E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	80C52
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB
Peripherals	LED, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at83c5134-pntul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

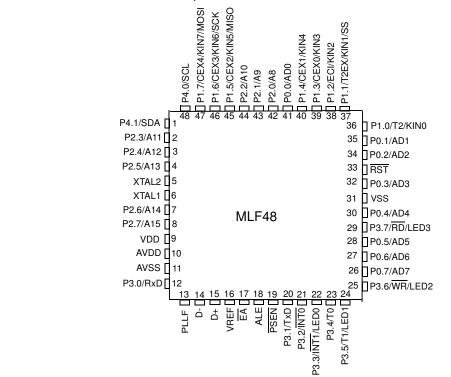
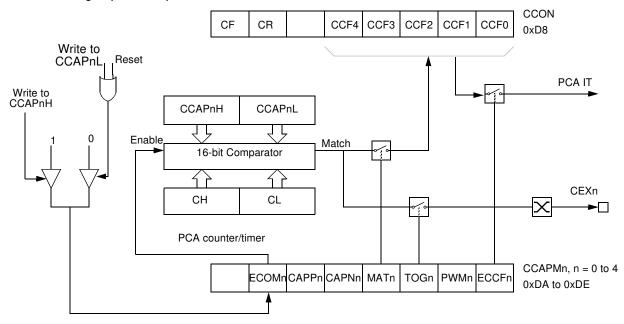



Figure 4-2. AT83C5134/35/36 48-pin MLF Pinout

Figure 4-3. AT83C5134/35/36 28-pin SO Pinout

Figure 13-5. PCA High-speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

13.4 Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 13-6 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Baud Rates	F _{osc} = 16	.384 MHz	F _{OSC} = 24 MHz		
Dudu hates	BRL	Error (%)	BRL	Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

Example of computed value when X2 = 1, SMOD1 = 1, SPD = 1

Example of computed value when X2 = 0, SMOD1 = 0, SPD = 0

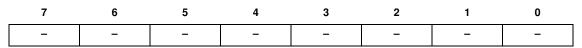
	F _{osc} = 16	.384 MHz	F _{osc} = 24 MHz		
Baud Rates	BRL Error (%)		BRL	Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 14-4.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 14-4.)

14.4 UART Registers

SADEN - Slave Address Mask Register for UART (B9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-


Reset Value = 0000 0000b

SADDR - Slave Address Register for UART (A9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = 0000 0000b

SBUF - Serial Buffer Register for UART (99h)

Reset Value = XXXX XXXXb

BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = 0000 0000b

Table 14-2.T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0		
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#		
Bit Number	Bit Mnemonic	Description							
7	TF2		ed by software.		K = 0 and TCL	K = 0.			
6	EXF2	Set when a ca = 1. When set, cau enabled.	When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode						
5	RCLK	Cleared to use		low as receive o as receive clock					
4	TCLK	Cleared to use		T low as transmit as transmit cloc					
3	EXEN2	Cleared to ign Set to cause a		T2EX pin for Tir bad when a neg			s detected, if		
2	TR2	Timer 2 Run Cleared to tur Set to turn on	n off Timer 2.						
1	C/T2#	Cleared for tin	Timer/Counter 2 select bit Cleared for timer operation (input from internal clock system: F _{CLK PERIPH}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.						
0	CP/RL2#	If RCLK = 1 or 2 overflow. Cleared to Au EXEN2 = 1.	to-reload on Ti	/RL2# is ignore mer 2 overflows ansitions on T2	or negative tra	Insitions on T2			

Reset Value = 0000 0000b Bit addressable

Table 16-3.IPL0 Register

IPL0 - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0
-	PPCL	PT2L	PSL	PT1L	PX1L	PTOL	PX0L
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	ad from this bit	is indeterminate	e. Do not set th	is bit.	
6	PPCL		ot Priority bit H for priority le	evel.			
5	PT2L		flow interrup				
4	PSL	Serial port P Refer to PSH	riority bit for priority lev	el.			
3	PT1L		flow interrup H for priority le	•			
2	PX1L		e rrupt 1 Priori H for priority le				
1	PT0L		flow interrup I for priority le				
0	PX0L		e rrupt 0 Priori H for priority le				

Reset Value = x000 0000b Bit addressable

AT83C5134/35/36

Table 16-6.IPL1 RegisterIPL1 - Interrupt Priority Register (B2h)

7	6	5	4	3	2	1	0	
-	PUSBL	-	-	-	PSPIL	PTWIL	PKBDL	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this bit	is indeterminate	e. Do not set th	is bit.		
6	PUSBL	USB Interrup Refer to PUS	ot Priority bit BH for priority	level.				
5	-	Reserved The value rea	ad from this bit	is indeterminate	e. Do not set th	is bit.		
4	-	Reserved The value rea	ad from this bit	is indeterminate	e. Do not set th	is bit.		
3	-	Reserved The value rea	ad from this bit	is indeterminate	e. Do not set th	is bit.		
2	PSPIL	SPI Interrupt Refer to PSP	: Priority bit IH for priority le	evel.				
1	PTWIL		TWI Interrupt Priority bit Refer to PTWIH for priority level.					
0	PKBL		terrupt Priorit H for priority le					

Reset Value = X0XX X000b Not bit addressable

17.2.2 Power Reduction Mode

P1 inputs allow exit from idle and power down modes as detailed in section "Power-down Mode".

17.3 Registers

Table 17-1. KBF Register

KBF - Keyboard Flag Register (9Eh)

7	6	5	4	3	2	1	0	
KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0	
Bit Number	Bit Mnemonic	Description						
7	KBF7	Keyboard inte	are when the Perrupt request if	ort line 7 detect the KBKBIE.7 eading KBF SF	bit in KBIE regis		rates a	
6	KBF6	Keyboard inte	are when the Perrupt request if	ort line 6 detect the KBIE.6 bit eading KBF SF	n KBIE register		rates a	
5	KBF5	Keyboard inte	are when the Perrupt request if	ort line 5 detect the KBIE.5 bit eading KBF SF	n KBIE register		rates a	
4	KBF4	Keyboard inte	are when the Perrupt request if	ort line 4 detect the KBIE.4 bit eading KBF SF	n KBIE register		rates a	
3	KBF3	Keyboard inte	are when the Perrupt request if	ort line 3 detect the KBIE.3 bit eading KBF SF	n KBIE register	•	rates a	
2	KBF2	Keyboard inte	are when the P	ort line 2 detect the KBIE.2 bit		•	rates a	
1	KBF1	Set by hardwa Keyboard inte	Keyboard line 1 flag Set by hardware when the Port line 1 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.1 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software.					
0	KBF0	Keyboard inte	are when the Perrupt request if	ort line 0 detect the KBIE.0 bit eading KBF SF	n KBIE register		rates a	

Reset Value = 0000 0000b

18. Programmable LED

AT83C5134/35/36 have up to 4 programmable LED current sources, configured by the register LEDCON.

Table 18-1. LEDCON Register

LEDCON (S:F1h) LED Control Register

7	6	5	4	3	2	1	0		
LE	LED3		ED2	LE	D1	LED0			
Bit Number	Bit Mnemonic	Description							
7:6	LED3	Port LED3 0 0 1 1 1 1	Standard C51 2 mA current s 4 mA current s	Configuration Standard C51 Port 2 mA current source when P3.7 is low 4 mA current source when P3.7 is low 10 mA current source when P3.7 is low					
5:4	LED2	Port /LED2 0 0 0 1 1 0 1 1	Standard C51 2 mA current s 4 mA current s	<u>Configuration</u> Standard C51 Port 2 mA current source when P3.6 is low 4 mA current source when P3.6 is low 10 mA current source when P3.6 is low					
3:2	LED1	Port/LED1 0 0 0 1 1 0 1 1	Configuration Standard C51 Port 2 mA current source when P3.5 is low 4 mA current source when P3.5 is low 10 mA current source when P3.5 is low						
1:0	LED0	Port/LED0 0 0 1 0 1 1	4 mA current		3.3 is low				

Reset Value = 00h

19.3 Functional Description

Figure 19-2 shows a detailed structure of the SPI module.

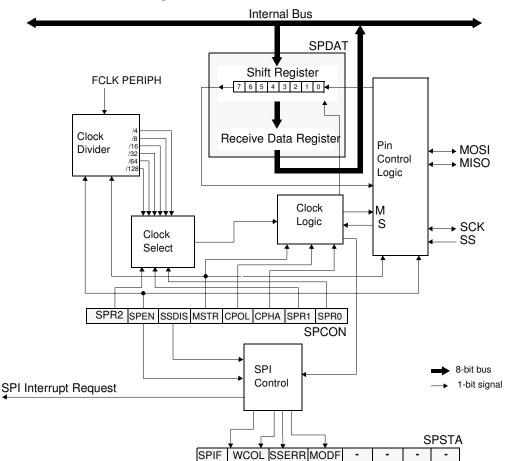


Figure 19-2. SPI Module Block Diagram

19.3.1 Operating Modes

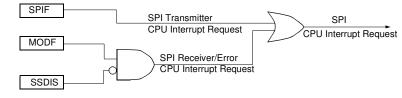
The Serial Peripheral Interface can be configured as one of the two modes: Master mode or Slave mode. The configuration and initialization of the SPI module is made through one register:

• The Serial Peripheral CONtrol register (SPCON)

Once the SPI is configured, the data exchange is made using:

- SPCON
- The Serial Peripheral STAtus register (SPSTA)
- The Serial Peripheral DATa register (SPDAT)

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line (\overline{SS}) allows individual selection of a Slave SPI device; Slave devices that are not selected do not interfere with SPI bus activities.


When the Master device transmits data to the Slave device via the MOSI line, the Slave device responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock (Figure 19-3).

Mode Fault flag, MODF: This bit becomes set to indicate that the level on the SS is inconsistent with the mode of the SPI. MODF with SSDIS reset, generates receiver/error CPU interrupt requests.

Figure 19-7 gives a logical view of the above statements.

19.3.5 Registers

There are three registers in the module that provide control, status and data storage functions. These registers are describes in the following paragraphs.

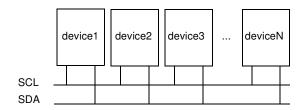
19.3.5.1 Serial Peripheral Control Register (SPCON)

- The Serial Peripheral Control Register does the following:
 - Selects one of the Master clock rates
 - Configure the SPI module as Master or Slave
 - Selects serial clock polarity and phase
 - Enables the SPI module
 - Frees the SS pin for a general-purpose

Table 19-3 describes this register and explains the use of each bit.

Table 19-3. SPCON Register

7	6	5	4	3	2	1	0	
SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0	
Bit Number	Bit Mnemonic	Description	I					
7	SPR2	-	Serial Peripheral Rate 2 Bit with SPR1 and SPR0 define the clock rate.					
6	SPEN	Cleared to c	heral Enable lisable the SPI e the SPI inter					
5	SSDIS	Set to disab	\overline{SS} Disable Cleared to enable \overline{SS} in both Master and Slave modes. Set to disable \overline{SS} in both Master and Slave modes. In Slave mode, this bit has no effect if CPHA = "0".					
5	MSTR	Cleared to c	heral Master onfigure the SI gure the SPI as					
4	CPOL	Clock Polarity Cleared to have the SCK set to "0" in idle state. Set to have the SCK set to "1" in idle state.						

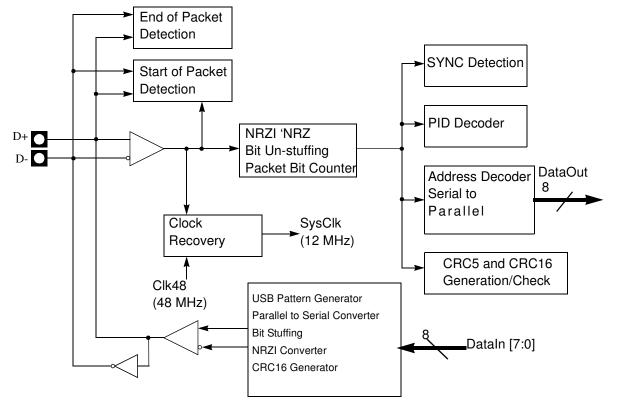


20. Two Wire Interface (TWI)

This section describes the 2-wire interface. The 2-wire bus is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The serial data transfer is limited to 100 Kbit/s in standard mode. Various communication configuration can be designed using this bus. Figure 20-1 shows a typical 2-wire bus configuration. All the devices connected to the bus can be master and slave.

Figure 20-1. 2-wire Bus Configuration

		Appli	cation soft	ware respo	nse		
Status Code	Status of the Two- wire Bus and Two-			To SSC	CON		
SSSTA	wire Hardware	To/From SSDAT	SSSTA	SSSTO	SSI	SSAA	Next Action Taken by Two-wire Hardware
08h	A START condition has been transmitted	Write SLA+R	x	0	0	х	SLA+R will be transmitted.
	A repeated START	Write SLA+R	х	0	0	х	SLA+R will be transmitted.
10h	condition has been transmitted	Write SLA+W	x	0	0	х	SLA+W will be transmitted. Logic will switch to master transmitter mode.
38h	Arbitration lost in SLA+R or NOT ACK	No SSDAT action	0	0	0	х	Two-wire bus will be released and not addressed slave mode will be entered.
3011	bit	No SSDAT action	1	0	0	х	A START condition will be transmitted when the bus becomes free.
40h	SLA+R has been transmitted; ACK has	No SSDAT action	0	0	0	0	Data byte will be received and NOT ACK will be returned.
	been received	No SSDAT action	0	0	0	1	Data byte will be received and ACK will be returned.
	SLA+R has been	No SSDAT action	1	0	0	х	Repeated START will be transmitted. STOP condition will be transmitted and SSSTO flag
48h	transmitted; NOT ACK	No SSDAT action	0	1	0	х	will be reset.
	has been received	No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
50h	Data byte has been received; ACK has	Read data byte	0	0	0	0	Data byte will be received and NOT ACK will be returned.
	been returned	Read data byte	0	0	0	1	Data byte will be received and ACK will be returned.
		Read data byte	1	0	0	х	Repeated START will be transmitted.
58h	Data byte has been received; NOT ACK	Read data byte	0	1	0	Х	STOP condition will be transmitted and SSSTO flag will be reset.
	has been returned	Read data byte	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.


Table 20-6. Status in Master Receiver Mode

- · Address checking.
- Clock generation (via DPLL).

21.1.2 Function Interface Unit (FIU)

The Function Interface Unit provides the interface between the AT89C5131 and the SIE. It manages transactions at the packet level with minimal intervention from the device firmware, which reads and writes the endpoint FIFOs.

21.4.2 Bulk/Interrupt OUT Transactions in Ping-pong Mode

Figure 21-8. Bulk/Interrupt OUT Transactions in Ping-pong Mode

An endpoint will be first enabled and configured before being able to receive Bulk or Interrupt packets.

When a valid OUT packet is received on the endpoint bank 0, the RXOUTB0 bit is set by the USB controller. This triggers an interrupt if enabled. The firmware has to select the corresponding endpoint, store the number of data bytes by reading the UBYCTLX and UBYCTHX registers. If the received packet is a ZLP (Zero Length Packet), the UBYCTLX and UBYCTHX register values are equal to 0 and no data has to be read.

When all the endpoint FIFO bytes have been read, the firmware will clear the RXOUB0 bit to allow the USB controller to accept the next OUT packet on the endpoint bank 0. This action switches the endpoint bank 0 and 1. Until the RXOUTB0 bit has been cleared by the firmware, the USB controller will answer a NAK handshake for each OUT requests on the bank 0 endpoint FIFO.

When a new valid OUT packet is received on the endpoint bank 1, the RXOUTB1 bit is set by the USB controller. This triggers an interrupt if enabled. The firmware empties the bank 1 endpoint FIFO before clearing the RXOUTB1 bit. Until the RXOUTB1 bit has been cleared by the firmware, the USB controller will answer a NAK handshake for each OUT requests on the bank 1 endpoint FIFO.

The RXOUTB0 and RXOUTB1 bits are alternatively set by the USB controller at each new valid packet receipt.

The firmware has to clear one of these two bits after having read all the data FIFO to allow a new valid packet to be stored in the corresponding bank.

Table 21-2. Priority Levels

IPHUSB	IPLUSB	USB Priority Level
0	0	0 Lowest
0	1	1
1	0	2
1	1	3 Highest

21.10.2 USB Interrupt Control System

As shown in Figure 21-16, many events can produce a USB interrupt:

- TXCMPL: Transmitted In Data (see Table 21-9 on page 125). This bit is set by hardware when the Host accept a In packet.
- RXOUTB0: Received Out Data Bank 0 (see Table 21-9 on page 125). This bit is set by hardware when an Out packet is accepted by the endpoint and stored in bank 0.
- RXOUTB1: Received Out Data Bank 1 (only for Ping-pong endpoints) (see Table 21-9 on page 125). This bit is set by hardware when an Out packet is accepted by the endpoint and stored in bank 1.
- RXSETUP: Received Setup (see Table 21-9 on page 125). This bit is set by hardware when an SETUP packet is accepted by the endpoint.
- STLCRC: STALLED (only for Control, Bulk and Interrupt endpoints) (see Table 21-9 on page 125). This bit is set by hardware when a STALL handshake has been sent as requested by STALLRQ, and is reset by hardware when a SETUP packet is received.
- SOFINT: Start of Frame Interrupt (See "USBIEN Register USBIEN (S:BEh) USB Global Interrupt Enable Register" on page 122.). This bit is set by hardware when a USB Start of Frame packet has been received.
- WUPCPU: Wake-Up CPU Interrupt (See "USBIEN Register USBIEN (S:BEh) USB Global Interrupt Enable Register" on page 122.). This bit is set by hardware when a USB resume is detected on the USB bus, after a SUSPEND state.
- SPINT: Suspend Interrupt (See "USBIEN Register USBIEN (S:BEh) USB Global Interrupt Enable Register" on page 122.). This bit is set by hardware when a USB suspend is detected on the USB bus.

Table 21-10. UEPDATX Register

UEPDATX (S:CFh)

USB FIFO Data Endpoint X (X = EPNUM set in UEPNUM Register UEPNUM (S:C7h) USB Endpoint Number)

7	6	5	4	3	2	1	0
FDAT7	FDAT6	FDAT5	FDAT4	FDAT3	FDAT2	FDAT1	FDAT0
Bit Number	Bit Mnemonic	Description					
7 - 0	FDAT[7:0]	Endpoint X FIFO Data byte to be w		ta byte to be read fr	om the FIFO, for the	e Endpoint X (see	EPNUM).

Reset Value = XXh

Table 21-11. UBYCTLX Register

UBYCTLX (S:E2h)

USB Byte Count Low Register X (X = EPNUM set in UEPNUM Register UEPNUM (S:C7h) USB Endpoint Number)

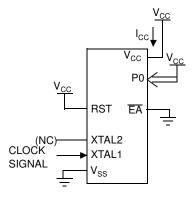
7	6	5	4	3	2	1	0
BYCT7	BYCT6	BYCT5	BYCT4	ВҮСТЗ	BYCT2	BYCT1	ВҮСТО
Bit Number	Bit Mnemonic	Description					
7 - 0	BYCT[7:0]	UBYCTHX Regist UEPNUM (S:C7h	er UBYCTHX (S:E	3h) USB Byte Coun Imber) (see Figure 2	ta packet. The most th High Register X (X 21-11 on page 126).	K = EPNUM set in U	JEPNUM Register

Reset Value = 00h

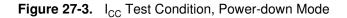
Table 21-12. UBYCTHX Register

UBYCTHX (S:E3h)

USB Byte Count High Register X (X = EPNUM set in UEPNUM Register UEPNUM (S:C7h) USB Endpoint Number)


7	6	5	4	3	2	1	0
-	-	-	-	-	-	BYCT9	BYCT8
Bit Number	Bit Mnemonic	Description					
7-2	-	Reserved The value rea	d from these bits is	always 0. Do not s	et these bits.		
2-0	BYCT[10:8]	UBYCTLX Re	nt Byte of the byte gister UBYCTLX (S	S:E2h) USB Byte Co	data packet. The L ount Low Register > (see Figure 21-11 c	(X = EPNUM set	

Reset Value = 00h


126 AT83C5134/35/36

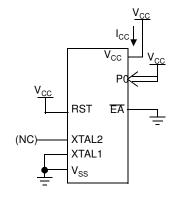
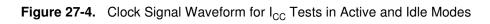
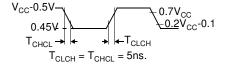


Figure 27-2. I_{CC} Test Condition, Idle Mode




All other pins are disconnected.

All other pins are disconnected.

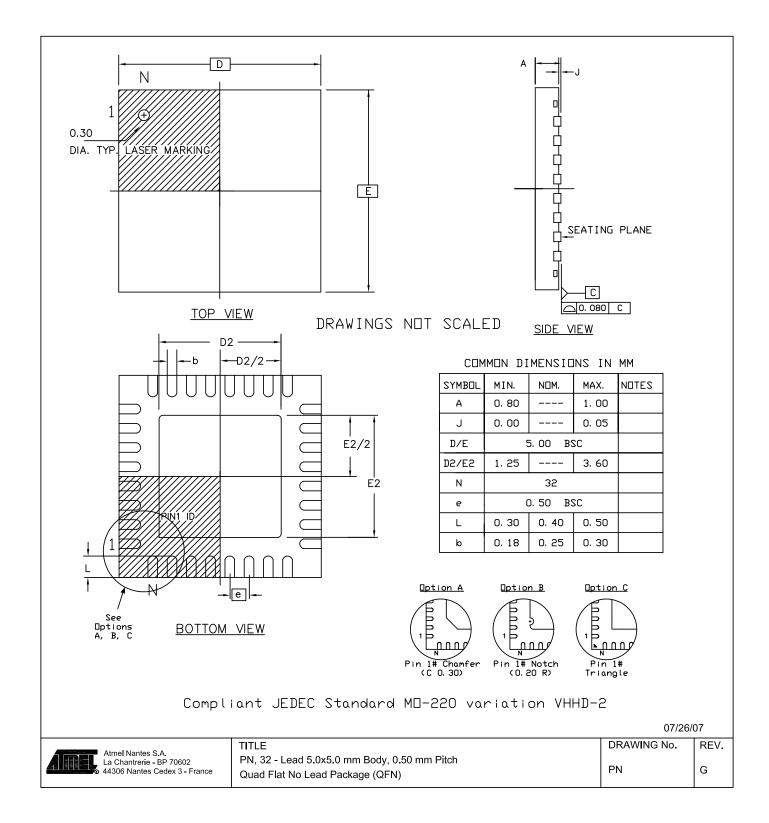
27.2.1 LED's

 Table 27-1.
 LED Outputs DC Parameters

S	Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
			1	2	4	mA	2 mA configuration
	I _{OL}	Output Low Current, P3.6 and P3.7 LED modes	2	4	8	mA	4 mA configuration
			5	10	20	mA	10 mA configuration

Note: 1. (Ta = -20°C to +50°C, V_{CC} - V_{OL} = 2 V \pm 20%)

28. Ordering Information


Table Possible Order Entries

Part Number	Memory Size	Supply Voltage	Temperature Range	Package	Packing
AT83C5134xxx-PNTUL	8KB	2.7 to 3.6V	Industrial & Green	QFN32	Tray
AT83C5135xxx-PNTUL	16KB	2.7 to 3.6V	Industrial & Green	QFN32	Tray
AT83C5136xxx-PNTUL	32KB	2.7 to 3.6V	Industrial & Green	QFN32	Tray
AT83C5136xxx-PLTUL	32KB	2.7 to 3.6V	Industrial & Green	QFN/MLF48	Tray
AT83C5136xxx-TISUL	32KB	2.7 to 3.6V	Industrial & Green	SO28	Stick
AT83C5136-RDTUL	32	2.7 to 3.6V	Industrial & Green	VQFP64	Tray
AT83C5136xxx-DDW	32KB	2.7 to 3.6V	Industrial & Green	Die	Inked Wafer
AT83EC5136xxx-PNTUL	32KB with 512-byte of EEPROM	2.7 to 3.6V	Industrial & Green	QFN/MLF48	Tray
AT83EI5136xxx-PNTUL	32KB with 32-kbyte of EEPROM	2.7 to 3.6V	Industrial & Green	QFN/MLF48	Tray

29.4 QFN32

AT83C5134/35/36

	13.5	PCA Watchdog Timer	48
14	Serial I	//O Port	49
	14.1	Framing Error Detection	49
	14.2	Automatic Address Recognition	50
	14.3	Baud Rate Selection for UART for Mode 1 and 3	52
	14.4	UART Registers	55
15	Dual D	ata Pointer Register	59
16	Interru	pt System	61
	16.1	Overview	61
	16.2	Registers	62
	16.3	Interrupt Sources and Vector Addresses	69
17	Keyboa	ard Interface	70
	17.1	Introduction	70
	17.2	Description	70
	17.3	Registers	71
18	Progra	mmable LED	74
19	Serial	Peripheral Interface (SPI)	75
19	Serial 19.1	Peripheral Interface (SPI) Features	
19			75
19	19.1	Features	75 75
19 20	19.1 19.2 19.3	Features Signal Description	75 75 77
-	19.1 19.2 19.3	Features Signal Description Functional Description	75 75 77 . 84
-	19.1 19.2 19.3 Two W	Features Signal Description Functional Description	75 75 77 . 84
-	19.1 19.2 19.3 Two W 20.1	Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description	75 75 77 84 86 89
-	19.1 19.2 19.3 Two W 20.1 20.2 20.3	Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes	75 75 77 84 86 89 99
20	19.1 19.2 19.3 Two W 20.1 20.2 20.3	Features	75 75 77 84 86 89 99 99
20	19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C	Features Signal Description Functional Description <i>Vire Interface (TWI)</i> Description Notes Registers <i>ontroller</i>	75 75 77 84 86 89 99 99 . 101 101
20	19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1	Features Signal Description Functional Description Vire Interface (TWI) Description Notes Registers ontroller Description Configuration Read/Write Data FIFO	75 75 77 84 86 89 99 99 101 103 105
20	19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2	Features	75 75 77 84 86 89 99 99 101 103 105
20	19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3	Features Signal Description Functional Description Vire Interface (TWI) Description Notes Registers ontroller Description Configuration Read/Write Data FIFO	75 75 77 84 86 89 99 99 101 103 105 106
20	19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3 21.4	Features	75 75 77 84 86 89 99 101 103 105 106 111
20	19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3 21.4 21.5	Features	75 75 77 84 86 89 99 99 . 101 101 103 105 106 111 112 113

