

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 8x14b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c23533-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Functional Overview

The PSoC family consists of many programmable system-on-chips with on-chip controller devices. These devices are designed to replace multiple traditional MCU-based system components with a low-cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, and programmable interconnects. This architecture make it possible for you to create customized peripheral configurations that match the requirements of each individual application. additionally, a fast central processing unit (CPU), flash memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

The PSoC architecture, as shown in the Logic Block Diagram on page 1, consists of four main areas: PSoC core, digital system, analog system, and system resources. Configurable global busing allows combining all of the device resources into a complete custom system. The PSoC CY8C23x33 family can have up to three I/O ports that connect to the global digital and analog interconnects, providing access to four digital blocks and four analog blocks.

PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable general Purpose I/O (GPIO)

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four million instructions per second MIPS 8-bit Harvard-architecture microprocessor. The CPU uses an interrupt controller with 11 vectors, to simplify programming of real time embedded events. program execution is timed and protected using the included sleep and watch dog timers (WDT).

Memory encompasses 8 KB of flash for program storage, 256 bytes of SRAM for data storage, and up to 2 KB of EEPROM emulated using the flash. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to $\pm 5\%$ ^[2] over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a system resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

Digital System

The Digital system consists of 4 digital PSoC blocks. Each block is an 8-bit resource that is used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Digital peripheral configurations are:

- PWMs (8-and 16-bit)
- PWMs with Dead band (8- and 16-bit)
- Counters (8- to 32- bit)
- Timers (8- to 32- bit)
- UART 8 bit with selectable parity (up to 1)
- Serial peripheral interface (SPI) master and slave (up to 1)
- I²C slave and multi master (1 available as a system resource)
- Cyclical redundancy checker (CRC)/Generator (8 to 32 bit)
- IrDA (up to 1)

Pseudo Random Sequence Generators (8- to 32- bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are shown in the table titled PSoC Device Characteristics on page 5.

Note

^{2.} Errata: When the device is operated within 0 °C to 70 °C, the frequency tolerance is reduced to ±2.5%, but if operated at extreme temperature (below 0 °C or above 70 °C), frequency tolerance deviates from ±2.5% to ±5%. For more information, see Errata on page 50.

Additional System Resources

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low voltage detection, and power-on-reset. Brief statements describing the merits of each system resource follow:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.

- The decimator provides a custom hardware filter for digital signal processing applications including the creation of delta sigma ADCs.
- The I²C module provides 100- and 400-kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low-Voltage detection interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.

PSoC Device Characteristics

Depending on the PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 3 analog blocks. Table 1 lists the resources available for specific PSoC device groups.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	SAR ADC
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K	No
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[3]	1 K	16 K	Yes
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K	No
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K	No
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K	No
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K	Yes
CY8C24x33	up to 26	1	4	up to 12	2	2	4	256	8 K	Yes
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[3]	1 K	16 K	No
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[3]	512	8 K	Yes
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[3]	512	8 K	No
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[3]	256	4 K	No
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[3,4]	512	8 K	No
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[3,4]	up to 2 K	up to 32 K	No

 Table 1. PSoC Device Characteristics

3. Limited analog functionality.

4. Two analog blocks and one CapSense $^{\ensuremath{\mathbb{R}}}$.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- □ Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices.

The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, and read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an online support forum to aid the designer in getting started.

In-Circuit Emulator

A low cost, high functionality ICE is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24-MHz) operation.

Table 6. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40			80			C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM1	05	RW	-	45		ASD11CR1	85	RW		C5	
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DM0	08	RW		48		1.02 1.01.0	88			C8	
PRT2DM1	00	RW	-	49			89			C9	
PRT2IC0	00	RW/		45			84				
DDT2IC1				40						CR	
	00			4D 4C			00				
PRISDINU	00	RW		40							
PRIJUMI	0D	RW		4D			8D			CD	
PRIBICO	0E	RW		4E			8E			CE	
PRT3IC1	0F	RW		4F			8F			CF	
	10			50			90		GDI_O_IN	D0	RW
	11			51			91		GDI_E_IN	D1	RW
	12			52			92		GDI_O_OU	D2	RW
	13			53			93		GDI_E_OU	D3	RW
	14			54		ASC21CR0	94	RW		D4	
	15			55		ASC21CR1	95	RW		D5	
	16			56		ASC21CR2	96	RW		D6	
	17			57		ASC21CR3	97	RW		D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC CR3	DF	RW
DBB00FN	20	RW	CLK CR0	60	RW		A0		OSC CR0	E0	RW
DBB00IN	21	RW	CLK CR1	61	RW		A1		OSC CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC CR2	E2	RW
	23		AMD CR0	63	RW		A3		VLT CR	E3	RW
DBB01FN	24	RW	_	64			A4		VLT CMP	E4	R
DBB01IN	25	RW		65			A5		_	E5	
DBB01OU	26	RW	AMD CR1	66	RW		A6			E6	
	27		ALT CR0	67	RW		A7			E7	
DCB02FN	28	RW		68		SARADC TRS	A8	RW	IMO TR	E8	W
DCB02IN	29	RW		69		SARADC TRCI	A9	RW		F9	W
DCB020U	24	RW		64		SARADC TRCH	AA	RW	BDG TR	FA	RW
2020200	2B			6B		SARADC_CR2	AB	#	FCO_TR	FR	W
DCB03FN	20	RW	TMP DR0	60	RW	SARADC I CR	AC	RW		EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	
DCB03OU	 2F	RW	TMP_DR2	6F	RW		AF			EF	
	2F		TMP_DR3	6F	RW		AF			EF	
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0R01	B6	RW		F6	
	37		ACB01CR2 *	77	RW		B7		CPU F	F7	RI
	38		. IS BOTONE	78			B8			F8	
	39			79			B9			F9	
	34			74			BA		FLS PR1	FA	RW
	3B			7B			BB		0	FR	
	30			70			BC			FC	
	3D			70			BD			FD	
	3F			7F			BF		CPU SCR1	FF	#
	3F			75			BE		CPU SCR0	FF	# #
	01										iT

Gray fields are reserved. # Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C23433 PSoC device. For up-to-date latest electrical specifications, visit http://www.cypress.com.

Specifications are valid for –40°C \leq T_A \leq 85°C and T_J \leq 100°C, except where noted.

Refer to Table 23 on page 30 for the electrical specifications for the IMO using SLIMO mode.

Figure 8. IMO Frequency Trim Options

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25°C ± 25°C. Extended duration storage temperatures above 65°C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
T _{BAKETIME}	Bake time	See package label		72	Hour s	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
Vdd	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	_	V	Human Body Model ESD.
LU	Latch-up current	_	-	200	mA	

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Min	Тур	Мах	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
Тյ	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Table 37 on page 41. You must limit the power consumption to comply with this requirement.

DC Analog Output buffer specifications

The following table lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

	Table 14.	5-V DC Analog	Output Buffer S	pecifications
--	-----------	---------------	-----------------	---------------

Symbol	Description	Min	Тур	Мах	Units	Notes
CL	Load capacitance	_	Ι	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	_	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	
V _{CMOB}	Common-mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1	-	$\Omega \Omega$	
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to $V_{DD}/2$) Power = low Power = high	0.5 x V _{DD} + 1.1 0.5 x V _{DD} + 1.1			V V	
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to $V_{DD}/2$) Power = low Power = high			0.5 x V _{DD} - 1.3 0.5 x V _{DD} - 1.3	V V	
I _{SOB}	Supply current including bias cell (no load) Power = low Power = high		1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	_	dB	$V_{OUT} > (V_{DD} - 1.25)$

Table 15. 3.3-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
CL	Load capacitance	_	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	
V _{CMOB}	Common-mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1		$\Omega \Omega$	
V _{OHIGHOB}	High output voltage swing (Load = 1k ohms to V _{DD} /2) Power = low Power = high	0.5 x V _{DD} + 1.0 0.5 x V _{DD} + 1.0	_		V V	
V _{OLOWOB}	Low output voltage swing (Load = 1k ohms to V _{DD} /2) Power = low Power = high		_	0.5 x V _{DD} - 1.0 0.5 x V _{DD} - 1.0	V V	
I _{SOB}	Supply current including bias cell (no load) Power = low Power = high	_	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	_	dB	$V_{OUT} > (V_{DD} - 1.25)$

DC Analog Reference Specifications

The following table lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25°C and are for design guidance only.

The guaranteed specifications are measured through the analog continuous time PSoC blocks. The power levels for AGND refer to the power of the analog continuous time PSoC block. The power levels for RefHi and RefLo refer to the analog reference control register. The limits stated for AGND include the offset error of the AGND buffer local to the analog continuous time PSoC block. reference control power is high.

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Units
0b000	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.136	V _{DD} /2 + 1.288	V _{DD} /2 + 1.409	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2-0.138	V _{DD} /2 + 0.003	V _{DD} /2 + 0.132	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.417	V _{DD} /2 – 1.289	V _{DD} /2 – 1.154	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.202	V _{DD} /2 + 1.290	V _{DD} /2 + 1.358	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.055$	V _{DD} /2 + 0.001	$V_{DD}/2 + 0.055$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.369	V _{DD} /2 – 1.295	V _{DD} /2 – 1.218	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.211	V _{DD} /2 + 1.292	V _{DD} /2 + 1.357	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.055$	V _{DD} /2	$V_{DD}/2 + 0.052$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.368	V _{DD} /2 – 1.298	V _{DD} /2 – 1.224	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.215	V _{DD} /2 + 1.292	V _{DD} /2 + 1.353	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.040$	V _{DD} /2 – 0.001	$V_{DD}/2 + 0.033$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.368	V _{DD} /2 – 1.299	V _{DD} /2 – 1.225	V
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.076	P2[4]+P2[6]- 0.021	P2[4]+P2[6]+ 0.041	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.025	P2[4]-P2[6]+ 0.011	P2[4]-P2[6]+ 0.085	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.069	P2[4]+P2[6]- 0.014	P2[4]+P2[6]+ 0.043	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.029	P2[4]-P2[6]+ 0.005	P2[4]-P2[6]+ 0.052	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.072	P2[4]+P2[6]- 0.011	P2[4]+P2[6]+ 0.048	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4]-P2[6]+ 0.002	P2[4]-P2[6]+ 0.057	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.070	P2[4]+P2[6]- 0.009	P2[4]+P2[6]+ 0.047	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.033	P2[4]-P2[6]+ 0.001	P2[4]-P2[6]+ 0.039	V

 Table 16.
 5-V DC Analog Reference Specifications

Table 16. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Units
0b100	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.481 + P2[6]	2.569 + P2[6]	2.639 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.511	2.590	2.658	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.515 – P2[6]	2.602 – P2[6]	2.654 – P2[6]	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.498 + P2[6]	2.579 + P2[6]	2.642 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap 2.518 2.		2.592	2.652	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.598 – P2[6]	2.650 – P2[6]	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.504 + P2[6]	2.583 + P2[6]	2.646 + P2[6]	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.521	2.592	2.650	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.596 – P2[6]	2.649 – P2[6]	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.505 + P2[6]	2.586 + P2[6]	2.648 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.521	2.594	2.648	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.595 – P2[6]	2.648 – P2[6]	V
0b101	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.228	P2[4] + 1.284	P2[4] + 1.332	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.358	P2[4] – 1.293	P2[4] – 1.226	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.236	P2[4] + 1.289	P2[4] + 1.332	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.357	P2[4] – 1.297	P2[4] – 1.229	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.237	P2[4] + 1.291	P2[4] + 1.337	V
	Opamp bias = high	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.356	P2[4] – 1.299	P2[4] – 1.232	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.237	P2[4] + 1.292	P2[4] + 1.337	V
	Opamp blas = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.357	P2[4] – 1.300	P2[4] – 1.233	V

Table 17. 3.3-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Units
0b000	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.170	V _{DD} /2 + 1.288	V _{DD} /2 + 1.376	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.098	V _{DD} /2 + 0.003	V _{DD} /2 + 0.097	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.386	V _{DD} /2 – 1.287	V _{DD} /2 – 1.169	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.210	V _{DD} /2 + 1.290	V _{DD} /2 + 1.355	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.055	V _{DD} /2 + 0.001	V _{DD} /2 + 0.054	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.359	V _{DD} /2 – 1.292	V _{DD} /2 – 1.214	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.198	V _{DD} /2 + 1.292	V _{DD} /2 + 1.368	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.041	V _{DD} /2	V _{DD} /2 + 0.04	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap V _{DD} /2 – 1.362		V _{DD} /2 – 1.295	V _{DD} /2 – 1.220	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap V _{DD} /2 + 1.202		V _{DD} /2 + 1.292	V _{DD} /2 + 1.364	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.033	V _{DD} /2	V _{DD} /2 + 0.030	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.364	V _{DD} /2 – 1.297	V _{DD} /2 – 1.222	V
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.072	P2[4] + P2[6] - 0.017	P2[4] + P2[6] + 0.041	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.029	P2[4] – P2[6] + 0.010	P2[4] – P2[6] + 0.048	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.066	P2[4] + P2[6] - 0.010	P2[4] + P2[6] + 0.043	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.024	P2[4] – P2[6] + 0.004	P2[4] – P2[6] + 0.034	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.073	P2[4] + P2[6] - 0.007	P2[4] + P2[6] + 0.053	V
	Opamp bias = high	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.028	P2[4] – P2[6] + 0.002	P2[4] – P2[6] + 0.033	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.073	P2[4] + P2[6] - 0.006	P2[4] + P2[6] + 0.056	V
	Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.030	P2[4] – P2[6]	P2[4] – P2[6] + 0.032	V

SAR8 ADC DC Specifications

The following table lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25°C and are for design guidance only.

Table 22. SAR8 ADC DC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
VADCVREF	Reference voltage at pin P3[0] when configured as ADC reference voltage	3.0	_	5.25	V	The voltage level at P3[0] (when configured as ADC reference voltage) must always be maintained to be less than chip supply voltage level on V_{DD} pin. $V_{ADCVREF} < V_{DD}$.
I _{ADCVREF}	Current when P3[0] is configured as ADC V_{REF}	3	-	-	mA	
INL	Integral non-linearity	-1.5	-	+1.5	LSB	
INL (limited range)	Integral non-linearity accommodating a shift in the offset at 0x80	-1.2 ^[12]	-	+1.2	LSB	The maximum LSB is over a sub-range not exceeding 1/16 of the full-scale range. 0x7F and 0x80 points specs are excluded here
DNL	Differential non-linearity	-2.3	-	+2.3	LSB	ADC conversion is monotonic over full range
DNL (limited range)	Differential non-linearity excluding 0x7F-0x80 transition	-1	-	+1	LSB	ADC conversion is monotonic over full range. 0x7F to 0x80 transition specs are excluded here.

Note

12. SAR converters require a stable input voltage during the sampling period. If the voltage into the SAR8 changes by more than 1 LSB during the sampling period then the accuracy specifications may not be met

AC Operational Amplifier Specifications

The following table lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25°C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the analog continuous time PSoC block.

Power = high and Opamp bias = high is not supported at 3.3 V.

|--|

Symbol	Description	Min	Тур	Max	Units
T _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	_ _ _	3.9 0.72 0.62	μs μs μs
T _{SOA}	Falling settling time from 20% of ∆V to 0.1% of ∆V (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	_ _ _	5.9 0.92 0.72	μs μs μs
SR _{ROA}	Rising slew rate (20% to 80%)(10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	0.15 1.7 6.5	_ _ _		V/μs V/μs V/μs
SR _{FOA}	Falling slew rate (20% to 80%)(10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	0.01 0.5 4.0	_ _ _		V/μs V/μs V/μs
BW _{OA}	Gain bandwidth product Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	0.75 3.1 5.4	_ _ _		MHz MHz MHz

Table 26. 3.3-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
T _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	-		3.92 0.72	μs μs
T _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	-		5.41 0.72	μs μs
SR _{ROA}	Rising slew rate (20% to 80%)(10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.31 2.7		-	V/μs V/μs
SR _{FOA}	Falling slew rate (20% to 80%)(10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.24 1.8		-	V/μs V/μs
BW _{OA}	Gain bandwidth product Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.67 2.8	_	_	MHz MHz

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

Figure 13. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

Figure 14. Typical Opamp Noise

SAR8 ADC AC Specifications

The following table lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25°C and are for design guidance only.

Table 34. SAR8 ADC AC Specifications^[22]

Symbol	Description	Min	Тур	Max	Units
Freq ₃	Input clock frequency 3 V	_	-	3.075	MHz
Freq ₅	Input clock frequency 5 V	-	1	3.075	MHz

AC I²C Specifications

The following table lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25°C and are for design guidance only.

Table 35. AC Characteristics of the l^2 C SDA and SCL Pins for V_{DD} > 3.0 V

Symbol	Description	Standar	d Mode	Fast	Unite	
Symbol	Description	Min	Max	Min	Мах	Units
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μS
T _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS
T _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μS
T _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μS
T _{HDDATI2C}	Data hold time	0	-	0	-	μS
T _{SUDATI2C}	Data setup time	250	-	100 ^[24]	-	ns
T _{SUSTOI2C}	Setup Time for STOP condition	4.0	-	0.6	-	μS
T _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μS
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	-	-	0	50	ns

Note

^{24.} A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

Thermal Impedances

Table 37. Thermal Impedances by Package

Package	Typical θ _{JA} ^[22]
32 QFN	19.4 °C/W
28 SSOP	95 °C/W

Capacitance on Crystal Pins

Table 38. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
32 QFN	2.0 pF
28 SSOP	2.8 pF

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 39. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Time at Maximum Peak Temperature
32 QFN	260 °C	30 s
28 SSOP	260 °C	30 s

Glossary (continued)

ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .
microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.
modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.

Glossary (continued)

port	A group of pins, usually eight.
power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on- Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.

Glossary (continued)

tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Document History Page (continued)

Documer Documer	Document Title: CY8C23433, CY8C23533 PSoC [®] Programmable System-on-Chip™ Document Number: 001-44369						
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
۴H	4080613	GVH	07/30/2013	Added Errata footnotes (Note 1, 2, 13). Updated Features: Replaced 2.5% with 5% under "Precision, programmable clocking". Added Note 1 and referred the same note in 5%. Updated PSoC Functional Overview: Updated PSoC Core: Replaced 2.5% with 5% in 4th paragraph. Added Note 2 and referred the same note in 5%. Updated Electrical Specifications: Updated AC Electrical Characteristics: Updated AC Chip-Level Specifications: Added Note 13 and referred the same note in F _{IMO24} parameter in Table 23. Updated values of F _{IMO24} , F _{CPU1} , F _{CPU2} , F _{48M} , F _{24M} parameters in Table 23. Updated AC Digital Block Specifications: Replaced all 49.2 MHz with 50.4 MHz in Table 28			
				Replaced all 24.6 MHz with 25.2 MHz in Table 28. Updated in new template.			
*	4645154	SEG	01/29/2015	Corrected the units for R _{OUTOB} parameter. Updated 28-Pin (210-Mil) SSOP package diagram. Updated Sales, Solutions, and Legal Information based on the template.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2008-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-44369 Rev. *I

Revised May 7, 2013

Page 53 of 53

PSoC Designer[™] is a trademark and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.