

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	80C52
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB
Peripherals	LED, POR, PWM, WDT
Number of I/O	18
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at83c5136-tisul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Block Diagram

* EEPROM only available in MLF48

- Notes: 1. Alternate function of Port 1
 - 2. Alternate function of Port 3
 - 3. Alternate function of Port 4

Signal Name	Туре	Description	Alternate Function
P3[7:0]	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	LED[3:0] RxD TxD INT0 INT1 T0 T1 WR RD
P4[1:0]	I/O	Port 4 P4 is an 2-bit open port.	SCL SDA

Table 4-9.Clock Signal Description

Signal Name	Туре	Description	Alternate Function
XTAL1	I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin.	-
XTAL2	0	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected.	-
PLLF	I	PLL Low Pass Filter input Receives the RC network of the PLL low pass filter (See Figure 5-1 on page 11).	-

Table 4-10.USB Signal Description

Signal Name	Туре	Description	Alternate Function
D+	I/O	USB Data + signal Set to high level under reset.	-
D-	I/O	USB Data - signal Set to low level under reset.	-
VREF	0	USB Reference Voltage Connect this pin to D+ using a 1.5 k Ω resistor to use the Detach function.	-

Table 4-11. System Signal Description

Signal Name	Туре	Description	Alternate Function
AD[7:0]	I/O	Multiplexed Address/Data LSB for external access Data LSB for Slave port access (used for 8-bit and 16-bit modes)	P0[7:0]
A[15:8]	I/O	Address Bus MSB for external access Data MSB for Slave port access (used for 16-bit mode only)	P2[7:0]

10. Stacked EEPROM

10.1 Overview

The AT83C5134/35/36 features a stacked 2-wire serial data EEPROM. The data EEPROM allows to save from 512 Byte for AT24C04 version up to 32 Kbytes for AT24C256 version. The EEPROM is internally connected to the microcontroller on SDA and SCL pins.

10.2 Protocol

In order to access this memory, it is necessary to use software subroutines according to the AT24Cxx datasheet. Nevertheless, because the internal pull-up resistors of the AT83C5134/35/36 is quite high (around 100K Ω), the protocol should be slowed in order to be sure that the SDA pin can rise to the high level before reading it.

Another solution to keep the access to the EEPROM in specification is to work with a software pull-up.

Using a software pull-up, consists of forcing a low level at the output pin of the microcontroller before configuring it as an input (high level).

The C51 the ports are "quasi-bidirectional" ports. It means that the ports can be configured as output low or as input high. In case a port is configured as an output low, it can sink a current and all internal pull-ups are disconnected. In case a port is configured as an input high, it is pulled up with a strong pull-up (a few hundreds Ohms resistor) for 2 clock periods. Then, if the port is externally connected to a low level, it is only kept high with a weak pull up (around $100K\Omega$), and if not, the high level is latched high thanks to a medium pull (around $10k\Omega$).

Thus, when the port is configured as an input, and when this input has been read at a low level, there is a pull-up of around $100K\Omega$, which is quite high, to quickly load the SDA capacitance. So in order to help the reading of a high level just after the reading of a low level, it is possible to force a transition of the SDA port from an input state (1), to an output low state (0), followed by a new transition from this output low state to input state; In this case, the high pull-up has been replaced with a low pull-up which warranties a good reading of the data.

Table 12-2	2. T2MOE T2MOE) Register) - Timer 2 Mc	de Control	Register (CS	9h)			
7	6	5	4	3	2	1	0	
-	-	-	-	-	-	T2OE	DCEN	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value read	from this bit is	indeterminate.	Do not set this	bit.		
6	-	Reserved The value read	from this bit is	indeterminate.	Do not set this	bit.		
5	-	Reserved The value read	from this bit is	indeterminate.	Do not set this	bit.		
4	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
2	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	T2OE	Timer 2 Output Cleared to prog Set to program	Timer 2 Output Enable bit Cleared to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.					
0	DCEN	Down Counter Cleared to disal Set to enable T	Enable bit ble Timer 2 as imer 2 as up/d	up/down count own counter.	er.			

Reset Value = xxxx xx00b Not bit addressable

13. Programmable Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any one of the following signals:

- Peripheral clock frequency (F_{CLK PERIPH}) \div 6
- Peripheral clock frequency $(F_{CLK PERIPH}) \div 2$
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes:

- rising and/or falling edge capture,
- software timer
- · high-speed output, or
- pulse width modulator

Module 4 can also be programmed as a watchdog timer (see Section "PCA Watchdog Timer", page 48).

When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If the port pin is not used for the PCA, it can still be used for standard I/O.

PCA Component	External I/O Pin
16-bit Counter	P1.2/ECI
16-bit Module 0	P1.3/CEX0
16-bit Module 1	P1.4/CEX1
16-bit Module 2	P1.5/CEX2
16-bit Module 3	P1.6/CEX3
16-bit Module 4	P1.7/CEX4

The PCA timer is a common time base for all five modules (see Figure 13-1). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 13-1) and can be programmed to run at:

- 1/6 the peripheral clock frequency (F_{CLK PERIPH}).
- 1/2 the peripheral clock frequency ($F_{CLK PERIPH}$).
- The Timer 0 overflow
- The input on the ECI pin (P1.2)

Figure 13-5. PCA High-speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

13.4 Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 13-6 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Baud Bates	F _{osc} = 16	.384 MHz	F _{OSC} = 24 MHz		
Daud nates	BRL	Error (%)	BRL	Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

Example of computed value when X2 = 1, SMOD1 = 1, SPD = 1

Example of computed value when X2 = 0, SMOD1 = 0, SPD = 0

	F _{osc} = 16	.384 MHz	F _{osc} =	24 MHz
Baud Rates	BRL Error (%)		BRL	Error (%)
4800	247	1.23	243	0.16
2400	238	1.23	230	0.16
1200	220	1.23	202	3.55
600	185	0.16	152	0.16

The baud rate generator can be used for mode 1 or 3 (refer to Figure 14-4.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 14-4.)

14.4 UART Registers

SADEN - Slave Address Mask Register for UART (B9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = 0000 0000b

SADDR - Slave Address Register for UART (A9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = 0000 0000b

SBUF - Serial Buffer Register for UART (99h)

Reset Value = XXXX XXXXb

AT83C5134/35/36

Table 16-4.IPH0 Register

IPH0 - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	РРСН	PT2H	PSH	PT1H	PX1H	РТОН	РХОН
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	ad from this bit	is indeterminate	e. Do not set th	is bit.	
6	РРСН	PCA interrup PPCH PPCL 0 0 1 0 1 1	ot Priority high Priority Level Lowest Highest	n bit. L			
5	PT2H	Timer 2 over PT2H PT2L 0 0 1 0 1 1	flow interrupt <u>Priority Leve</u> Lowest Highest	Priority High I I	bit		
4	PSH	Serial port P PSH PSL 0 0 0 1 1 0 1 1	r iority High bi <u>Priority Leve</u> Lowest Highest	t <u>l</u>			
3	PT1H	Timer 1 over PT1H PT1L 0 0 0 1 1 0 1 1	flow interrupt <u>Priority Level</u> Lowest Highest	Priority High I	bit		
2	PX1H	External interprint PX1H PX1L 0 0 0 1 1 0 1 1	errupt 1 Priorit Priority Leve Lowest Highest	y High bit <u> </u>			
1	РТОН	Timer 0 over PT0H PT0L 0 0 1 0 1 1	flow interrupt <u>Priority Level</u> Lowest Highest	Priority High 	bit		
0	РХОН	External internation PX0H PX0L 0 0 0 1 1 0 1 1	errupt 0 Priorit Priority Level Lowest Highest	y High bit I			

Reset Value = x000 0000b Not bit addressable

As shown in Figure 19-5, the first SCK edge is the MSB capture strobe. Therefore the Slave must begin driving its data before the first SCK edge, and a falling edge on the \overline{SS} pin is used to start the transmission. The \overline{SS} pin must be toggled high and then low between each byte transmitted (Figure 19-2).

Figure 19-6 shows an SPI transmission in which CPHA is'1'. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmissions (Figure 19-1). This format may be preferable in systems having only one Master and only one Slave driving the MISO data line.

19.3.3 Error Conditions

The following flags in the SPSTA signal SPI error conditions:

		Application Software Response					
Status		To/from SSDAT	To SSCON				
Code Status of the 2-wire bus and (SSCS) 2-wire hardware			STA	STO	SI	АА	Next Action Taken By 2-wire Software
	Previously addressed with general call; data has been received; NOT ACK has been returned	Read data byte or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if
		Read data byte or	0	0	0	1	GC=logic 1
98h		Read data byte or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		Read data byte	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free
		No SSDAT action or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own SLA will be recognised if
	A STOP condition or repeated START condition has been received while still addressed as slave	No SSDAT action or	0	0	0	1	GC=logic 1
A0h		No SSDAT action or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		No SSDAT action	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free

Table 20-7. Status in Slave Receiver Mode (Continued)

Set configuration

The CONFG bit in the USBCON register has to be set after a SET_CONFIGURATION request with a non-zero value. Otherwise, this bit has to be cleared.

21.2.2 Endpoint Configuration

· Selection of an Endpoint

The endpoint register access is performed using the UEPNUM register. The registers

- UEPSTAX
- UEPCONX
- UEPDATX
- UBYCTLX
- UBYCTHX

These registers correspond to the endpoint whose number is stored in the UEPNUM register. To select an Endpoint, the firmware has to write the endpoint number in the UEPNUM register.

Endpoint enable

Before using an endpoint, this one will be enabled by setting the EPEN bit in the UEPCONX register.

An endpoint which is not enabled won't answer to any USB request. The Default Control Endpoint (Endpoint 0) will always be enabled in order to answer to USB standard requests.

Endpoint type configuration

All Standard Endpoints can be configured in Control, Bulk, Interrupt or Isochronous mode. The Ping-pong Endpoints can be configured in Bulk, Interrupt or Isochronous mode. The configuration of an endpoint is performed by setting the field EPTYPE with the following values:

- Control:EPTYPE = 00b
- Isochronous:EPTYPE = 01b
- Bulk:EPTYPE = 10b
- Interrupt:EPTYPE = 11b

21.7.2 STALL Handshake

This function is only available for Control, Bulk, and Interrupt endpoints.

The firmware has to set the STALLRQ bit in the UEPSTAX register to send a STALL handshake at the next request of the Host on the endpoint selected with the UEPNUM register. The RXSETUP, TXRDY, TXCMPL, RXOUTB0 and RXOUTB1 bits must be first reset to 0. The bit STLCRC is set at 1 by the USB controller when a STALL has been sent. This triggers an interrupt if enabled.

The firmware will clear the STALLRQ and STLCRC bits after each STALL sent.

The STALLRQ bit is cleared automatically by hardware when a valid SETUP PID is received on a CONTROL type endpoint.

Important note: when a Clear Halt Feature occurs for an endpoint, the firmware will reset this endpoint using the UEPRST register in order to reset the data toggle management.

21.7.3 Start of Frame Detection

The SOFINT bit in the USBINT register is set when the USB controller detects a Start of Frame PID. This triggers an interrupt if enabled. The firmware will clear the SOFINT bit to allow the next Start of Frame detection.

21.7.4 Frame Number

When receiving a Start of Frame, the frame number is automatically stored in the UFNUML and UFNUMH registers. The CRCOK and CRCERR bits indicate if the CRC of the last Start of Frame is valid (CRCOK set at 1) or corrupted (CRCERR set at 1). The UFNUML and UFNUMH registers are automatically updated when receiving a new Start of Frame.

21.7.5 Data Toggle Bit

The Data Toggle bit is set by hardware when a DATA0 packet is received and accepted by the USB controller and cleared by hardware when a DATA1 packet is received and accepted by the USB controller. This bit is reset when the firmware resets the endpoint FIFO using the UEPRST register.

For Control endpoints, each SETUP transaction starts with a DATA0 and data toggling is then used as for Bulk endpoints until the end of the Data stage (for a control write transfer). The Status stage completes the data transfer with a DATA1 (for a control read transfer).

For Isochronous endpoints, the device firmware will ignore the data-toggle.

21.8 Suspend/Resume Management

21.8.1 Suspend

The Suspend state can be detected by the USB controller if all the clocks are enabled and if the USB controller is enabled. The bit SPINT is set by hardware when an idle state is detected for more than 3 ms. This triggers a USB interrupt if enabled.

In order to reduce current consumption, the firmware can put the USB PAD in idle mode, stop the clocks and put the C51 in Idle or Power-down mode. The Resume detection is still active. The USB PAD is put in idle mode when the firmware clear the SPINT bit. In order to avoid a new suspend detection 3ms later, the firmware has to disable the USB clock input using the SUSP-CLK bit in the USBCON Register. The USB PAD automatically exits of idle mode when a wake-up event is detected.

114 AT83C5134/35/36

22. Reset

22.1 Introduction

The reset sources are: Power Management, Hardware Watchdog, PCA Watchdog and Reset input.

22.2 Reset Input

The Reset input can be used to force a reset pulse longer than the internal reset controlled by the Power Monitor. RST input has a pull-up resistor allowing power-on reset by simply connecting an external capacitor to $V_{\rm SS}$ as shown in Figure 22-2. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT83C5134/35/36 datasheet.

22.3 Reset Output

As detailed in Section "Hardware Watchdog Timer", page 138, the WDT generates a 96-clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of the application in case of external capacitor or power-supply supervisor circuit, a 1 k Ω resistor must be added as shown Figure 22-3.

All other pins are disconnected.

All other pins are disconnected.

27.2.1 LED's

 Table 27-1.
 LED Outputs DC Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
		1	2	4	mA	2 mA configuration
I _{OL}	Output Low Current, P3.6 and P3.7 LED modes	2	4	8	mA	4 mA configuration
		5	10	20	mA	10 mA configuration

Note: 1. (Ta = -20°C to +50°C, V_{CC} - V_{OL} = 2 V \pm 20%)

Symbol	Туре	Standard Clock	X2 Clock	X Parameter	Units
T _{LHLL}	Min	2 T - x	T - x	10	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	ns
T _{PXIX}	Min	х	х	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	ns
T _{PLAZ}	Max	х	х	10	ns

Table 27-4	AC Parameters for a	Variable Clock
	AUT arameters for a	

27.4.3 External Program Memory Read Cycle

27.6.0.2 Timings

Test conditions: capacitive load on all pins= 50 pF.

Table 27-15.SPI Interface Master AC Timing V_{DD} = 2.7 to 5.5 V, T_A = -40 to +85°C

Symbol	Parameter	Min	Max	Unit
	Slave Mode			
T _{CHCH}	Clock Period	2		T _{PER}
T _{CHCX}	Clock High Time	0.8		T _{PER}
T _{CLCX}	Clock Low Time	0.8		T _{PER}
T _{SLCH} , T _{SLCL}	SS Low to Clock edge	100		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		50	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS High after Clock Edge	0		ns
T _{SLOV}	SS Low to Output Data Valid		4T _{PER} +20	ns
T _{SHOX}	Output Data Hold after SS High		2T _{PER} +100	ns
T _{SHSL}	SS High to SS Low	2T _{PER} +120		
T _{ILIH}	Input Rise Time		2	μs
T _{IHIL}	Input Fall Time		2	μs
T _{OLOH}	Output Rise time		100	ns
T _{OHOL}	Output Fall Time		100	ns
	Master Mode	·		
Тснсн	Clock Period	4		T _{PER}
T _{CHCX}	Clock High Time	2T _{PER} -20		ns
T _{CLCX}	Clock Low Time	2T _{PER} -20		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		20	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns

Note: T_{PER} is XTAL period when SPI interface operates in X2 mode or twice XTAL period when SPI interface operates in X1 mode.

29.3 28-lead SO

30. Document Revision History

30.1 Changes from Rev A. to Rev. B

1. Added QFN32 package.

30.2 Changes from Rev B. to Rev. C

1. Updated package drawings.

AT83C5134/35/36

	13.5	PCA Watchdog Timer	48
14	Serial I	//O Port	49
	14.1	Framing Error Detection	49
	14.2	Automatic Address Recognition	50
	14.3	Baud Rate Selection for UART for Mode 1 and 3	52
	14.4	UART Registers	55
15	Dual D	ata Pointer Register	59
16	Interru	pt System	61
	16.1	Overview	61
	16.2	Registers	62
	16.3	Interrupt Sources and Vector Addresses	69
17	Keyboa	ard Interface	70
	17.1	Introduction	70
	17.2	Description	70
	17.3	Registers	71
18	Progra	mmable LED	74
19	Serial	Peripheral Interface (SPI)	75
19	Serial 19.1	Peripheral Interface (SPI) Features	75 75
19	Serial 19.1 19.2	Peripheral Interface (SPI) Features Signal Description	75 75 75
19	Serial 19.1 19.2 19.3	Peripheral Interface (SPI) Features Signal Description Functional Description	75 75 75 77
19 20	Serial 1 19.1 19.2 19.3 Two W	Peripheral Interface (SPI) Features Signal Description Functional Description	75 75 75 77 84
19 20	Serial 1 19.1 19.2 19.3 Two W 20.1	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description.	75 75 75 77 84 86
19 20	Serial 1 19.1 19.2 19.3 Two W 20.1 20.2	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes	75 75 75 77 84 86 89
19 20	Serial 1 19.1 19.2 19.3 Two W 20.1 20.2 20.3	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes Registers	75 75 75 77 84 86 89 99
19 20 21	Serial 1 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes Registers ontroller	75 75 75 77 84 86 89 99 99
19 20 21	Serial 1 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes Registers Ontroller Description	75 75 75 77 84 86 89 99 99 99
19 20 21	Serial 1 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes Registers <i>Ontroller</i> Description. Configuration	75 75 75 77 84 86 89 99 99 101 103
19 20 21	Serial 1 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes Registers ontroller Description Configuration Read/Write Data FIFO.	75 75 75 77 86 89 99 99 101 103 105
19 20 21	Serial 1 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3 21.4	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes Registers <i>ontroller</i> Description Configuration Read/Write Data FIFO Bulk/Interrupt Transactions	75 75 75 77 84 86 89 99 99 101 103 105 106
19 20 21	Serial I 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3 21.4 21.5	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description Notes Registers ontroller Description Configuration Read/Write Data FIFO Bulk/Interrupt Transactions Control Transactions	75 75 75 77 84 86 89 99 99 101 103 105 106 111
19 20 21	Serial I 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3 21.4 21.5 21.6	Peripheral Interface (SPI) Features	75 75 75 77 84 86 89 99 99 101 103 105 106 111 112
19 20 21	Serial I 19.1 19.2 19.3 Two W 20.1 20.2 20.3 USB C 21.1 21.2 21.3 21.4 21.5 21.6 21.7	Peripheral Interface (SPI) Features Signal Description Functional Description <i>Tire Interface (TWI)</i> Description. Notes Registers <i>Controller</i> Description. Configuration Read/Write Data FIFO. Bulk/Interrupt Transactions. Control Transactions Isochronous Transactions Miscellaneous.	75 75 75 77 84 86 89 99 99 101 103 105 106 111 112 113

