

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	TriCore™
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, SPI, UART/USART
Peripherals	DMA, POR, WDT
Number of I/O	81
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	1.42V ~ 1.58V
Data Converters	A/D 36x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	PG-LQFP-176-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/ft1162128f66hlaaxp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet, V1.0, Apr. 2008

TC1161/TC1162 32-Bit Single-Chip Microcontroller TriCore

Microcontrollers

Never stop thinking

TC1161/TC1162 Data Sheet Revision History: V1.0, 2008-04

sion: V0.3 2007-03
Subjects (major changes since last revision)
VSSOSC3 is deleted from the TC1161/TC1162 Logic Symbol.
TDATA0 of Pin 17, TCLK0 of Pin 20, TCLK0 of Pin 74 and TDATA0 of Pin 77 are updated in the Pinning Diagram and Pin Definition and Functions Table.
Transmit DMA request in Block Diagram of ASC Interfaces is updated.
Alternate output functions in block diagram of SSC interfaces are updated.
Programmable baud rate of the MLI is updated.
TDATA0 and TCLK0 of the block diagram of MLI interfaces are updated.
The description for WDT double reset detection is updated.
The power sequencing details is updated.
MLI timing, maximum operating frequency limit is extended, t31 is added.
Thermal resistance junction leads is updated.

Trademarks

TriCore® is a trademark of Infineon Technologies AG.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

- One 2-channel Fast Analog-to-Digital Converter unit (FADC) with concatenated comb filters for hardware data reduction: supporting 10-bit resolution, with minimum conversion time of 318.2 ns
- 32 analog input lines for ADC and FADC
- 81 digital general purpose I/O lines
- Digital I/O ports with 3.3 V capability
- On-chip debug support for OCDS Level 1 and 2 (CPU, DMA)
- Power Management System
- Clock Generation Unit with PLL
- Core supply voltage of 1.5 V
- I/O voltage of 3.3 V
- Full Industrial and Multi-Market temperature range: -40° to +85°C
- PG-LQFP-176-2 package

General Device Information

2.4 Pad Driver and Input Classes Overview

The TC1161/TC1162 provides different types and classes of input and output lines. For understanding of the abbreviations in Table 2-2 starting at the next page, Table 2-1 gives an overview on the pad type and class types.

Class	Power Supply	Туре	Sub Class	Speed Grade	Termination
Α	3.3V	LVTTL I/O, LVTTL	A1 (e.g. GPIO)	6 MHz	No
		outputs	A2 (e.g. serial I/Os)	40 MHz	Series termination recommended
			A3 (e.g. BRKIN, BRKOUT)	66 MHz/	Yes, series termination
			A4 (e.g.Trace Clock)	66 MHz	Yes, series termination
С	3.3V	LVDS	_	50 MHz	Parallel termination
D		Analog input	-	_	-

Table 2-1 Pad Driver and Input Classes Overview

General Device Information

Table 2-2Pin Definitions and Functions (cont'd)

Symbol	Pins	I/O	Pad Driver Class	Power Supply	Functions
Power Su	upplies	S			
V _{DDM}	54	_	-	_	ADC Analog Part Power Supply (3.3 V)
V _{SSM}	53	_	_	_	ADC Analog Part Ground for V_{DDM}
V _{DDMF}	24	_	-	_	FADC Analog Part Power Supply (3.3 V)
V _{SSMF}	25	_	-	_	FADC Analog Part Ground for V_{DDMF}
V_{DDAF}	23	-	-	-	FADC Analog Part Logic Power Supply (1.5 V)
V _{SSAF}	22	_	-	_	FADC Analog Part Logic Ground for V_{DDAF}
V _{AREF0}	52	_	-	_	ADC Reference Voltage
	51	_	-	_	ADC Reference Ground
V _{FAREF}	26	_	-	_	FADC Reference Voltage
	27	_	-	_	FADC Reference Ground
V _{DDOSC}	105	-	-	-	Main Oscillator and PLL Power Supply (1.5 V)
V _{DDOSC3}	106	_	-	_	Main Oscillator Power Supply (3.3 V)
V _{ssosc}	104	_	-	-	Main Oscillator and PLL Ground
	141	_	-	_	Power Supply for Flash (3.3 V)
V _{DD}	10, 68, 84, 99, 123, 153, 170	_	-	_	Core Power Supply (1.5 V)

Functional Description

Segment 14

From the SPB point of view (DMA and Cerberus), this memory segment allows accesses to the PMU Overlay memory (OVRAM), the DMI Local Data RAM (LDRAM), and the PMI scratch-pad RAM (SPRAM).

From the CPU point of view (PMI and DMI), this memory segment is reserved in the TC1161/TC1162.

Segment 15

From the SPB point of view (DMA and Cerberus), this memory segment allows accesses to all SFRs and CSFRs, and the MLI transfer windows.

From the CPU point of view (PMI and DMI), this memory segment allows accesses to all SFRs and CSFRs, and the MLI transfer windows.

Functional Description

3.3.4 Address Map of the FPI Bus System

Table 3-3 and Table 3-4 shows the address maps of the FPI Bus System.

3.3.4.1 Segments 0 to 14

Table 3-3 shows the address maps of segments 0 to 14 as it is seen from the SPB bus masters, DMA and OCDS.

Table 3-3SPB Address Map of Segment 0 to 14

Seg-	Address	Size	Description	Access	з Туре
ment	Range			Read	Write
0-7	0000 0000 _H - 0000 0007 _H	8 byte	Reserved (virtual address space)	MPN trap	MPN trap
_	0000 0008 _H - 7FFF FFFF _H	8 × 256 Mbyte		SPBBE	SPBBE

TC1161/TC1162

Preliminary

Functional Description

Table 3-3 SPB Address Map of Segment 0 to 14 (cont'd)

Seg-	Address	Size	Description	Access Type		
ment	Range			Read	Write	
10	A000 0000 _H - A00F FFFF _H	1 Mbyte	Program Flash (PFLASH)	access	access ¹⁾	
	A010 0000 _H - A017 FFFF _H	≈ 0.5 Mbyte	Reserved	access ²⁾	access ¹⁾²⁾	
	A017 8000 _H - A07F FFFF _H	6.5 Mbyte	Reserved	LMBBE & SPBBE	LMBBE	
	A080 0000 _H - AFDF FFFF _H	246 Mbyte	Reserved	LMBBE & SPBBE	LMBBE	
	AFE0 0000 _H - AFE0 1FFF _H	8 Kbyte	Data Flash (DFLASH) Bank 0	access	access ¹⁾	
	AFE0 2000 _H - AFE0 3FFF _H	8 Kbyte	Reserved	access ²⁾	access ¹⁾²⁾	
	AFE0 4000 _H - AFE0 FFFF _H	48 Kbyte	Reserved	LMBBE & SPBBE	LMBBE	
	AFE1 0000 _H - AFE1 1FFF _H	8 Kbyte	Data Flash (DFLASH) Bank 1	access	access ¹⁾	
	AFE1 2000 _H - AFE1 3FFF _H	8 Kbyte	Reserved	access ²⁾	access ¹⁾²⁾	
	AFE1 4000 _H - AFF1 FFFF _H			LMBBE & SPBBE	ignore	
	AFF2 0000 _H - AFF5 FFFF _H	256 Kbyte	Reserved			
	AFF6 0000 _H - AFFF BFFF _H	624 Kbyte	Reserved			
	AFFF C000 _H - AFFF FFFF _H	16 Kbyte	Boot ROM (BROM)	access		
11	B000 0000 _H - BFFF FFFF _H	256 Mbyte	Reserved	SPBBE	SPBBE	
12	C000 0000 _H - C000 0FFF _H	4 Kbyte	Overlay memory (OVRAM)	SPBBE	SPBBE	
	С000 1000 _н - CFFF FFFF _H	≈ 256 Mbyte	Reserved	SPBBE	SPBBE	

Functional Description

3.3.5 Address Map of the Local Memory Bus (LMB)

Table 3-5 shows the address map as seen from the LMB bus masters (PMI and DMI).

Seg- Address		Size	Description	Action		
ment	Range			Read	Write	
0-7 ¹⁾	0000 0000 _H - 0000 0007 _H	8 byte	Reserved (virtual address space)	MPN trap	MPN trap	
	0000 0008 _H - 7FFF FFFF _H	8 × 256 Mbyte		SPBBET	SPBBE	
8 ¹⁾	8000 0000 _H - 800F FFFF _H	1 Mbyte	Program Flash (PFLASH)	access	access ²⁾	
	8010 0000 _H - 8017 7FFF _H	≈ 0.5 Mbyte	Reserved	access ³⁾	access ²⁾³⁾	
	8017 8000 _H - 807F FFFF _H	6.5 Mbyte	Reserved	LMBBET	LMBBET	
	8080 0000 _H - 8FDF FFFF _H	246 Mbyte	Reserved	LMBBET	LMBBET	
	8FE0 0000 _H - 8FE0 1FFF _H	8 Kbyte	Data Flash (DFLASH) Bank 0	access	access ²⁾	
	8FE0 2000 _H - 8FE0 3FFF _H	8 Kbyte	Reserved	access ³⁾	access ²⁾³⁾	
	8FE0 4000 _H - 8FE0 FFFF _H	48 Kbyte	Reserved	LMBBET	LMBBET	
	8FE1 0000 _H - 8FE1 1FFF _H	8 Kbyte	Data Flash (DFLASH) Bank 1	access	access ²⁾	
	8FE1 2000 _H - 8FE1 3FFF _H	8 Kbyte	Reserved	access ³⁾	access ²⁾³⁾	
	8FE1 4000 _H - 8FF1 FFFF _H	1 Mbyte	Reserved	LMBBET	LMBBET	
	8FF2 0000 _H - 8FF5 FFFF _H	256 Kbyte	Reserved			
	8FF6 0000 _H - 8FFF BFFF _H	624 Kbyte	Reserved			
	8FFF C000 _H - 8FFF FFFF _H	16 Kbyte	Boot ROM (BROM)	access]	

Table 3-5LMB Address Map

TC1161/TC1162

Preliminary

Functional Description

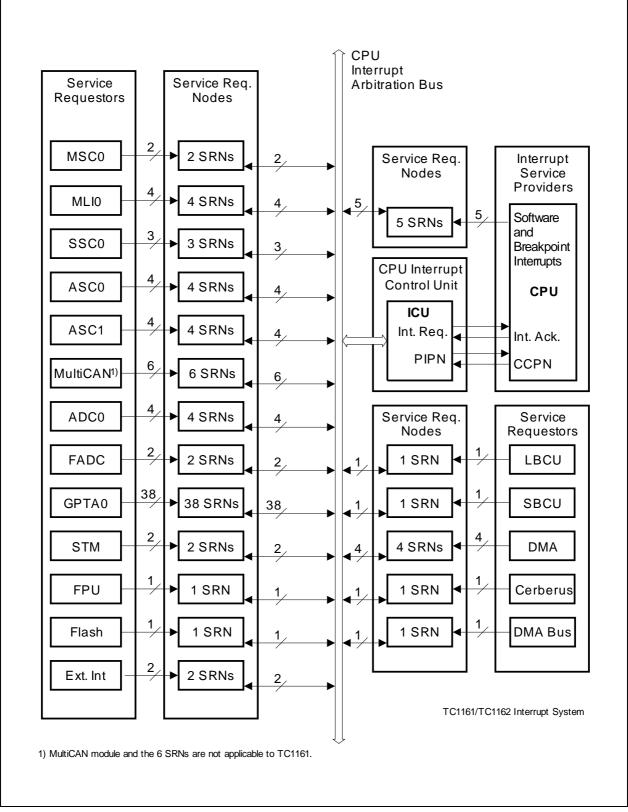


Figure 3-2 Block Diagram of the TC1161/TC1162 Interrupt System

Functional Description

3.12 General Purpose Timer Array

The GPTA provides a set of timer, compare, and capture functionalities that can be flexibly combined to form signal measurement and signal generation units. They are optimized for tasks typical of electrical motor control applications, but can also be used to generate simple and complex signal waveforms needed in other industrial applications.

The TC1161/TC1162 contains one General Purpose Timer Array (GPTA0). **Figure 3-9** shows a global view of the GPTA module.

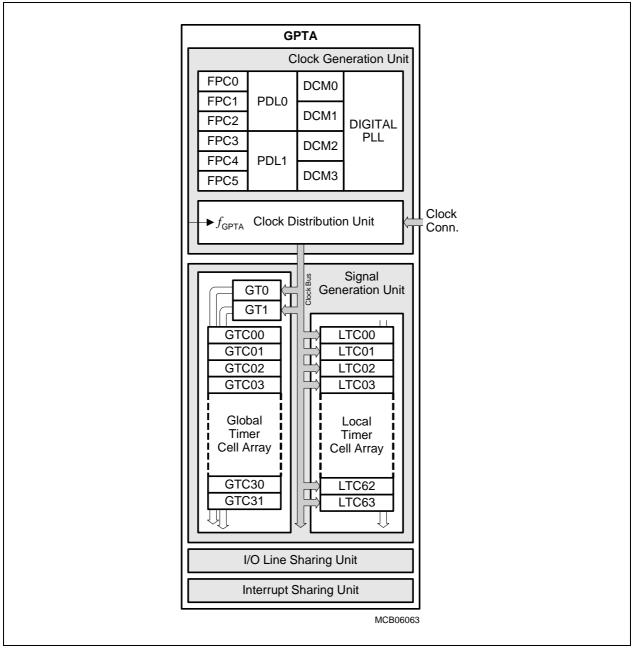


Figure 3-9 Block Diagram of the GPTA Module

Functional Description

- Duty Cycle Measurement (DCM)
 - Four independent units
 - 0 100% margin and time-out handling
 - $-f_{\rm GPTA}$ maximum resolution
 - $-f_{\rm GPTA}/2$ maximum input signal frequency
 - Digital Phase Locked Loop (PLL)
 - One unit
 - Arbitrary multiplication factor between 1 and 65535
 - $f_{\rm GPTA}$ maximum resolution
 - $-f_{GPTA}/2$ maximum input signal frequency
 - Clock Distribution Unit (CDU)
 - One unit

•

– Provides nine clock output signals: $f_{\rm GPTA}$, divided $f_{\rm GPTA}$ clocks, FPC1/FPC4 outputs, DCM clock, LTC prescaler clock

Signal Generation Unit

- Global Timers (GT)
 - Two independent units
 - Two operating modes (Free-Running Timer and Reload Timer)
 - 24-bit data width
 - $-f_{\rm GPTA}$ maximum resolution
 - $-f_{\rm GPTA}/2$ maximum input signal frequency
- Global Timer Cell (GTC)
 - 32 units related to the Global Timers
 - Two operating modes (Capture, Compare and Capture after Compare)
 - 24-bit data width
 - $f_{\rm GPTA}$ maximum resolution
 - $-f_{\rm GPTA}/2$ maximum input signal frequency
- Local Timer Cell (LTC)
 - 64 independent units
 - Three basic operating modes (Timer, Capture and Compare) for 63 units
 - Special compare modes for one unit
 - 16-bit data width
 - $-f_{GPTA}$ maximum resolution
 - $-f_{GPTA}/2$ maximum input signal frequency

Interrupt Control Unit

• 111 interrupt sources, generating up to 38 service requests

Functional Description

3.14 Fast Analog-to-Digital Converter Unit (FADC)

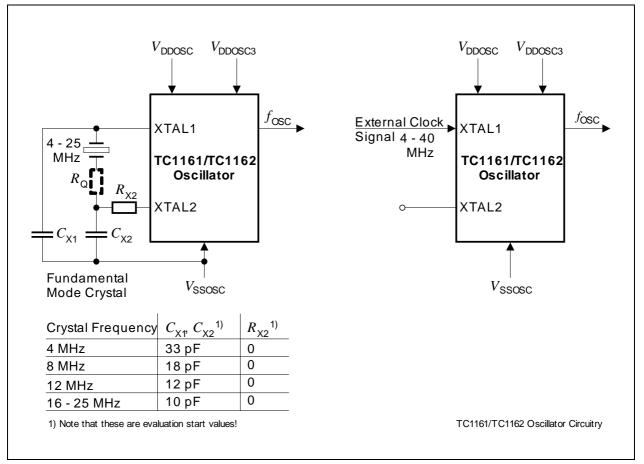
The on-chip FADC module of the TC1161/TC1162 basically is a 2-channel A/D converter with 10-bit resolution that operates by the method of the successive approximation.

As shown in Figure 3-11, the main FADC functional blocks are:

- The Input Stage contains the differential inputs and the programmable amplifier
- The A/D Converter is responsible for the analog-to-digital conversion
- The Data Reduction Unit contains programmable antialiasing and data reduction filters
- The Channel Trigger Control block determines the trigger and gating conditions for the two FADC channels
- The Channel Timers can independently trigger the conversion of each FADC channel
- The A/D Control block is responsible for the overall FADC functionality

The FADC module is supplied by the following power supply and reference voltage lines:

- $V_{\text{DDMF}}/V_{\text{DDMF}}$:FADC Analog Part Power Supply (3.3 V)
- V_{DDAF}/V_{DDAF}:FADC Analog Part Logic Power Supply (1.5 V)
- V_{FAREF}/V_{FAGND}:FADC Reference Voltage (3.3 V)/FADC Reference Ground


Functional Description

Oscillation measurement with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected). The external clock frequency can be in the range of 0 - 40 MHz if the PLL is bypassed, and 4 - 40 MHz if the PLL is used.

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor.

Figure 3-15 shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode. A block capacitor is recommended to be placed between $V_{\text{DDOSC}}/V_{\text{DDOSC3}}$ and V_{SSOSC} .

Figure 3-15 Oscillator Circuitries

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

TC1161/TC1162

Preliminary

Electrical Parameters

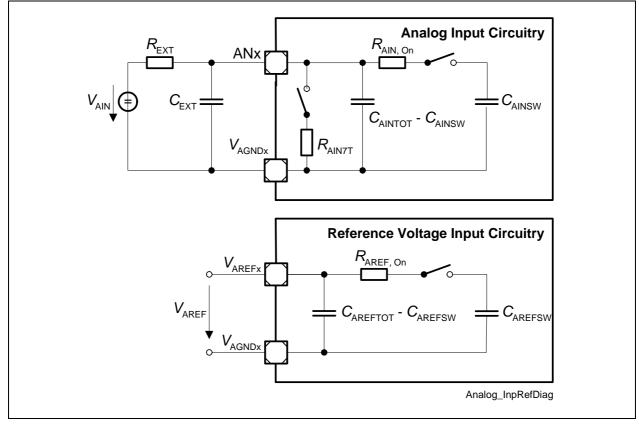


Figure 4-2 ADC0 Input Circuits

Electrical Parameters

4.3.4 Power, Pad and Reset Timing

Figure 4-12 provides the characteristics of the power, pad and reset timing in the TC1161/TC1162.

Parameter	Symbol		Limit	Unit	
			Min.	Max.	
Min. V_{DDP} voltage to ensure defined pad states ¹⁾	V _{DDPPA}	CC	0.6	-	V
Oscillator start-up time ²⁾	t _{OSCS}	CC	_	10	ms
Minimum PORST active time after power supplies are stable at operating levels	t _{POA}	SR	10	_	ms
HDRST pulse width	t _{HD}	CC	1024 clock cycles ³⁾	-	f _{sys}
PORST rise time	t _{POR}	SR	-	50	ms
Setup time to PORST rising edge ⁴⁾	t _{POS}	SR	0	-	ns
Hold time from PORST rising edge ⁴⁾	t _{POH}	SR	100	-	ns
Setup time to HDRST rising edge ⁵⁾	t _{HDS}	SR	0	-	ns
Hold time from HDRST rising edge ⁵⁾	t _{HDH}	SR	100 + (2 × 1/f _{SYS})	-	ns
Ports inactive after PORST reset active ⁶⁾⁷⁾	t _{PIP}	CC	-	150	ns
Ports inactive after HDRST reset active ⁸⁾	t _{Pl}	CC	_	150 + 5 × 1/f _{SYS}	ns
Minimum V_{DDP} PORST activation threshold. ⁹⁾	V _{PORST3.3}	SR	-	2.9	V
Minimum V_{DD} PORST activation threshold. ⁹⁾	V _{PORST1.5}	SR	-	1.32	V
Power-on Reset Boot Time ¹⁰⁾	t _{BP}	CC	2.15	3.50	ms
Hardware/Software Reset Boot Time at f_{CPU} =66MHz ¹¹⁾	t _B	CC	560	860	μS

1) This parameter is valid under assumption that $\overrightarrow{\text{PORST}}$ signal is constantly at low-level during the power-up/power-down of the V_{DDP} .

²⁾ This parameter is verified by device characterization. The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended and specified by crystal suppliers.

³⁾ Any HDRST activation is internally prolonged to 1024 FPI bus clock (f_{SYS}) cycles.

Electrical Parameters

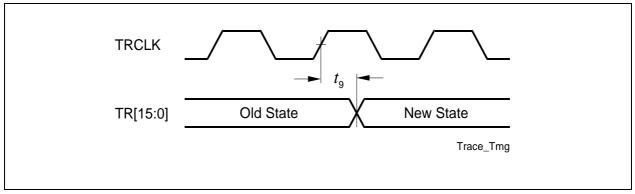
4.3.6 Debug Trace Timing

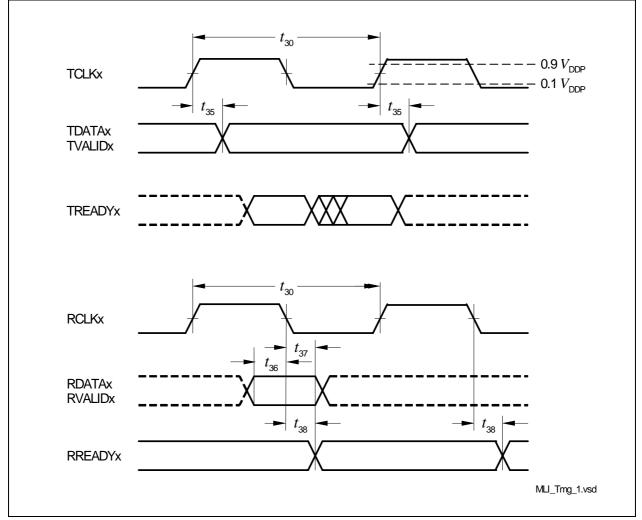
 $V_{SS} = 0 \text{ V}; V_{DDP} = 3.13 \text{ to } 3.47 \text{ V} \text{ (Class A)}; T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C}; C_L \text{ (TRCLK)} = 25 \text{ pF}; C_L \text{ (TR[15:0])} = 50 \text{ pF}$

Table 4-14 Debug Trace Timing Parameter¹⁾

Parameter	Sym	bol	Lin	Unit	
			Min.	Max.	
TR[15:0] new state from TRCLK	t ₉	CC	-1	4	ns

1) Not subject to production test, verified by design/characterization.




Figure 4-14 Debug Trace Timing

TC1161/TC1162

Preliminary

Electrical Parameters

Figure 4-17 MLI Interface Timing

Note: The generation of RREADYx is in the input clock domain of the receiver. The reception of TREADYx is asynchronous to TCLKx.

Packaging and Reliability

5 Packaging and Reliability

Chapter 5 provides the information of the TC1161/TC1162 package and reliability section.

5.1 Package Parameters

 Table 5-1 provides the thermal characteristics of the package.

Table 5-1Package Parameters (PG-LQFP-176-2)

Parameter	Symbol		Limit Values		Unit	Notes	
			Min.	Max.			
Thermal resistance junction case top ¹⁾	R _{TJCT}	CC	-	5.4	K/W	-	
Thermal resistance junction leads	R _{TJL}	CC	-	21.5	K/W	-	

1) The thermal resistances between the case top and the ambient (R_{TCAT}), the leads and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case top (R_{TJCT}), the junction and the leads (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TLA}). The thermal resistances between the case top and the ambient (R_{TCAT}), the leads and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: T_J=T_A+R_{TJA} × P_D, where the R_{TJA} is the total thermal resistance between the junction and the ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances.

Packaging and Reliability

5.2 Package Outline

Figure 5-1 shows the package outlines of the TC1161/TC1162.

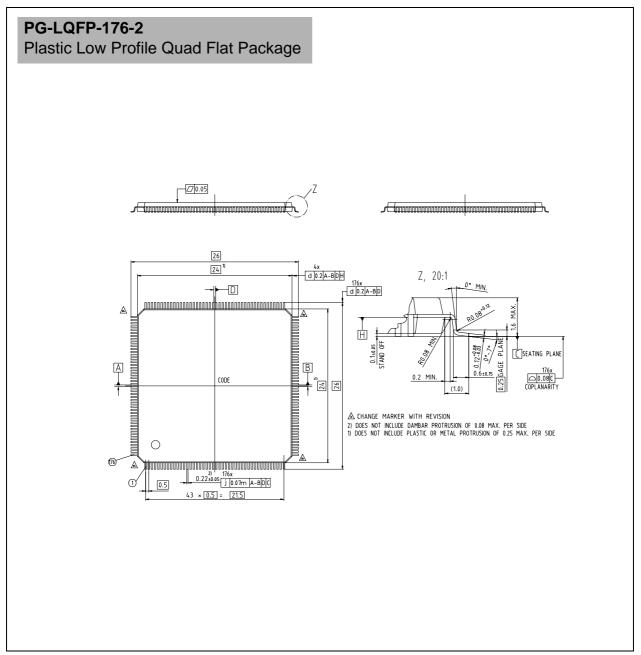


Figure 5-1 Package Outlines PG-LQFP-176-2

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm