd	Skew between pad rise/fall asymmetry + skew cased by SSN			0.2	ns	

rower supplies and sequencing

- 1. Vid(ac) specifies the input differential voltage IVtr-Vcpl required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac)-Vil(ac).
- 2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac) indicates the voltage at which differential input signal must cross.

Symbol	Parameter	Test condition	Min	Max	Unit	Notes
Vih(ac)	AC input logic high		Vref+0.175	ovdd	V	Note that the JEDEC
Vil(ac)	AC input logic low		ovss	Vref-0.175	V	JESD79_3E specification
Vidh(ac)	AC differential input high voltage		0.35	-	V	specification in this document
Vidl(ac) ¹	AC differential input low voltage		0.35		V	
Vix(ac) ²	AC differential input crosspoint voltage	relative to ovdd/2	Vref-0.15	Vref+0.15	V	-
Vpeak	Over/undershoot peak			0.4	V	
Varea	Over/undershoot area (above ovdd or below ovss)	at 800 MHz data rate		0.5	V*ns	
tsr	Single output slew rate		0.4	2	V/ns	
tskd	Skew between pad rise/fall asymmetry + skew cased by SSN			0.2	ns	

Table 27. DDR3 mode AC Electrical characteristics

1. Vid(ac) specifies the input differential voltage IVtr-Vcpl required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac)-Vil(ac).

2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac) indicates the voltage at which differential input signal must cross.

8 Power supplies and sequencing

8.1 Power sequencing

Fable 28.	Power	sequencing
-----------	-------	------------

Power Supply (PKG Level)	Board Level Power Nets	Parameters	Power Order	Comment
VBAT	VBAT	Battery supply in case of LDOIN fails	NA	

Table continues on the next page ...

Characteristic	Conditions	Symb	Min	Тур	Max	Unit	Comment
				1			
Analog Source Resistance	12 bit mode f _{ADCK} = 40MHz ADLSMP=0, ADSTS=10, ADHSC=1	R _{AS}	-	-	1	kohms	T _{samp} =150 ns
R _{AS} depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum Sample Time vs R _{AS}							
ADC Conversion Clock Frequency	ADLPC=0, ADHSC=1 12 bit mode	f _{ADCK}	4	-	40	MHz	-
	ADLPC=0, ADHSC=0 12 bit mode		4	-	30	MHz	-
	ADLPC=1, ADHSC=0 12 bit mode		4	-	20	MHz	-

Table 31. 12-bit ADC Operating Conditions (continued)

- Typical values assume VDDAD = 3.3 V, Temp = 25°C, f_{ADCK}=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. DC potential difference

Figure 5. 12-bit ADC Input Impedance Equivalency Diagram

NOTE

The ADC electrical spec would be met with the calibration enabled configuration.

Figure 6. Minimum Sample Time Vs Ras (Cas = 2pF)

Figure 7. Minimum Sample Time Vs Ras (Cas = 5pF)

Table 51.	QuadSPI Output/Write timing (DDR mode)
-----------	--

Symbol	Parameter	Va	lue	Unit
		Min	Max	
T _{ov}	Output Data Valid	—	3.2	ns
T _{oh}	Output Data Hold	0	—	ns
T _{ck}	SCK clock period	-	45	MHz
T _{css}	Chip select output setup time	3	-	Clk(sck)
T _{csh}	Chip select output hold time	3	-	Clk(sck)

9.5.2 NFC specifications

The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC.

In the following table:

- T_H is the flash clock high time and
- T_L is flash clock low time,

which are defined as:

 $T_{\rm NFC} = T_{\rm H} + T_{\rm L}$

NOTE

Refer to the Reference Manual for further details on setting up the NFC clocks (CCM_CSCDR2[NFC_FRAC_DIV_EN + NFC_FRAC_DIV] and CCM_CSCDR3[NFC_PRE_DIV]).

9.5.4.2 DDR3 Read Cycle

Figure 42. DDR3 Read Cycle

Table 55. DDR3 Read Cycle

ID	Parameter	Symbol	CK = 4	00 MHz	Unit
			Min	Max	
DDR26	Minimum required DQ valid window width	-	750	-	ps

NOTE

To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window.

NOTE

All measurements are in reference to Vref level.

NOTE

Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF

9.6 Communication interfaces

9.6.1 MediaLB (MLB) DC Characteristics

The section lists the MediaLB 3-pin interface electrical characteristics.

Parameter	Symbol	Test Conditions	Min	Max	Unit
Maximum input voltage	—	—	—	3.6	V
Low level input threshold	V _{IL}	_	—	0.7	V
High level input threshold	V _{IH}	See Note ¹	1.8	_	V
Low level output threshold	V _{OL}	$I_{OL} = -6 \text{ mA}$	—	0.4	V
High level output threshold	V _{OH}	I _{OH} = –6 mA	2.0	_	V
Input leakage current	IL	0 < Vin < VDD	—	±10	μA

Table 60. MediaLB 3-Pin Interface Electrical DC Specifications

1. Higher V_{H} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

9.6.2 MediaLB (MLB) Controller AC Timing Electrical Specifications

This section describes the timing electrical information of the MediaLB module.

Figure 47. MediaLB 3-PinTiming

Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK operating frequency	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz, 512xFs at 50.0 kHz
MLBCLK rise time	t _{mck} r	Refer Tabl	e 21	ns	V _{IL to VIH}
MLBCLK fall time	t _{mck} f			ns	V _{IH to V_{IL}}
MLBCLK low time ¹	t _{mck} l	30, 14	—	ns	256xFs, 512xFs
MLBCLK high time	t _{mck} h	30, 14	—	ns	256xFs, 512xFs
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	3		ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	2	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	16	ns	2
Bus output hold from MLBCLK low	t _{mdzh}	2	—	ns	—

Table 61.	MLB 256/512	Fs Timing	Parameters
-----------	-------------	------------------	------------

1. MLBCLK low/high time includes the pluse width variation.

9.6.5 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. A load of 50 pF is assumed.

Num	Symbol	Description	Min.	Max.	Unit
		Operating voltage	1.71	3.6	V
		Card input clock			
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	—	ns
SD4	t _{TLH}	Clock rise time	—	3	ns
SD5	t _{THL}	Clock fall time	—	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	4	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT	reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5	—	ns
SD8	t _{IH}	SDHC input hold time	0	_	ns

Table 66. SDHC switching specifications

Figure 53. SDHC timing

9.6.6 USB PHY specifications

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
 - Revision 2.0 plus errata and ecn June 4, 2010
- Battery Charging Specification (available from USB-IF)
 - Revision 1.2, December 7, 2010

9.7 Clocks and PLL Specifications

9.7.1 24 MHz Oscillator Specifications

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used. The crystal must be rated for a drive level of 250 μ W or higher. An ESR (equivalent series resistance) of 80 Ω or less is recommended to achieve a gain margin of 5.

Symbol	Parameter	Condition		Value	Unit	
			Min	Тур	Max	
f _{osc}	Crystal oscillator range	—	_	24	_	MHz
I _{osc}	Startup current	_	_	< 5	—	mA
t _{uposc}	Oscillator startup time	_	_	< 5	_	ms

 Table 67. 24MHz external oscillator electrical characteristics

Table continues on the next page...

9.8 Debug specifications

9.8.1 JTAG electricals

Table 76. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	-	25	
	JTAG and CJTAG	-	25	
	Serial Wire Debug	-	25	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	20	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	20	_	ns
J4	TCLK rise and fall times	Refer T	able 21	ns
J5	Boundary scan input data setup time to TCLK rise	8	—	ns
J6	Boundary scan input data hold time after TCLK rise	1.3		ns
J7	TCLK low to boundary scan output data valid	—	17	ns
J8	TCLK low to boundary scan output high-Z	—	17	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1.3		ns
J11	TCLK low to TDO data valid	_	17	ns
J12	TCLK low to TDO high-Z		17	ns

NOTE

Input transition (1ns), output load (25 pf) and SRE (000), DSE (111), FSEL(011).

Figure 54. Test clock input timing

364	176	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
MAP Bga	LQFP											
B14	162	PTB14		PTB14	CAN0_RX	I2C0_SCL		DCU0_ TCON8			DCU1_PCLK	
A14	161	PTB15		PTB15	CAN0_TX	I2C0_SDA		DCU0_ TCON9			VIU_PIX_ CLK	
C14	163	PTB16		PTB16	CAN1_RX	I2C1_SCL		DCU0_ TCON10				
A15	160	PTB17		PTB17	CAN1_TX	I2C1_SDA		DCU0_ TCON11				
B12	171	PTB18		PTB18	SPI0_PCS1	EXT_AUDIO_ MCLK				VIU_DATA9	CCM_OBS0	
C13	167	PTB19		PTB19	SPI0_PCS0					VIU_DATA10	CCM_OBS1	
A13	169	PTB20		PTB20	SPI0_SIN			LCD42		VIU_DATA11	CCM_OBS2	
E12	173	PTB21		PTB21	SPI0_SOUT			LCD43		VIU_DATA12	DCU1_PCLK	
D12	172	PTB22		PTB22	SPI0_SCK				VIU_FID			
V10	61	USB0_GND			USB0_GND							
T10	63	USB0_DP			USB0_DP							
T9	62	USB0_DM			USB0_DM							
W11	60	USB0_VBUS			USB0_VBUS							
Y10	59	USB_DCAP			USB_DCAP							
Y11	64	USB0_ VBUS_ DETECT			USB0_ VBUS_ DETECT							
Y9	_	USB1_GND			USB1_GND							
W9	_	USB1_DP			USB1_DP							
V9	_	USB1_DM			USB1_DM							
W10	_	USB1_VBUS			USB1_VBUS							
U9	-	USB1_ VBUS_ DETECT			USB1_ VBUS_ DETECT							
L4	8	PTC0		PTC0	RMII0_MDC/ MII0_MDC	FTM1CH0	SPI0_PCS3	ESAI_SCKT	SDHC0_CLK	VIU_DATA0	RCON18	
L5	9	PTC1		PTC1	RMII0_MDIO/ MII0_MDC	FTM1CH1	SPI0_PCS2	ESAI_FST	SDHC0_CMD	VIU_DATA1	RCON19	
M5	11	PTC2		PTC2	RMII0_CRS_ DV	SCI1_TX		ESAI_SDO0	SDHC0_ DAT0	VIU_DATA2	RCON20	
M3	12	PTC3		PTC3	RMII0_RXD1/ MII0_RXD[1]	SCI1_RX		ESAI_SDO1	SDHC0_ DAT1	VIU_DATA3	DCU0_R0	
L2	14	PTC4		PTC4	RMII0_RXD0/ MII0_RXD[0]	SCI1_RTS	SPI1_PCS1	ESAI_SDO2/ ESAI_SDI3	SDHC0_ DAT2	VIU_DATA4	DCU0_R1	
M1	15	PTC5		PTC5	RMII0_RXER/ MII0_RXER	SCI1_CTS	SPI1_PCS0	ESAI_SDO3/ ESAI_SDI2	SDHC0_ DAT3	VIU_DATA5	DCU0_G0	
N1	16	PTC6		PTC6	RMII0_TXD1/ MII0_TXD[1]		SPI1_SIN	ESAI_SDO5/ ESAI_SDI0	SDHC0_WP	VIU_DATA6	DCU0_G1	
N2	17	PTC7		PTC7	RMII0_TXD0/ MII0_TXD[0]		SPI1_SOUT	ESAI_SDO4/ ESAI_SDI1		VIU_DATA7	DCU0_B0	

rmouts

364 MAP BGA	176 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
T17	140	VDD33			VDD33							
C18	146	VDD33			VDD33							
F18	158	VDD33			VDD33							
W18	168	VDD33			VDD33							
H7	_	VSS			VSS							
K7	74	VSS			VSS							
M7	82	VSS			VSS							
P7	96	VSS			VSS							
G8	107	VSS			VSS							
J8	_	VSS			VSS							
L8	139	VSS			VSS							
N8	-	VSS			VSS							
H9	157	VSS			VSS							
J9	175	VSS			VSS							
K9	176	VSS			VSS							
L9	-	VSS			VSS							
M9	-	VSS			VSS							
P9	-	VSS			VSS							
G10	_	VSS			VSS							
J10	_	VSS			VSS							
K10	_	VSS			VSS							
L10	_	VSS			VSS							
M10	_	VSS			VSS							
N10	-	VSS			VSS							
H11	-	VSS			VSS							
J11	-	VSS			VSS							
K11	-	VSS			VSS							
L11	-	VSS			VSS							
M11	-	VSS			VSS							
P11	-	VSS			VSS							
G12	-	VSS			VSS							
J12	-	VSS			VSS							
K12	-	VSS			VSS							
L12	-	VSS			VSS							
M12	-	VSS			VSS							
N12	_	VSS			VSS							
H13	-	VSS			VSS							
K13	_	VSS			VSS							
M13	—	VSS			VSS							
P13	_	VSS			VSS							

rmouts

Table 79.	Special Signal Considerations ((continued))
	Special Signal Considerations (continueu	,

Special Signal	Comments
JTCLK, JTDI, JTDO, JTMS	For JTAG the use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is matched. For example, do not use an external pull down on an input that has on-chip pull-up. JTDO is configured with a keeper circuit such that the floating condition is eliminated if an external pull resistor is not present. An external pull resistor on JTDO is detrimental and should be avoided.
LVDS0N, LVDS0P	Not recommended for application use, intended for clock observation purposes during debug only.
RESETB/RESET_OUT	Active low input used to generate a system wide reset (except the SRTC). A glitch filter is include to help prevent unexpected resets, a minimum pulse width of 125 nsecs is required to guarantee a reset is detected.
XTAL, EXTAL	A 24.0 MHz fundamental mode crystal should be connected between XTAL and EXTAL. The crystal must be rated for a drive level of 250 μ W or higher. An ESR (equivalent series resistance) of 80 Ω or less is recommended. This clock is used as a reference for USB, so there are strict frequency tolerance and jitter requirements. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, XTAL must be directly driven by the external oscillator and EXTAL floated. The XTAL signal level must swing from ~0.8 x DECAP_V11_LDO_OUT to ~0.2 V.
XTAL32, EXTAL32	If the user wishes to configure XTAL32 and EXTAL32 as an RTC oscillator, a 32.768 kHz crystal, (\leq 50 k Ω ESR, 10 pF load) should be connected between XTAL32 and EXTAL32. Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from XTAL32 and EXTAL32 to either power or ground (>100 M Ω). This will debias the amplifier and cause a reduction of startup margin. Typically XTAL32 and EXTAL32 the EXTAL32 pin should be left floating or driven with a complimentary signal. The logic level of this forcing clock should not exceed DECAP_V11_ LDO_OUT level and the frequency should be <100 kHz under typical conditions. In the case where the SIRC is used, it is recommended to connect XTAL32 to ground and leave EXTAL32 floating.

runctional Assignment Pins

Supply Rail Name	364 MAP BGA	176 LQFP (R-series ONLY)	Comment
VSS	A1, A20, B3, B5, B8, B11, B13, B16, B19, C2, D17, E5, E8, E11, E14, E19, F2, G8, G10, G12, G14, G17, H4, H7, H9, H11, H13, H19, J2, J8, J9, J10, J11, J12, J14, J18, K7, K9, K10, K11, K12, K13, L8, L9, L10, L11, L12, L14, L19, M2, M4, M7, M9, M10, M11, M12, M13, M18, N8, N10, N12, N14, P7, P9, P11, P13, P19, R2, R18, U7, U19, V11, V13, V17, W6, Y1, Y20	1, 13, 20, 25, 45, 67, 74, 82, 96, 107, 139, 144, 157, 175, 176, FLG	Ground. Connect "Flag pad (FLG)" to the internal GND plane with numerous vias—for both electrical and thermal purposes.
VSSA33_ADC	V2	32	ATD Ground
VSS12_AFE	R5	38	Video ADC Ground
VSSA33_AFE	V4	39	Video ADC Ground
VSS_KEL0	U11	66	Ground (VSS and VSS_KEL0 are NOT connected internally)

 Table 80.
 Power Supply Pins (continued)

14 Functional Assignment Pins

14.1 Functional Assignment Pins

Table 81. Functional Assignment Pins

Signal Name	364 MAP BGA	176 LQFP (R-series ONLY)	Power Group	Pad Type	Default Mode (Reset)	Default Function	Input/ Output	Value
ADC0SE8	Y2	_	VDDA33_A DC	Analog	_	ADC0SE8	_	_
ADC0SE9	W2	_	VDDA33_A DC	Analog	_	ADC0SE9	_	_
ADC1SE8	W3	—	VDDA33_A DC	Analog	_	ADC1SE8	_	_
ADC1SE9	Y3	—	VDDA33_A DC	Analog	—	ADC1SE9	—	—
BCTRL	T2	26	VDDREG	Analog	—	BCTRL	—	—
DACO0	U1	29	VDDA33_A DC	Analog	_	DACO0	_	_
DACO1	U2	30	VDDA33_A DC	Analog	—	DACO1	—	—
DDR_A[0]	C7		SDRAMC_ VDD2P5	DDR	—	DDR_A[0]	—	—

Table continues on the next page ...

Table 81. Functional Assignment Pins
(continued)

Signal Name	364 MAP BGA	176 LQFP (R-series ONLY)	Power Group	Pad Type	Default Mode (Reset)	Default Function	Input/ Output	Value
DDR_A[1]	C11		SDRAMC_ VDD2P5	DDR	—	DDR_A[1]	—	—
DDR_A[2]	A8	_	SDRAMC_ VDD2P5	DDR	_	DDR_A[2]	-	—
DDR_A[3]	B7		SDRAMC_ VDD2P5	DDR	—	DDR_A[3]	—	—
DDR_A[4]	A6	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[4]	_	_
DDR_A[5]	B6	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[5]	_	—
DDR_A[6]	A9	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[6]	_	_
DDR_A[7]	A7	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[7]	_	—
DDR_A[8]	A11	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[8]	_	_
DDR_A[9]	B9	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[9]	_	—
DDR_A[10]	D7	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[10]	_	_
DDR_A[11]	D10	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[11]	_	_
DDR_A[12]	C10	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[12]	_	_
DDR_A[13]	A10	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[13]	_	_
DDR_A[14]	D9	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[14]	_	_
DDR_A[15]	B10	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[15]	_	_
DDR_BA[0]	C8	_	SDRAMC_ VDD2P5	DDR	—	DDR_BA[0]	_	_
DDR_BA[1]	C9	_	SDRAMC_ VDD2P5	DDR	—	DDR_BA[1]	_	_
DDR_BA[2]	D8		SDRAMC_ VDD2P5	DDR		DDR_BA[2]	_	—
DDR_CAS_ b	B4	_	SDRAMC_ VDD2P5	DDR	—	DDR_CAS_ b	_	—
DDR_CKE[0]	A5		SDRAMC_ VDD2P5	DDR	_	DDR_CKE[0]	-	_
DDR_CLK[0]	A2		SDRAMC_ VDD2P5	DDR	_	DDR_CLK[0]	_	_

Table continues on the next page...

Table 81. Functional Assignment Pins
(continued)

Signal Name	364 MAP BGA	176 LQFP (R-series ONLY)	Power Group	Pad Type	Default Mode (Reset)	Default Function	Input/ Output	Value
DDR_DQS_ b[0]	E3	_	SDRAMC_ VDD2P5	DDR	—	DDR_DQS_ b[0]	-	-
DDR_DQS[1]	E1	_	SDRAMC_ VDD2P5	DDR	_	DDR_DQS[1]	_	_
DDR_DQS_ b[1]	F1	_	SDRAMC_ VDD2P5	DDR	—	DDR_DQS_ b[1]	—	—
DDR_ODT[0]	C4		SDRAMC_ VDD2P5	DDR	—	DDR_ODT[0]	_	—
DDR_ODT[1]	B1		SDRAMC_ VDD2P5	DDR		DDR_ODT[1]	_	_
DDR_RAS_ b	A4		SDRAMC_ VDD2P5	DDR		DDR_RAS_ b	_	_
DDR_RESE T	D6		SDRAMC_ VDD2P5	DDR		DDR_RESE T	—	—
DDR_VREF	G5	_	SDRAMC_ VDD2P5	DDR	—	DDR_VREF	—	—
DDR_WE_b	C6	_	SDRAMC_ VDD2P5	DDR	_	DDR_WE_b	-	_
DDR_ZQ	A3	_	SDRAMC_ VDD2P5	DDR	—	DDR_ZQ	_	_
EXT_POR	T1	23	VDD33	GPIO	—	EXT_POR	—	—
EXT_TAMP ER0	T14		VBAT	Analog	—	EXT_TAMP ER0	-	—
EXT_TAMP ER1	U14		VBAT	Analog	—	EXT_TAMP ER1	_	_
EXT_TAMP ER2/ EXT_WM0_ TAMPER_I N	T13	_	VBAT	Analog	_	EXT_TAMP ER2/ EXT_WM0_ TAMPER_I N	_	_
EXT_TAMP ER3/ EXT_WM0_ TAMPER_ OUT	U13	_	VBAT	Analog	_	EXT_TAMP ER3/ EXT_WM0_ TAMPER_ OUT	_	_
EXT_TAMP ER4/ EXT_WM1_ TAMPER_I N	U12	_	VBAT	Analog	_	EXT_TAMP ER4/ EXT_WM1_ TAMPER_I N	_	
EXT_TAMP ER5/ EXT_WM1_ TAMPER_ OUT	U10	_	VBAT	Analog	—	EXT_TAMP ER5/ EXT_WM1_ TAMPER_ OUT	—	

Table continues on the next page ...

Table 81. Functional Assignment Pins
(continued)

Signal Name	364 MAP BGA	176 LQFP (R-series ONLY)	Power Group	Pad Type	Default Mode (Reset)	Default Function	Input/ Output	Value
PTB3	W7	53	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB4	Y7	54	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB5	Y8	55	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB6	W8	56	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB7	D13	166	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB8	J16	121	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB9	J19	123	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB10	B15	159	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB11	D14	164	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB12	E13	165	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB13	D15	156	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB14	B14	162	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB15	A14	161	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB16	C14	163	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB17	A15	160	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB18	B12	171	VDD33	GPIO	ALT0	GPIO	Input	Disabled
PTB19	C13	167	VDD33	GPIO	ALT0	GPIO	Input	Disabled
PTB20	A13	169	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB21	E12	173	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB22	D12	172	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB23	A19	141	VDD33	GPIO	ALT3	GPIO	Disabled	
PTB24	A18	142	VDD33	GPIO	ALT3	GPIO	Disabled	
PTB25	B17	149	VDD33	GPIO	ALT3	GPIO	Disabled	
PTB26	A17	150	VDD33	GPIO	ALT3	RCON21	Input	Disabled
PTB27	U8	57	VDD33	GPIO	ALT3	RCON22	Input	Disabled
PTB28	A16	151	VDD33	GPIO	ALT3	RCON23	Input	Disabled
PTC0	L4	8	VDD33	GPIO	ALT7	RCON18	Input	Disabled
PTC1	L5	9	VDD33	GPIO	ALT7	RCON19	Input	Disabled
PTC2	M5	11	VDD33	GPIO	ALT7	RCON20	Input	Disabled
PTC3	M3	12	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC4	L2	14	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC5	M1	15	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC6	N1	16	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC7	N2	17	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC8	N4	18	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC9	T15	_	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC10	U15	—	VDD33	GPIO	ALT0	GPIO	Disabled	

Table continues on the next page ...