E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	80C52
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB
Peripherals	LED, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at83c5135-pntul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Oscillator Frequency	R+1	N+1	PLLDIV
32 MHz	3	2	21h
40 MHz	12	10	B9h

6.4 Registers

Table 6-2.CKCONO (S:8Fh)Clock Control Register O

7	6	5	4	3	2	1	0				
TWIX2	WDX2	PCAX2	SIX2	T2X2	T1X2	TOX2	X2				
Bit Number	Bit Mnemonic	Description	escription								
7	TWIX2	TWI Clock This control has no effec Clear to sele Set to select	bit is validate t. ct 6 clock per : 12 clock per	d when the C riods per perip iods per perip	PU clock X2s s oherak obyc le. heral obycl e.	set. When X2	is low, this bit				
6	WDX2	Watchdog Cl This control has no effec Clear to sele Set to select	ock bit is validate t. ct 6 clock per : 12 clock per	d when the C riods per perip iods per perip	PU clock X2s s oherakæt gcl e. heral æt gcl e.	set. When X2	is low, this bit				
5	PCAX2	Programmab This control has no effec Clear to sele Set to select	le Counter Ari bit is validate t. ct 6 clock per : 12 clock per	ray Clock d when the C riods per perip iods per perip	PU clock X2s s oherakœ tgc le. heral œ lgcl e.	set. When X2	is low, this bit				
4	SIX2	Enhanced UA This control has no effec Clear to sele Set to select	Enhanced UART Clock (Mode O and 2) This control bit is validated when the CPU clock X2s set. When X2 is low has no effect. Clear to select 6 clock periods per peripherakœtycle. Set to select 12 clock periods per peripheral œycke.								
3	T2X2	Timer2 Clock This control has no effec Clear to sele Set to select	bit is validate t. ct 6 clock per 12 clock per	d when the C riods per perip iods per perip	PU clock X2s s oherakæt gc le. heral æt gcle .	set. When X2	is low, this bit				
2	T1X2	Timer1 Clock This control bit is validated when the CPU clock X2s set. When X2 is lo has no effect. Clear to select 6 clock periods per peripherakcdgcle. Set to select 12 clock periods per peripheral dgcke.									
1	TOX2	TimerO Clock This control bit is validated when the CPU clock X2s set. When X2 is has no effect. Clear to select 6 clock periods per peripherakatycle. Set to select 12 clock periods per peripheral dycke.									
0	Х2	System Clock Clear to sele Set to select	Control bit ct 12 clock pe 6 clock perio	eriods per ma ods per machi	chine ((stalle) m ne cyclem((stalle),	ode, $F_{CPU} = F_{PE}$ $F_{CPU} = F_{PER} = F_{C}$	_{:R =} F _{OSC} ∕2). _{9SC}).				

Reset Value = 0000 0000b

16 AT83C5134/35/3

Table 7-4.Timer SFR s (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High byte								
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low byte								
WDTRST	A6h	WatchDog Timer Reset								
WDTPRG	A7h	WatchDog Timer Program						S2	S1	SO

Table 7-5. Serial I/O Port SFR s

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SMO	SM1	SM2	REN	TB8	RB8	TI	RI
SBUF	99h	Serial Data Buffer								
SADEN	B9h	Slave Address Mask								
SADDR	A9h	Slave Address								

Table 7-6. Baud Rate Generator SFR s

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
BRL	9Ah	Baud Rate Reload								
BDRCON	9Bh	Baud Rate Control				BRR	TBCK	RBCK	SPD	SRC

Table 7-7. PCA SFR s

Mnemo- nic Ade	Name	7	6	5	4	3	2	1	0
CCON D8	PCA Timer/Counter Control	CF	CR		CCF4	CCF3	CCF2	CCFI	CCFO
CMOD D9	h PCA Timer/Counter Mode	CIDL	WDTE				CPS1	CPSO	ECF
CL E9	PCA Timer/Counter Low byte								
CH F9	PCA Timer/Counter High byte								
CCAPM O									
CCAPM DA 1 DB CCAPM DC 2 DD CCAPM DE CCAPM DE CCAPM	 PCA Timer/Counter Mode 0 PCA Timer/Counter Mode 1 PCA Timer/Counter Mode 2 PCA Timer/Counter Mode 3 PCA Timer/Counter Mode 4 		ECOMO ECOM1 ECOM2 ECOM3 ECOM4	CAPPO CAPP1 CAPP2 CAPP3 CAPP4	CAPNO CAPN1 CAPN2 CAPN3 CAPN4	MATO MAT1 MAT2 MAT3 MAT4	TOGO TOG1 TOG2 TOG3 TOG4	PWMO PWM1 PWM2 PWM3 PWM4	ECCFO ECCF1 ECCF2 ECCF3 ECCF4

Table 7-7. PCA SFR s

Mnemo- nic	Add	Name	7	6	5	4	3	2	1	0
CCAPO H CCAP1 H CCAP2 H CCAP3 H CCAP4 H	FAh FBh FCh FDh FEh	PCA Compare Capture Module C H PCA Compare Capture Module 1 H PCA Compare Capture Module 2 H PCA Compare Capture Module 3 H PCA Compare Capture Module 4 H	CCAPOH7 CCAP1H7 CCAP2H7 CCAP3H7 CCAP3H7 CCAP4H7	CCAPOH6 CCAP1H6 CCAP2H6 CCAP3H6 CCAP4H6	CCAPOH5 CCAP1H5 CCAP2H5 CCAP3H5 CCAP4H5	CCAPOH4 CCAP1H4 CCAP2H4 CCAP3H4 CCAP4H4	CCAPOH3 CCAP1H3 CCAP2H3 CCAP3H3 CCAP3H3 CCAP4H3	CCAPOH2 CCAP1H2 CCAP2H2 CCAP3H2 CCAP3H2 CCAP4H2	CCAPOH1 CCAP1H1 CCAP2H1 CCAP3H1 CCAP4H1	ССАРОНО ССАР1НО ССАР2НО ССАР3НО ССАР3НО ССАР4НО
CCAPOL CCAP1L CCAP2L CCAP3L CCAP4L	EAh EBh ECh EDh EEh	PCA Compare Capture Module C L PCA Compare Capture Module 1 L PCA Compare Capture Module 2 L PCA Compare Capture Module 3 L PCA Compare Capture Module 4 L	CCAPOL7 CCAP1L7 CCAP2L7 CCAP3L7 CCAP3L7 CCAP4L7	CCAPOL6 CCAP1L6 CCAP2L6 CCAP3L6 CCAP3L6 CCAP4L6	CCAPOL5 CCAP1L5 CCAP2L5 CCAP3L5 CCAP4L5	CCAPOL4 CCAP1L4 CCAP2L4 CCAP3L4 CCAP3L4 CCAP4L4	CCAPOL3 CCAP1L3 CCAP2L3 CCAP3L3 CCAP4L3	CCAPOL2 CCAP1L2 CCAP2L2 CCAP3L2 CCAP3L2 CCAP4L2	CCAPOL1 CCAP1L1 CCAP2L1 CCAP3L1 CCAP4L1	CCAPOLO CCAP1LO CCAP2LO CCAP3LO CCAP4LO

Table 7-8. Interrupt SFR s

Mnemo- nic	Add	Name	7	6	5	4	3	2	1	0
IENO	A8h	Interrupt Enable Control O	EA	EC	ET2	ES	ET1	EX1	ETO	EXO
IEN1	B1h	Interrupt Enable Control 1		EUSB				ESPI	ETWI	EKB
IPLO	B8h	Interrupt Priority Control Low (þ	PPC	L PT2	L PSL	T1₽	PX1L	PTOL	PXOL
IPHO	B7h	Interrupt Priority Control High (D	PPC	H PT2	H PSH	PT1H	PX1H	PTOH	РХОН
IPL1	B2h	Interrupt Priority Control Low 1		PUSE	L			PSPIL	PTWIL	PKBL
IPH1	B3h	Interrupt Priority Control High 7		PUSB	H			PSPIH	PTWIH	РКВН

Table 7-9. PLL SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PLLCON	A3h	PLL Control						EXT48	PLLEN	PLOCK
PLLDIV	A4h	PLL Divider	R3	R2	R1	RO	N3	N2	N1	NO

Table 7-10. Keyboard SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBFO
KBE	9Dh	Keyboard Input Enable Register	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBEO

AT83C5134/35/3

12. Timer 2

Timer 2 has 3 operating modes: capture, auto reasonable Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and RL2 (T2CON).

Refer to the Atmel 8-bit microcontroller hardwatementation for the description of Capture and Baud Rate Generator Modes.

Timer 2 includes the following enhancements:

Auto-reload mode with up or down counter

Programmable Clock-output

12.1 Auto-reload Mode

The Auto-reload mode configures Timer 2 as a 16t-ibiter or event counter with automatic reload. If DCEN bit in T2MOD is cleared, Timer 2nbrees as in 80C52 (refer to the Atmel 8-bit microcontroller hardware description). If DCENisbistet, Timer 2 acts as an Up/down timer/counter as shownFigure 12-1 In this mode the T2EX pin controls the direoficeount.

When T2EX is high, Timer 2 counts up. Timer overflowccurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow caluses the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registric and TL2.

When T2EX is low, Timer 2 counts down. Timer underfoccurs when the count in the timer registers TH2 and TL2 equals the value stored in the time and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the time pisters.

The EXF2 bit toggles when Timer 2 overflows or toftholders according to the direction of the count. EXF2 does not generate any interrupt. The isab be used to provide 17-bit resolution.

13. Programmable Counter Array (PCA)

The PCA provides more timing capabilities with IEBU intervention than the standard timer/counters. Its advantages include reducedvace toverhead and improved accuracy. The PCA consists of a dedicated timer/counter whick essents the time base for an array of five compare/capture modules. Its clock input can be promoted to count any one of the following signals:

Peripheral clock frequency ($E_{K PERIPH}$) , 6

Peripheral clock frequency $(E_{K PERIPH})$, 2

Timer 0 overflow

External input on ECI (P1.2)

Each compare/capture modules can be programmed him one of the following modes:

rising and/or falling edge capture,

software timer

high-speed output, or

pulse width modulator

Module 4 can also be programmed as a watchdog t(see Section "PCA Watchdog Timer", page 48).

When the compare/capture modules are programmed deincapture mode, software timer, or high speed output mode, an interrupt can be generated by the module executes its function. All five modules plus the PCA timer overflow share interrupt vector.

The PCA timer/counter and compare/capture modulasesPort 1 for external I/O. These pins are listed below. If the port pin is not used ef @CA, it can still be used for standard I/O.

PCA Component	External I/O Pin
16-bit Counter	P1.2/ECI
16-bit Module 0	P1.3/CEXO
16-bit Module 1	P1.4/CEX1
16-bit Module 2	P1.5/CEX2
16-bit Module 3	P1.6/CEX3
16-bit Module 4	P1.7/CEX4

The PCA timer is a common time base for all fivelutes (see Figure 13-1). The timer count source is determined from the CPS1 and CPSO bitthenCMOD register (Table 13-1) and can be programmed to run at:

1/6 the peripheral clock frequency $(F_{K \text{ PERIPH}})$.

1/2 the peripheral clock frequency $d_{\rm K}$ PERIPH).

The Timer O overflow

The input on the ECI pin (P1.2)

Reset Value = 00XX X000b Not bit addressable

The CMOD register includes three additional bitsoais ted with the PCA (See Figure 13-1 and Table 13-1).

The CIDL bit allows the PCA to stop during idleemo

The WDTE bit enables or disables the watchdog fiomcon module 4.

The ECF bit when set causes an interrupt and the overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows.

The CCON register contains the run control bith to PCA and the flags for the PCA timer (CF) and each module (see Table 13-2).

Bit CR (CCON.6) must be set by software to ruPiCA is shut off by clearing this bit.

Bit CF: The CF bit (CCON.7) is set when the PCAuster overflows and an interrupt will be generated if the ECF bit in the CMOD register tis Take CF bit can only be cleared by software.

Bits 0 through 4 are the flags for the module 3 (but module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a eaptaurs. These flags can only be cleared by software.

Table 13-2. CCON Register

CCON - PCA Counter Control Register (D8h)

7	6	5	4	3	2	1	0
CF	CR		CCF4	CCF3	CCF2	CCF1	CCFO

Bit Number	Bit Mnemonic	Description
7	CF	PCA Counter Overflow flag Set by hardware when the counter rolls over. GE fla interrupt if bit ECF in CMOD is set CF may be set by either hardware or software bouodrdg be cleared by software.
6	CR	PCA Counter Run control bit Must be cleared by software to turn the PCA coouffiter Set by software to turn the PCA counter on.
5		Reserved The value read from this bit is indeterminate. Droset this bit.
4	CCF4	PCA Module 4 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs.
3	CCF3	PCA Module 3 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs.
2	CCF2	PCA Module 2 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs.

TCLK (T2CON)	RCLK (T2CON)	TBCK (BDRCON)	RBCK (BDRCON)	Clock Source UART Tx	Clock Source UART Rx
0	0	0	0	Timer 1	Timer 1
1	0	0	0	Timer 2	Timer 1
0	1	0	0	Timer 1	Timer 2
1	1	0	0	Timer 2	Timer 2
Х	0	1	0	INT_BRG	Timer 1
Х	1	1	0	INT_BRG	Timer 2
0	Х	0	1	Timer 1	INT_BRG
1	Х	0	1	Timer 2	INT_BRG
Х	Х	1	1	INT_BRG	INT_BRG

14.3.1 Baud Rate Selection Table for UART

14.3.2 Internal Baud Rate Generator (BRG)

When the internal Baud Rate Generator is used, Btaned Rates are determined by the BRG overflow depending on the BRL reload value, thereads SPD bit (Speed Mode) in BDRCON register and the value of the SMOD1 bit in PCONisteg

Figure 14-5. Internal Baud Rate

AT83C5134/35/36

Table 16-4.IPHO RegisterIPHO - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	PPCH	PT2H	PSH	PT1H	PX1H	PTOH	РХОН
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value re	ad from this I	oit is indetern	ninate. Dt os e t t	his bit.	
6	РРСН	PCA interru <u>PPCH PPCL</u> 0 0 0 1 1 0 1 1	ot Priority hig <u>Priority Leve</u> Lowest Highest	h bit. Əl			
5	PT2H	Timer 2 ove PT2H PT2L O O 0 1 1 O 1 1	rflow interrup <u>Priority Leve</u> Lowest Highest	t Priority Hig el	h bit		
4	PSH	Serial port F <u>PSH</u> <u>PSL</u> O O O 1 1 O 1 1	Priority High b <u>Priority Leve</u> Lowest Highest	it el			
3	PT1H	Timer 1 over PT1H PT1L 0 0 O 0 1 1 1 0 1 1 1 1 1 1	rflow interrup <u>Priority Leve</u> Lowest Highest	t Priority Higi çi	n bit		
2	PX1H	External inte <u>PX1H</u> <u>PX1L</u> O O O 1 1 O 1 1	errupt 1 Priori <u>Priority Leve</u> Lowest Highest	ty High bit el			
1	ртон	Timer O ove PTOH PTOL O 0 0 1 1 0 1 1	rflow interrup <u>Priority Leve</u> Lowest Highest	t Priority Hig el	h bit		
0	РХОН	External internation <u>PXOH</u> <u>PXOL</u> O O O 1 1 O 1 1	errupt O Prior <u>Priority Leve</u> Lowest Highest	ity High bit ⊋I			

Reset Value = x000 0000b Not bit addressable

AT83C5134/35/36

16.3 Interrupt Sources and Vector Addresses

Table 16-8. Vector Table

Number	Polling Priority	Interrupt Source	Interrupt Request	Vector Address
0	0	Reset		0000h
1	1	INTO	IEO	0003h
2	2	Timer O	TFO	OOOBh
3	3	INT1	IE1	0013h
4	4	Timer 1	IF1	001Bh
5	6	UART	RI+TI	0023h
6	7	Timer 2	TF2+EXF2	002Bh
7	5	PCA	CF + CCFn (n = 0-4)	0033h
8	8	Keyboard	KBDIT	003Bh
9	9	TWI	TWIIT	0043h
10	10	SPI	SPIIT	004Bh
11	11			0053h
12	12			005Bh
13	13			0063h
14	14	USB	UEPINT + USBINT	006Bh
15	15			0073h

