

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Discontinued at Digi-Key
Core Processor	80C52
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB
Peripherals	LED, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at83c5136-rdtul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4-4. AT83C5134/35/36 32-pin QFN Pinout

Note : The metal plate can be connected to Vss

4.2 Signals

All the AT83C5134/35/36 signals are detailed by functionality on Table 4-1 through Table 4-12.

 Table 4-1.
 Keypad Interface Signal Description

Signal Name	Туре	Description	Alternate Function
KIN[7:0)	I	Keypad Input Lines Holding one of these pins high or low for 24 oscillator periods triggers a keypad interrupt if enabled. Held line is reported in the KBCON register.	P1[7:0]

Table 4-2. Programmable Counter Array Signal Description

Signal Name	Туре	Description	Alternate Function
ECI	I	External Clock Input	P1.2
CEX[4:0]	I/O	Capture External Input Compare External Output	P1.3 P1.4 P1.5 P1.6 P1.7

6 AT83C5134/35/36

The table below shows all SFRs with their address and their reset value.

Table 7-1.SFR Descriptions

	Bit Addressable		Non-Bit Addressable										
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F					
F8h	UEPINT 0000 0000	CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAP2H XXXX XXXX	CCAP3H XXXX XXXX	CCAP4H XXXX XXXX		FFh				
F0h	B 0000 0000	LEDCON 0000 0000							F7h				
E8h		CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAP2L XXXX XXXX	CCAP3L XXXX XXXX	CCAP4L XXXX XXXX		EFh				
E0h	ACC 0000 0000		UBYCTLX 0000 0000	UBYCTHX 0000 0000					E7h				
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh				
D0h	PSW 0000 0000				UEPCONX 1000 0000	UEPRST 0000 0000			D7h				
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000	UEPSTAX 0000 0000	UEPDATX 0000 0000	CFh				
C0h	P4 XXXX 1111		UEPIEN 0000 0000	SPCON 0001 0100	SPSTA 0000 0000	SPDAT XXXX XXXX	USBADDR 1000 0000	UEPNUM 0000 0000	C7h				
B8h	IPL0 X000 000	SADEN 0000 0000	UFNUML 0000 0000	UFNUMH 0000 0000	USBCON 0000 0000	USBINT 0000 0000	USBIEN 0000 0000		BFh				
B0h	P3 1111 1111	IEN1 X0XX X000	IPL1 X0XX X000	IPH1 X0XX X000				IPH0 X000 0000	B7h				
A8h	IEN0 0000 0000	SADDR 0000 0000						CKCON1 0000 0000	AFh				
A0h	P2 1111 1111		AUXR1 XXXX X0X0	PLLCON XXXX XX00	PLLDIV 0000 0000		WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h				
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000		9Fh				
90h	P1 1111 1111			SSCON 0000 0000	SSCS 1111 1000	SSDAT 1111 1111	SSADR 1111 1110		97h				
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XX0X 0000	CKCON0 0000 0000	8Fh				
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F					

Note: 1. FCON access is reserved for the Flash API and ISP software.

Reserved

The Special Function Registers (SFRs) of the AT89C5131 fall into the following categories:

Table 7-13. USB SFR's

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
UBYCTLX	E2h	USB Byte Counter Low (EP X)	BYCT7	BYCT6	BYCT5	BYCT4	ВҮСТЗ	BYCT2	BYCT1	BYCT0
UBYCTHX	E3h	USB Byte Counter High (EP X)	-	-	-	-	-	BYCT10	BYCT9	BYCT8
UFNUML	BAh	USB Frame Number Low	FNUM7	FNUM6	FNUM5	FNUM4	FNUM3	FNUM2	FNUM1	FNUM0
UFNUMH	BBh	USB Frame Number High	-	-	CRCOK	CRCERR	-	FNUM10	FNUM9	FNUM8

Table 7-14. Other SFR's

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	DPU	-	M0	-	XRS1	XRS2	EXTRAM	A0
AUXR1	A2h	Auxiliary Register 1	-	-	ENBOOT	-	GF3	-	-	DPS
CKCON0	8Fh	Clock Control 0	TWIX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
CKCON1	AFh	Clock Control 1	-	-	-	-	-	-	-	SPIX2
LEDCON	F1h	LED Control	LED3		LE	D2	LE	D1	LE	D0

Bit Number	Bit Mnemonic	Description
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit
3	XRS1	ERAM Size
2	XRS0	XRS1XRS0 ERAM size 0 0 256 bytes 0 1 512 bytes 1 0 768 bytes 1 1 1024 bytes (default)
1	EXTRAM	EXTRAM bit Cleared to access internal ERAM using MOVX at \overline{Ri} at DPTR. Set to access external memory.
0	AO	ALE Output bit Cleared, ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode is used) (default). Set, ALE is active only when a MOVX or MOVC instruction is used.

Reset Value = 0X0X 1100b Not bit addressable

It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

- The ECCF bit (CCAPMn.0 where n = 0, 1, 2, 3, or 4 depending on the module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated module.
- PWM (CCAPMn.1) enables the pulse width modulation mode.
- The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition.
- The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.

Table 13-4 shows the CCAPMn settings for the various PCA functions.

Table 13-3.CCAPMn Registers (n = 0-4)

6

7

CCAPM0 - PCA Module 0 Compare/Capture Control Register (0DAh)

CCAPM1 - PCA Module 1 Compare/Capture Control Register (0DBh)

CCAPM2 - PCA Module 2 Compare/Capture Control Register (0DCh)

CCAPM3 - PCA Module 3 Compare/Capture Control Register (0DDh)

CCAPM4 - PCA Module 4 Compare/Capture Control Register (0DEh)

Δ

3

2

1

٥

5

-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn			
Bit Number	Bit Mnemonic	Description	1							
7	-	Reserved The value re	ead from this bi	t is indetermina	ite. Do not set	this bit.				
6	ECOMn	Enable Com Cleared to d Set to enabl	Enable Comparator Cleared to disable the comparator function. Set to enable the comparator function.							
5	CAPPn	Capture Pos Cleared to d Set to enabl	Capture Positive Cleared to disable positive edge capture. Set to enable positive edge capture.							
4	CAPNn	Capture Neg Cleared to d Set to enabl	gative lisable negative e negative edg	e edge capture. Je capture.						
3	MATn	Match When MATr register caus CCFn bit in	Match When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt.							
2	TOGn	Toggle When TOGr register cau	Foggle When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.							

Figure 13-5. PCA High-speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

13.4 Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 13-6 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

External Data Memory

15. Dual Data Pointer Register

The additional data pointer can be used to speed up code execution and reduce code size.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 15-1) that allows the program code to switch between them (see Figure 15-1).

Reset Value = xxxx x0x0b

Not bit addressable

a. Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.

ASSEMBLY LANGUAGE

Table 16-7. IPH1 Register

IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0					
-	PUSBH	-	-	-	PSPIH	PTWIH	РКВН					
Bit Number	Bit Mnemonic	Description	Description									
7	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.									
6	PUSBH	USB Interrup PUSBHPUSE 0 0 1 0 1 1	SB Interrupt Priority High bit USBHPUSBLPriority Level 0 Lowest 1 0 1 Highest									
5	-	Reserved The value rea	e value read from this bit is indeterminate. Do not set this bit.									
4	-	Reserved The value rea	leserved 'he value read from this bit is indeterminate. Do not set this bit.									
3	-	Reserved The value rea	ad from this bit	is indeterminat	e. Do not set th	is bit.						
2	PSPIH	SPI Interrupt PSPIHPSPIL 0 0 0 1 1 0 1 1	t Priority High <u>Priority Leve</u> Lowest Highest	bit <u>i</u>								
1	PTWIH	TWI Interrup PTWIHPTWII 0 0 0 1 1 0 1 1	FWI Interrupt Priority High bit PTWIHPTWIL Priority Level 0 0 1 0 1 1 1 1 1 1									
0	РКВН	Keyboard In PKBH PKBL 0 0 0 1 1 0 1 1	Seyboard Interrupt Priority High bit YKBH PKBL Priority Level 0 Lowest 1 0 1 Highest									

Reset Value = X0XX X000b Not bit addressable

19.3 Functional Description

Figure 19-2 shows a detailed structure of the SPI module.

Figure 19-2. SPI Module Block Diagram

19.3.1 Operating Modes

The Serial Peripheral Interface can be configured as one of the two modes: Master mode or Slave mode. The configuration and initialization of the SPI module is made through one register:

• The Serial Peripheral CONtrol register (SPCON)

Once the SPI is configured, the data exchange is made using:

- SPCON
- The Serial Peripheral STAtus register (SPSTA)
- The Serial Peripheral DATa register (SPDAT)

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line (\overline{SS}) allows individual selection of a Slave SPI device; Slave devices that are not selected do not interfere with SPI bus activities.

When the Master device transmits data to the Slave device via the MOSI line, the Slave device responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock (Figure 19-3).

Figure 20-6. Format and State in the Slave Receiver Mode

		Application Software Response					
Status		To/from SSDAT		To SS	CON		
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA	sto	SI	АА	Next Action Taken By 2-wire Software
COh	Own SLA+W has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
returned		No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
COh	Arbitration lost in SLA+R/W as master; own SLA+W has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
0011	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
701-	General call address has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
70h received; ACK has been returned		No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
705	Arbitration lost in SLA+R/W as master; general call address	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
78n	has been received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
0.01-	Previously addressed with own SLA+W; data has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
800	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
		Pood data buto or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA
		Read data byte or	0	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if
	Previously addressed with own		Ū	0	0		GC=logic 1 Switched to the not addressed slave mode: no
88h	SLA+W; data has been received; NOT ACK has been returned	Read data byte or	1	0	0	0	recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		Read data byte	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free
005	Previously addressed with general call; data has been	Read data byte or	х	0	0	0	Data byte will be received and NOT ACK will be returned
900	received; ACK has been returned	Read data byte	x	0	0	1	Data byte will be received and ACK will be returned

Table 20-7. Status in Slave Receiver Mode

Figure 21-3. UFI Block Diagram

Figure 21-4. Minimum Intervention from the USB Device Firmware

21.2 Configuration

21.2.1 General Configuration

• USB controller enable

Before any USB transaction, the 48 MHz required by the USB controller must be correctly generated (See "Clock Controller" on page 13.).

The USB controller will be then enabled by setting the EUSB bit in the USBCON register.

Set address

After a Reset or a USB reset, the software has to set the FEN (Function Enable) bit in the USBADDR register. This action will allow the USB controller to answer to the requests sent at the address 0.

When a SET_ADDRESS request has been received, the USB controller must only answer to the address defined by the request. The new address will be stored in the USBADDR register. The FEN bit and the FADDEN bit in the USBCON register will be set to allow the USB controller to answer only to requests sent at the new address.

21.11 USB Registers

Table 21-3.

USBCON Register USBCON (S:BCh) USB Global Control Register

7	6		5	4	3	2	1	0				
USBE	SUSPCLK	SDR	MWUP	DETACH	UPRSM	RMWUPE	CONFG	FADDEN				
Bit Number	Bit Mnemo	nic	Descrip	otion								
7	7 USBE			USB Enable Set this bit to enable the USB controller. Clear this bit to disable and reset the USB controller, to disable the USB transceiver an to disable the USB controller clock inputs.								
6	SUSPCLI	K	Suspen Set this Clear th	d USB Clock bit to disable th is bit to enable	ie 48 MHz cloc the 48 MHz clo	k input (Resum ock input.	e Detection is s	still active).				
5	SDRMWU	IP	Send R Set this UP purp An upst enabled below. This bit	emote Wake U bit to force an e oose. ream resume is I AND the USB is cleared by so	ote Wake Up to force an external interrupt on the USB controller for Remote Wake 9. m resume is send only if the bit RMWUPE is set, all USB clocks are ID the USB bus was in SUSPEND state for at least 5 ms. See UPRSM deared by software.							
4	DETACH	I	Detach Set this state. Clear th	Detach Command Set this bit to simulate a Detach on the USB line. The V_{REF} pin is then in a floating state. Clear this bit to maintain V_{REF} at high level.								
3	UPRSM		Upstream Resume (read only) This bit is set by hardware when SDRMWUP has been set and if RMWUP enabled. This bit is cleared by hardware after the upstream resume has been sent.									
2	RMWUPE	Ξ	Remote Wake-Up Enable Set this bit to enabled request an upstream resume signaling to the ho Clear this bit otherwise. Note: Do not set this bit if the host has not set the DEVICE_REMOTE_ feature for the device.									
1	CONFG		Configured This bit will be set by the device firmware after a SET_CONFIGURATION with a non-zero value has been correctly processed. It will be cleared by the device firmware when a SET_CONFIGURATION with a zero value is received. It is cleared by hardware on hardware rese an USB reset is detected on the bus (SE0 state for at least 32 Full Speed typically 2.7 μs).									
0	0 FADDEN Function Address Enable This bit will be set by the device firmware after a successful status phase SET_ADDRESS transaction. It will not be cleared afterwards by the device firmware. It is cleared by ha on hardware reset or when an USB reset is received (see above). When the cleared, the default function address is used (0).							hase of a by hardware Vhen this bit is				

Reset Value = 00h

Table 21-4.USBINT RegisterUSBINT (S:BDh)USB Global Interrupt Register

7	6	5	4	3	2	1	0						
-	-	WUPCPU	EORINT	SOFINT	-	-	SPINT						
Bit Number	Bit Mnemonic	Description	Description										
7-6	-	Reserved The value read	Reserved The value read from these bits is always 0. Do not set these bits.										
5	WUPCPU	Wake Up CPL This bit is set I activated by a triggers a USE When receivin This bit will be	Nake Up CPU Interrupt This bit is set by hardware when the USB controller is in SUSPEND state and is re- activated by a non-idle signal FROM USB line (not by an upstream resume). This riggers a USB interrupt when EWUPCPU is set in Table 21-5 on page 122. When receiving this interrupt, user has to enable all USB clock inputs. This bit will be cleared by software (USB clocks must be enabled before).										
4	EORINT	End Of Reset This bit is set I controller. This 122). This bit will be	End Of Reset Interrupt This bit is set by hardware when a End Of Reset has been detected by the USB controller. This triggers a USB interrupt when EEORINT is set (see Figure 21-5 on page 122). This bit will be cleared by software.										
3	SOFINT	Start of Fram This bit is set This triggers a This bit will be	e Interrupt by hardware w USB interrupt cleared by sof	hen an USB Sta when ESOFIN tware.	art of Frame PII T is set (see Ta	D (SOF) has b able 21-5 on pa	een detected. age 122).						
2	-	Reserved The value read	d from this bit is	s always 0. Do	not set this bit.								
1	-	Reserved The value read	d from this bit is	s always 0. Do	not set this bit.								
0	SPINT	Suspend Inte This bit is set I state for 3 ms) Table 21-5 on This bit will be macro.	Suspend Interrupt This bit is set by hardware when a USB Suspend (Idle bus for three frame periods: a J state for 3 ms) is detected. This triggers a USB interrupt when ESPINT is set in see Table 21-5 on page 122. This bit will be cleared by software BEFORE any other USB operation to re-activate the macro.										

Reset Value = 00h

Table 21-10. UEPDATX Register

UEPDATX (S:CFh)

USB FIFO Data Endpoint X (X = EPNUM set in UEPNUM Register UEPNUM (S:C7h) USB Endpoint Number)

7	6	5	4	3	2	1	0	
FDAT7	FDAT6	FDAT5	FDAT4	FDAT3	FDAT2	FDAT1	FDAT0	
Bit Number	Bit Mnemonic	Description						
7 - 0	FDAT[7:0]	Endpoint X FIFO data Data byte to be written to FIFO or data byte to be read from the FIFO, for the Endpoint X (see EPNUM).						

Reset Value = XXh

Table 21-11. UBYCTLX Register

UBYCTLX (S:E2h)

USB Byte Count Low Register X (X = EPNUM set in UEPNUM Register UEPNUM (S:C7h) USB Endpoint Number)

7	6	5	4	3	2	1	0
BYCT7	BYCT6	BYCT5	BYCT4	ВҮСТ3	BYCT2	BYCT1	ВҮСТО
Bit Number	Bit Mnemonic	Description					
7 - 0	BYCT[7:0]	Byte Count LSB Least Significant I UBYCTHX Regist UEPNUM (S:C7h) number of data by	Byte of the byte cou er UBYCTHX (S:E: USB Endpoint Nu tes received after t	unt of a received dat 3h) USB Byte Coun mber) (see Figure 2 he Data PID.	ta packet. The most t High Register Χ (X 1-11 on page 126).	t significant part is p (= EPNUM set in L This byte count is (provided by the JEPNUM Register equal to the

Reset Value = 00h

Table 21-12. UBYCTHX Register

UBYCTHX (S:E3h)

USB Byte Count High Register X (X = EPNUM set in UEPNUM Register UEPNUM (S:C7h) USB Endpoint Number)

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	BYCT9	BYCT8		
Bit Number	Bit Mnemonic	Description							
7-2	-	Reserved The value rea	d from these bits is	always 0. Do not s	et these bits.				
2-0	BYCT[10:8]	Byte Count M Most Significa UBYCTLX Re Register UEP	Byte Count MSB Most Significant Byte of the byte count of a received data packet. The Least significant part is provided by UBYCTLX Register UBYCTLX (S:E2h) USB Byte Count Low Register X (X = EPNUM set in UEPNUM Register UEPNUM (S:C7h) USB Endpoint Number) (see Figure 21-11 on page 126).						

Reset Value = 00h

126 AT83C5134/35/36

When the power is applied, the Power Monitor immediately asserts a reset. Once the internal supply after the voltage regulator reach a safety level, the power monitor then looks at the XTAL clock input. The internal reset will remain asserted until the Xtal1 levels are above and below VIH and VIL. Further more. An internal counter will count 1024 clock periods before the reset is de-asserted.

If the internal power supply falls below a safety level, a reset is immediately asserted.

AT83C5134/35/36

able 25-2	2. WDTPF WDTPF	G Register G - Watchdo	g Timer Ou	t Register (0	A7h)			
7	6	5	4	3	2	1	0	
-	-	-	-	-	S2	S1	S0	
Bit Number	Bit Mnemonic	Description						
7	-							
6	-							
5	-	Reserved The value read	l from this bit i	s undetermined.	. Do not trv to s	et this bit.		
4	-				,			
3	-	-						
2	S2	WDT Time-out	select bit 2					
1	S1	WDT Time-out select bit 1						
0	S0	WDT Time-out	select bit 0					
		S2 S1 S0 Se 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 <td>elected Time- 3384x2^(214 - 3384x2^(215 - 3384x2^(216 - 3384x2^(217 - 3384x2^(218 - 3384x2^(219 - 3384x2^(220 - 3384x2^(221 - 3384x2^(221 - 3384x2^(221 -</td> <td>out 1) machine cyc 1) machine cyc</td> <td>les, 16.3 ms at les, 32.7 ms at les, 65.5 ms at les, 131 ms at F les, 262 ms at F les, 542 ms at F les, 1.05 s at F les, 2.09 s at F</td> <td>FOSC = 12 MH FOSC = 12 MH</td> <td>Z Z Z Z</td>	elected Time- 3384x2^(214 - 3384x2^(215 - 3384x2^(216 - 3384x2^(217 - 3384x2^(218 - 3384x2^(219 - 3384x2^(220 - 3384x2^(221 - 3384x2^(221 - 3384x2^(221 -	out 1) machine cyc 1) machine cyc	les, 16.3 ms at les, 32.7 ms at les, 65.5 ms at les, 131 ms at F les, 262 ms at F les, 542 ms at F les, 1.05 s at F les, 2.09 s at F	FOSC = 12 MH FOSC = 12 MH	Z Z Z Z	

Reset value = XXXX X000

25.2 WDT During Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Powerdown mode the user does not need to service the WDT. There are 2 methods of exiting Powerdown mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the AT83C5134/35/36 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of power-down, it is better to reset the WDT just before entering power-down.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the AT83C5134/35/36 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

NOTES: MLF PACKAGE FAMILY

- 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM(.012 INCHES MAXIMUM)
- 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.
- 3 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED

BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.

- 4 PACKAGE WARPAGE MAX 0.08mm.
- 5 THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
- 6 EXACT SHAPE AND SIZE OF THIS FIXTURE IS OPTIONAL

29.4 QFN32

