

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Discontinued at Digi-Key
Core Processor	80C52
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART, USB
Peripherals	LED, POR, PWM, WDT
Number of I/O	18
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at83c5136-pntul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2 PCB Recommandations

Figure 5-2. USB Pads

Note: No sharp angle in above drawing.

Figure 5-3. USB PLL

Table 7-7. PCA SFR's

Mnemo- nic	Add	Name	7	6	5	4	3	2	1	0
CCAP0 H		PCA Compare Capture Module 0 H								
CCAP1 H CCAP2 H CCAP3 H CCAP4 H	FAh FBh FCh FDh FEh	PCA Compare Capture Module 1 H PCA Compare Capture Module 2 H PCA Compare Capture Module 3 H PCA Compare Capture Module 4 H	ССАР0Н7 ССАР1Н7 ССАР2Н7 ССАР3Н7 ССАР3Н7 ССАР4Н7	CCAP0H6 CCAP1H6 CCAP2H6 CCAP3H6 CCAP3H6 CCAP4H6	CCAP0H5 CCAP1H5 CCAP2H5 CCAP3H5 CCAP4H5	ССАР0Н4 ССАР1Н4 ССАР2Н4 ССАР3Н4 ССАР3Н4	ССАР0Н3 ССАР1Н3 ССАР2Н3 ССАР3Н3 ССАР4Н3	CCAP0H2 CCAP1H2 CCAP2H2 CCAP3H2 CCAP3H2	CCAP0H1 CCAP1H1 CCAP2H1 CCAP3H1 CCAP4H1	CCAP0H0 CCAP1H0 CCAP2H0 CCAP3H0 CCAP4H0
CCAP0L CCAP1L CCAP2L CCAP3L CCAP4L	EAh EBh ECh EDh EEh	PCA Compare Capture Module 0 L PCA Compare Capture Module 1 L PCA Compare Capture Module 2 L PCA Compare Capture Module 3 L PCA Compare Capture Module 4 L	CCAP0L7 CCAP1L7 CCAP2L7 CCAP3L7 CCAP3L7	CCAP0L6 CCAP1L6 CCAP2L6 CCAP3L6 CCAP3L6 CCAP4L6	CCAP0L5 CCAP1L5 CCAP2L5 CCAP3L5 CCAP3L5	CCAP0L4 CCAP1L4 CCAP2L4 CCAP3L4 CCAP3L4	CCAP0L3 CCAP1L3 CCAP2L3 CCAP3L3 CCAP3L3	CCAP0L2 CCAP1L2 CCAP2L2 CCAP3L2 CCAP3L2 CCAP4L2	CCAP0L1 CCAP1L1 CCAP2L1 CCAP3L1 CCAP4L1	CCAP0L0 CCAP1L0 CCAP2L0 CCAP3L0 CCAP4L0

Table 7-8.Interrupt SFR's

Mnemo- nic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	B1h	Interrupt Enable Control 1		EUSB				ESPI	ETWI	EKB
IPL0	B8h	Interrupt Priority Control Low 0		PPCL	PT2L	PSL	PT1L	PX1L	PTOL	PX0L
IPH0	B7h	Interrupt Priority Control High 0		PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPL1	B2h	Interrupt Priority Control Low 1		PUSBL				PSPIL	PTWIL	PKBL
IPH1	B3h	Interrupt Priority Control High 1		PUSBH				PSPIH	PTWIH	РКВН

Table 7-9.PLL SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PLLCON	A3h	PLL Control						EXT48	PLLEN	PLOCK
PLLDIV	A4h	PLL Divider	R3	R2	R1	R0	N3	N2	N1	N0

Table 7-10.Keyboard SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0
KBE	9Dh	Keyboard Input Enable Register	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0

9.2.1 Program ROM lock Bits

The lock bits when programmed according to Table 9-2 will provide different level of protection for the on-chip code and data.

Table 0-2	Program	Lock hite
Table 9-2.	Program	LOCK DIIS

Program Lock Bits			Protection Description
Security level LB1 LB0		LB0	
1	U	U	No program lock feature enabled.
3	Р	U	Reading ROM data from programmer is disabled.

U: unprogrammed

P: programmed

Bit Number	Bit Mnemonic	Description						
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit						
3	XRS1	RAM Size						
2	XRS0	XRS1XRS0 ERAM size 0 0 256 bytes 0 1 512 bytes 1 0 768 bytes 1 1 1024 bytes (default)						
1	EXTRAM	EXTRAM bit Cleared to access internal ERAM using MOVX at \overline{Ri} at DPTR. Set to access external memory.						
0	AO	ALE Output bit Cleared, ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode is used) (default). Set, ALE is active only when a MOVX or MOVC instruction is used.						

Reset Value = 0X0X 1100b Not bit addressable

Table 14-3.PCON RegisterPCON - Power Control Register (87h)

7	6	5	4	3	2	1	0			
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic	Description								
7	SMOD1	Serial port Mo Set to select do	de bit 1 for U	ART e in mode 1, 2 o	r 3.					
6	SMOD0	Serial port Mod Cleared to sele Set to select Fl	rial port Mode bit 0 for UART eared to select SM0 bit in SCON register. et to select FE bit in SCON register.							
5	-	Reserved The value read	e value read from this bit is indeterminate. Do not set this bit.							
4	POF	Power-Off Fla Cleared to reco Set by hardwar software.	Yower-Off Flag Cleared to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.							
3	GF1	General-purpe Cleared by use Set by user for	o se Flag er for general-p general-purpo	urpose usage. se usage.						
2	GF0	General-purpe Cleared by use Set by user for	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.							
1	PD	Power-down I Cleared by har Set to enter po	Power-down Mode Bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle Mode Bit Cleared by har Set to enter idl	dware when in e mode.	terrupt or reset	occurs.					

Reset Value = 00x1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

AT83C5134/35/36

Table 16-4.IPH0 Register

IPH0 - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0					
-	PPCH	PT2H	PSH	PT1H	PX1H	РТОН	PX0H					
Bit Number	Bit Mnemonic	Description										
7	-	Reserved The value rea	served e value read from this bit is indeterminate. Do not set this bit.									
6	РРСН	PCA interrup PPCH PPCL 0 0 1 0 1 1	Priority high <u>Priority Leve</u> Lowest Highest	n bit. I								
5	PT2H	Timer 2 over PT2H PT2L 0 0 1 0 1 1	flow interrupt <u>Priority Leve</u> Lowest Highest	Priority High <u> </u>	bit							
4	PSH	Serial port P PSH PSL 0 0 1 0 1 1	riority High bi <u>Priority Leve</u> Lowest Highest	t <u>l</u>								
3	PT1H	Timer 1 over PT1H PT1L 0 0 0 1 1 1 1 0 1 1	flow interrupt <u>Priority Leve</u> Lowest Highest	Priority High <u> </u>	bit							
2	PX1H	External inte PX1H PX1L 0 0 0 1 1 0 1 1	errupt 1 Priorit Priority Leve Lowest Highest	y High bit <u> </u>								
1	РТОН	Timer 0 over PT0H PT0L 0 0 1 0 1 1	flow interrupt <u>Priority Leve</u> Lowest Highest	Priority High <u> </u>	bit							
0	РХОН	External inter <u>PX0H</u> <u>PX0L</u> 0 0 0 1 1 0 1 1	errupt 0 Priorit Priority Leve Lowest Highest	y High bit I								

Reset Value = x000 0000b Not bit addressable

Table 16-5. IEN1 Register

IEN1 - Interrupt Enable Register (B1h)

7	6	5	4	3	2	1	0					
-	EUSB	-	-	-	ESPI	ETWI	ЕКВ					
Bit Number	Bit Mnemonic	Description	escription									
7	-	Reserved	eserved									
6	EUSB	USB Interrup Cleared to dis Set to enable	B Interrupt Enable bit eared to disable USB interrupt. tt o enable USB interrupt.									
5	-	Reserved	eserved									
4	-	Reserved										
3	-	Reserved										
2	ESPI	SPI interrupt Cleared to dis Set to enable	iPI interrupt Enable bit Cleared to disable SPI interrupt. Set to enable SPI interrupt.									
1	ETWI	TWI interrup Cleared to dis Set to enable	T WI interrupt Enable bit Deared to disable TWI interrupt. Set to enable TWI interrupt.									
0	EKB	Keyboard in Cleared to dis Set to enable	terrupt Enable sable keyboard keyboard inter	e bit I interrupt. rrupt.								

Reset Value = x0xx x000b Not bit addressable

Table 16-7. IPH1 Register

IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0				
-	PUSBH	-	-	-	PSPIH	PTWIH	РКВН				
Bit Number	Bit Mnemonic	Description	escription								
7	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.								
6	PUSBH	USB Interrup PUSBHPUSE 0 0 1 0 1 1	SB Interrupt Priority High bit JSBHPUSBLPriority Level 0 Lowest 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Highest								
5	-	Reserved The value rea	served e value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.								
3	-	Reserved The value rea	ad from this bit	is indeterminat	e. Do not set th	is bit.					
2	PSPIH	SPI Interrupt PSPIHPSPIL 0 0 0 1 1 0 1 1	t Priority High <u>Priority Leve</u> Lowest Highest	bit <u>i</u>							
1	PTWIH	TWI Interrup PTWIHPTWII 0 0 0 1 1 0 1 1	WI Interrupt Priority High bit YTWIHPTWIL Priority Level 0 Lowest 1 0 1 Highest								
0	РКВН	Keyboard In PKBH PKBL 0 0 0 1 1 0 1 1	terrupt Priorit <u>Priority Leve</u> Lowest Highest	y High bit ≟							

Reset Value = X0XX X000b Not bit addressable

16.3 Interrupt Sources and Vector Addresses

Table 16-8.Vector Table

Number	Polling Priority	Interrupt Source	Interrupt Request	Vector Address
0	0	Reset		0000h
1	1	INT0	INTO IE0	
2	2	Timer 0	TF0	000Bh
3	3	INT1	IE1	0013h
4	4	Timer 1	IF1	001Bh
5	6	UART	RI+TI	0023h
6	7	Timer 2	TF2+EXF2	002Bh
7	5	PCA	CF + CCFn (n = 0-4)	0033h
8	8	Keyboard	KBDIT	003Bh
9	9	TWI	тwііт	0043h
10	10	SPI	SPIIT	004Bh
11	11			0053h
12	12			005Bh
13	13			0063h
14	14	USB	UEPINT + USBINT	006Bh
15	15			0073h

Table 17-2. KBE Register

KBE - Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0						
KBE7	KBE6	KBE5	KBE5 KBE4 KBE3 KBE2 KBE1 KB										
Bit Number	Bit Mnemonic	Description	Description										
7	KBE7	Keyboard line Cleared to ena Set to enable	Keyboard line 7 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.7 bit in KBF register to generate an interrupt request.										
6	KBE6	Keyboard line Cleared to ena Set to enable	Ceyboard line 6 Enable bit Deared to enable standard I/O pin. Set to enable KBF.6 bit in KBF register to generate an interrupt request.										
5	KBE5	Keyboard line Cleared to ena Set to enable	Keyboard line 5 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.5 bit in KBF register to generate an interrupt request.										
4	KBE4	Keyboard line Cleared to ena Set to enable	e 4 Enable bit able standard I KBF.4 bit in KE	/O pin. 3F register to ge	enerate an inter	rupt request.							
3	KBE3	Keyboard line Cleared to ena Set to enable	a 3 Enable bit able standard I KBF.3 bit in KE	/O pin. 3F register to ge	enerate an inter	rupt request.							
2	KBE2	Keyboard line Cleared to ena Set to enable	Keyboard line 2 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.2 bit in KBF register to generate an interrupt request.										
1	KBE1	Keyboard line Cleared to ena Set to enable	Keyboard line 1 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.1 bit in KBF register to generate an interrupt request.										
0	KBE0	Keyboard line Cleared to ena Set to enable	e 0 Enable bit able standard I KBF.0 bit in KE	/O pin. F register to ge	enerate an inter	rupt request.							

Reset Value = 0000 0000b

Table 17-3. KBLS Register

KBLS-Keyboard Level Selector Register (9Ch)

7	6	5	4	1	0									
KBLS7	KBLS6	KBLS5	KBLS4	KBLS2	KBLS1	KBLS0								
Bit Number	Bit Mnemonic	Description	Description											
7	KBLS7	Keyboard line Cleared to enable	e 7 Level Sele able a low leve a high level de	ction bit I detection on P tection on Port	ort line 7. line 7.									
6	KBLS6	Keyboard line Cleared to enable	Ceyboard line 6 Level Selection bit Cleared to enable a low level detection on Port line 6. Set to enable a high level detection on Port line 6.											
5	KBLS5	Keyboard lin Cleared to enable	Keyboard line 5 Level Selection bit Cleared to enable a low level detection on Port line 5. Set to enable a high level detection on Port line 5.											
4	KBLS4	Keyboard lin Cleared to enable	e 4 Level Sele able a low leve a high level de	ction bit I detection on P tection on Port	Port line 4. line 4.									
3	KBLS3	Keyboard line Cleared to enable	e 3 Level Sele able a low leve a high level de	ction bit I detection on P tection on Port	Port line 3. line 3.									
2	KBLS2	Keyboard lin Cleared to enable	Keyboard line 2 Level Selection bit Cleared to enable a low level detection on Port line 2. Set to enable a high level detection on Port line 2.											
1	KBLS1	Keyboard lin Cleared to en Set to enable	Keyboard line 1 Level Selection bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1.											
0	KBLS0	Keyboard line Cleared to enable	Keyboard line 0 Level Selection bit Cleared to enable a low level detection on Port line 0. Set to enable a high level detection on Port line 0.											

Reset Value = 0000 0000b

20.1 Description

The CPU interfaces to the 2-wire logic via the following four 8-bit special function registers: the Synchronous Serial Control register (SSCON; Table 20-10), the Synchronous Serial Data register (SSDAT; Table 20-11), the Synchronous Serial Control and Status register (SSCS; Table 20-12) and the Synchronous Serial Address register (SSADR Table 20-13).

SSCON is used to enable the TWI interface, to program the bit rate (see Table 20-3), to enable slave modes, to acknowledge or not a received data, to send a START or a STOP condition on the 2-wire bus, and to acknowledge a serial interrupt. A hardware reset disables the TWI module.

SSCS contains a status code which reflects the status of the 2-wire logic and the 2-wire bus. The three least significant bits are always zero. The five most significant bits contains the status code. There are 26 possible status codes. When SSCS contains F8h, no relevant state information is available and no serial interrupt is requested. A valid status code is available in SSCS one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. to Table 20-9. give the status for the master modes and miscellaneous states.

SSDAT contains a byte of serial data to be transmitted or a byte which has just been received. It is addressable while it is not in process of shifting a byte. This occurs when 2-wire logic is in a defined state and the serial interrupt flag is set. Data in SSDAT remains stable as long as SI is set. While data is being shifted out, data on the bus is simultaneously shifted in; SSDAT always contains the last byte present on the bus.

SSADR may be loaded with the 7-bit slave address (7 most significant bits) to which the TWI module will respond when programmed as a slave transmitter or receiver. The LSB is used to enable general call address (00h) recognition.

Figure 20-3 shows how a data transfer is accomplished on the 2-wire bus.

Figure 20-3. Complete Data Transfer on 2-wire Bus

The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave transmitter
- Slave receiver

Data transfer in each mode of operation is shown in Table to Table 20-9 and Figure 20-4. to Figure 20-7.. These figures contain the following abbreviations:

S : START condition

address and the data direction bit (SLA+R). The serial interrupt flag SI must then be cleared before the serial transfer can continue.

When the slave address and the direction bit have been transmitted and an acknowledgement bit has been received, the serial interrupt flag is set again and a number of status code in SSCS are possible. There are 40h, 48h or 38h for the master mode and also 68h, 78h or B0h if the slave mode was enabled (AA=logic 1). The appropriate action to be taken for each of these status code is detailed in Table . This scheme is repeated until a STOP condition is transmitted.

SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to Table 11. After a repeated START condition (state 10h) the TWI module may switch to the master transmitter mode by loading SSDAT with SLA+W.

20.1.3 Slave Receiver Mode

In the slave receiver mode, a number of data bytes are received from a master transmitter (Figure 20-6). To initiate the slave receiver mode, SSADR and SSCON must be loaded as follows:

Table 20-2.	SSADR: Slave	Receiver	Mode	Initialization
-------------	--------------	----------	------	----------------

A6	A5	A4	A3 A2		A1	A0	GC
		own	slave address				

The upper 7 bits are the address to which the TWI module will respond when addressed by a master. If the LSB (GC) is set the TWI module will respond to the general call address (00h); otherwise it ignores the general call address.

 Table 20-3.
 SSCON: Slave Receiver Mode Initialization

CR2	SSIE	STA	STO	SI	AA	CR1	CR0
bit rate	1	0	0	0	1	bit rate	bit rate

CR0, CR1 and CR2 have no effect in the slave mode. SSIE must be set to enable the TWI. The AA bit must be set to enable the own slave address or the general call address acknowledgement. STA, STO and SI must be cleared.

When SSADR and SSCON have been initialised, the TWI module waits until it is addressed by its own slave address followed by the data direction bit which must be at logic 0 (W) for the TWI to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag is set and a valid status code can be read from SSCS. This status code is used to vector to an interrupt service routine. The appropriate action to be taken for each of these status code is detailed in Table . The slave receiver mode may also be entered if arbitration is lost while TWI is in the master mode (states 68h and 78h).

If the AA bit is reset during a transfer, TWI module will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, the TWI module does not respond to its own slave address. However, the 2-wire bus is still monitored and address recognition may be resume at any time by setting AA. This means that the AA bit may be used to temporarily isolate the module from the 2-wire bus.

		Application software response					
Status Code	Status of the Two-			To SSC	ON		
SSSTA	wire Hardware	To/From SSDAT	SSSTA	SSSTO	SSI	SSAA	Next Action Taken by Two-wire Hardware
08h	A START condition has been transmitted	Write SLA+W	x	0	0	х	SLA+W will be transmitted.
10b	A repeated START	Write SLA+W	x	0	0	х	SLA+W will be transmitted.
1011	transmitted	Write SLA+R	x	0	0	х	SLA+R will be transmitted. Logic will switch to master receiver mode
		Write data byte	0	0	0	х	Data byte will be transmitted.
	SI A+W has been	No SSDAT action	1	0	0	х	Repeated START will be transmitted.
18h	transmitted; ACK has	No SSDAT action	0	1	0	х	STOP condition will be transmitted and SSSTO flag will be reset.
		No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
		Write data byte	0	0	0	х	Data byte will be transmitted.
	SLA+W has been 20h transmitted; NOT ACK	No SSDAT action	1	0	0	Х	Repeated START will be transmitted.
20h		No SSDAT action	0	1	0	х	STOP condition will be transmitted and SSSTO flag
	has been received	No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
		Write data byte	0	0	0	х	Data byte will be transmitted.
	Data byte has been	No SSDAT action	1	0	0	Х	Repeated START will be transmitted.
28h	transmitted; ACK has	No SSDAT action	0	1	0	х	STOP condition will be transmitted and SSSTO flag will be reset
	been received	No SSDAT action	1	1	0	x	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
		Write date byte	0	0	0	~	Data byte will be transmitted.
			0	0	0		Repeated START will be transmitted.
206	Data byte has been	No SSDAT action		0	0	X	STOP condition will be transmitted and SSSTO flag
300	has been received	NO SSDAT action	0	1	0	X	will be reset.
		No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
0.0h	Arbitration lost in	No SSDAT action	0	0	0	х	Two-wire bus will be released and not addressed slave mode will be entered.
38N	SLA+W or data bytes	No SSDAT action	1	0	0	х	A START condition will be transmitted when the bus becomes free.

Table 20-5. Status in Master Transmitter Mode

		Application Software Response					
Status		To/from SSDAT	To SSCON				
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA	STO	SI	AA	Next Action Taken By 2-wire Software
		No SSDAT action or No SSDAT action or	0	0	0 0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC-logic 1
C0h Data byte in SSDAT has be transmitted; NOT ACK ha been received	Data byte in SSDAT has been transmitted; NOT ACK has been received	No SSDAT action or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		No SSDAT action	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free
		No SSDAT action or No SSDAT action or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC-logic 1
C8h	Last data byte in SSDAT has been transmitted (AA=0); ACK has been received	No SSDAT action or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		No SSDAT action	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free

Table 20-8. Status in Slave Transmitter Mode (Continued)

 Table 20-9.
 Miscellaneous Status

		Application	n Softwa	re Respo			
Status		To/from SSDAT To SSCON					
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA STO SI AA I		АА	Next Action Taken By 2-wire Software	
F8h	No relevant state information available; SI= 0	No SSDAT action	٩	No SSCON action			Wait or proceed current transfer
00h	Bus error due to an illegal START or STOP condition	No SSDAT action	0 1 0 X		х	Only the internal hardware is affected, no STOP condition is sent on the bus. In all cases, the bus is released and STO is reset.	

- · Address checking.
- Clock generation (via DPLL).

21.1.2 Function Interface Unit (FIU)

The Function Interface Unit provides the interface between the AT89C5131 and the SIE. It manages transactions at the packet level with minimal intervention from the device firmware, which reads and writes the endpoint FIFOs.

Table 21-14.UEPINT RegisterUEPINT (S:F8h read-only)USB Endpoint Interrupt Register

7	6	5	4	3	2	1	0							
-	-	EP5INT	EP4INT	EP3INT	EP2INT	EP1INT	EPOINT							
Bit Number	Bit Mnemonic	Description	Description											
7	-	Reserved The value read	Reserved The value read from this bit is always 0. Do not set this bit.											
6	-	Reserved The value rea	Reserved The value read from this bit is always 0. Do not set this bit.											
5	EP5INT	Endpoint 5 Int This bit is set endpoint 5. Th TXCMP, RXO A USB interru This bit is clea	Endpoint 5 Interrupt This bit is set by hardware when an endpoint interrupt source has been detected on the endpoint 5. The endpoint interrupt sources are in the UEPSTAX register and can be: TXCMP, RXOUTB0, RXOUTB1, RXSETUP or STLCRC. A USB interrupt is triggered when the EP5IE bit in the UEPIEN register is set. This bit is cleared by hardware when all the endpoint interrupt sources are cleared											
4	EP4INT	Endpoint 4 Int This bit is set endpoint 4. Tr TXCMP, RXO A USB interru This bit is clear	Endpoint 4 Interrupt This bit is set by hardware when an endpoint interrupt source has been detected on the endpoint 4. The endpoint interrupt sources are in the UEPSTAX register and can be: TXCMP, RXOUTB0, RXOUTB1, RXSETUP or STLCRC. A USB interrupt is triggered when the EP4IE bit in the UEPIEN register is set. This bit is cleared by hardware when all the endpoint interrupt sources are cleared											
3	EP3INT	Endpoint 3 Int This bit is set endpoint 3. Tr TXCMP, RXO A USB interru This bit is clear	Endpoint 3 Interrupt This bit is set by hardware when an endpoint interrupt source has been detected on the endpoint 3. The endpoint interrupt sources are in the UEPSTAX register and can be: TXCMP, RXOUTB0, RXOUTB1, RXSETUP or STLCRC. A USB interrupt is triggered when the EP3IE bit in the UEPIEN register is set. This bit is cleared by bardware when all the endpoint interrupt sources are cleared.											
2	EP2INT	Endpoint 2 Int This bit is set endpoint 2. Th TXCMP, RXO A USB interru This bit is clea	errupt by hardware wl ne endpoint inte UTB0, RXOUT pt is triggered v ured by hardwa	nen an endpoin errupt sources a B1, RXSETUP vhen the EP2IE re when all the	t interrupt sour ire in the UEPS or STLCRC. E bit in the UEP endpoint interru	ce has been de TAX register a IEN register is upt sources are	etected on the nd can be: set. e cleared							
1	EP1INT	Endpoint 1 Interrupt This bit is set by hardware when an endpoint interrupt source has been detected on the endpoint 1. The endpoint interrupt sources are in the UEPSTAX register and can be: TXCMP, RXOUTB0, RXOUTB1, RXSETUP or STLCRC. A USB interrupt is triggered when the EP1IE bit in the UEPIEN register is set. This bit is cleared by hardware when all the endpoint interrupt sources are cleared												
0	EPOINT	Endpoint 0 Int This bit is set endpoint 0. Th TXCMP, RXO A USB interru This bit is clea	Endpoint 0 Interrupt This bit is set by hardware when an endpoint interrupt source has been detected on the endpoint 0. The endpoint interrupt sources are in the UEPSTAX register and can be: TXCMP, RXOUTB0, RXOUTB1, RXSETUP or STLCRC. A USB interrupt is triggered when the EP0IE bit in the UEPIEN register is set. This bit is cleared by hardware when all the endpoint interrupt sources are cleared											

Reset Value = 00h

Figure 27-7. SPI Master Waveforms (SSCPHA= 0)

Note: 1. SS handled by software using general purpose port pin.

SS handled by software using general purpose port pin.

29.4 QFN32

30. Document Revision History

30.1 Changes from Rev A. to Rev. B

1. Added QFN32 package.

30.2 Changes from Rev B. to Rev. C

1. Updated package drawings.

