E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

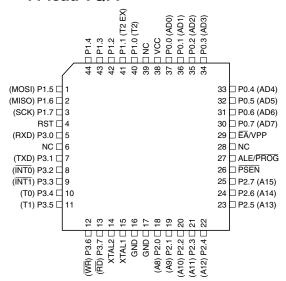
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

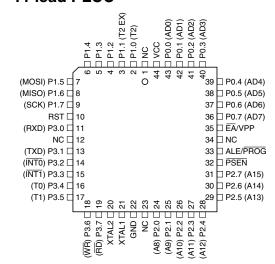
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s52-24au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



2. Pin Configurations


2.1 40-lead PDIP

			1
(T2) P1.0 🗆	1	40	□ vcc
(T2 EX) P1.1 🗆	2	39	DP0.0 (AD0)
P1.2 🗆	3	38	DP0.1 (AD1)
P1.3 🗆	4	37	🗆 P0.2 (AD2)
P1.4 🗆	5	36	🗆 P0.3 (AD3)
(MOSI) P1.5 🗆	6	35	🗆 P0.4 (AD4)
(MISO) P1.6 🗆	7	34	🗆 P0.5 (AD5)
(SCK) P1.7 🗆	8	33	🗆 P0.6 (AD6)
RST 🗆	9	32	🗆 P0.7 (AD7)
(RXD) P3.0 🗆	10	31	EA/VPP
(TXD) P3.1 🗆	11	30	ALE/PROG
(INT0) P3.2 🗆	12	29	D PSEN
(INT1) P3.3 🗆	13	28	🗆 P2.7 (A15)
(T0) P3.4 🗆	14	27	🗆 P2.6 (A14)
(T1) P3.5 🗆	15	26	🗆 P2.5 (A13)
(WR) P3.6 🗆	16	25	🗆 P2.4 (A12)
(RD) P3.7 🗆	17	24	🗆 P2.3 (A11)
XTAL2 🗆	18	23	🗆 P2.2 (A10)
XTAL1 🗆	19	22	🗆 P2.1 (A9)
GND 🗆	20	21	🗆 P2.0 (A8)

2.2 44-lead TQFP

2.3 44-lead PLCC

AT89S52

4.9 PSEN

Program Store Enable (PSEN) is the read strobe to external program memory.

When the AT89S52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

4.10 EA/VPP

External Access Enable. \overline{EA} must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, \overline{EA} will be internally latched on reset.

EA should be strapped to V_{CC} for internal program executions.

This pin also receives the 12-volt programming enable voltage (V_{PP}) during Flash programming.

4.11 XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

4.12 XTAL2

Output from the inverting oscillator amplifier.

5. Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 5-1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Timer 2 Registers: Control and status bits are contained in registers T2CON (shown in Table 5-2) and T2MOD (shown in Table 10-2) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.

	. ///000			1000					_
0F8H									0
0F0H	B 00000000								0
0E8H									0
0E0H	ACC 00000000								0
0D8H									0
0D0H	PSW 00000000								0
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0
0C0H									0
0B8H	IP XX000000								0
0B0H	P3 11111111								0
0A8H	IE 0X000000								0
0A0H	P2 11111111		AUXR1 XXXXXXX0				WDTRST XXXXXXXX		0
98H	SCON 00000000	SBUF XXXXXXXX							9
90H	P1 11111111								9
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXX00XX0		8
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000		PCON 0XXX0000	8

 Table 5-1.
 AT89S52 SFR Map and Reset Values

Table 5-2. T2CON – Timer/Counter 2 Control Register

T2CC	ON Address = 00	C8H				F	Reset Value =	0000 0000B		
Bit A	ddressable									
Bit	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2		
DIL	7	6	5	4	3	2	1	0		
Symbol	Function									
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or TCLK = 1.									
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).									
RCLK	Receive clock Modes 1 and 3					•		ceive clock in s	serial port	
TCLK	Transmit clock Modes 1 and 3			-				ansmit clock in	serial port	
EXEN2	Timer 2 extern 2 is not being								EX if Timer	
TR2	Start/Stop con	trol for Timer	2. TR2 = 1 sta	arts the timer.						
C/T2	Timer or count	ter select for T	imer 2. C/T2	= 0 for timer f	unction. C/T2	= 1 for extern	al event count	ter (falling edg	e triggered).	
CP/RL2	Capture/Reloa causes autom either RCLK o	atic reloads to	occur when	Timer 2 overfl	ows or negativ	e transitions (occur at T2E>	(when EXEN2		

Table 5-3.AUXR: Auxiliary Register

AUXR	Address	6 = 8EH					Res	set Value = 2	XXX00XX0B
	Not Bit A	Addressable	e						
		-	-	_	WDIDLE	DISRTO	_	_	DISALE
	Bit	7	6	5	4	3	2	1	0
-	Reserved for	r future exp	ansion						
DISALE	Disable/Enal	ble ALE							
	DISALE	Operating	Mode						
	0	ALE is en	nitted at a co	onstant rate	of 1/6 the os	cillator freque	ency		
	1	ALE is ac	tive only du	ring a MOV	X or MOVC ir	struction			
DISRTO	Disable/Enal	ble Reset o	ut						
	DISRTO								
	0	Reset pin	is driven Hi	gh after WD	DT times out				
	1	Reset pin	is input only	y					
WDIDLE	Disable/Enal	ble WDT in	IDLE mode						
	WDIDLE								
	0	WDT con	tinues to co	unt in IDLE	mode				
	1	WDT halt	s counting i	n IDLE mod	e				

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should **ALWAYS** initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 5-4.AUXR1: Auxiliary Register 1

AUXR1	Address	= A2H					Rese	et Value = X	XXXXXX0B			
	Not Bit A	Addressable	•									
		DPS										
	Bit	Bit 7 6 5 4 3 2 1 0										
-	Reserved for	future expa	ansion									
DPS	Data Pointer	Register Se	elect									
	DPS											
	0	0 Selects DPTR Registers DP0L, DP0H										
	1	Selects D	PTR Regist	ers DP1L, D	P1H							

6. Memory Organization

MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.

6.1 Program Memory

If the EA pin is connected to GND, all program fetches are directed to external memory.

On the AT89S52, if \overline{EA} is connected to V_{CC}, program fetches to addresses 0000H through 1FFFH are directed to internal memory and fetches to addresses 2000H through FFFFH are to external memory.

6.2 Data Memory

The AT89S52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. This means that the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions which use direct addressing access the SFR space.

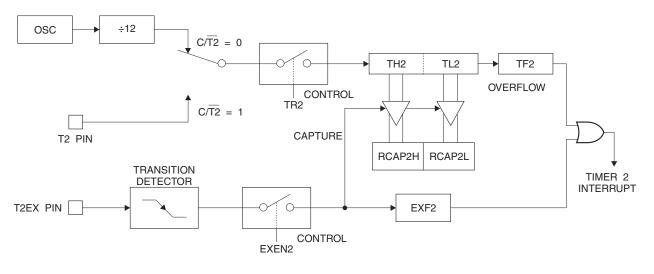
For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).

MOV 0A0H, #data

Instructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

MOV @R0, #data

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.


7. Watchdog Timer (One-time Enabled with Reset-out)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

7.1 Using the WDT

To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When

Figure 10-1. Timer in Capture Mode

Table 10-2.	T2MOD – Timer 2 Mode Control Register
-------------	---------------------------------------

T2MOD	Address = 00	C9H				Re	eset Value = X	XXX XX00B					
Not Bit Addressable													
	_	T2OE DCEN											
Bit	7	6 5 4 3 2 1 0											
Symbol	Function	on											
-	Not imp	plemented, re	served for futu	ure									
T2OE	Timer 2	imer 2 Output Enable bit											
DCEN	When s	set, this bit all	ows Timer 2 to	o be configure	ed as an up/do	wn counter							

Figure 10-2 shows Timer 2 automatically counting up when DCEN = 0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in Timer in Capture ModeRCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.

Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 10-2. In this mode, the T2EX pin controls the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.

Figure 10-2. Timer 2 Auto Reload Mode (DCEN = 0)

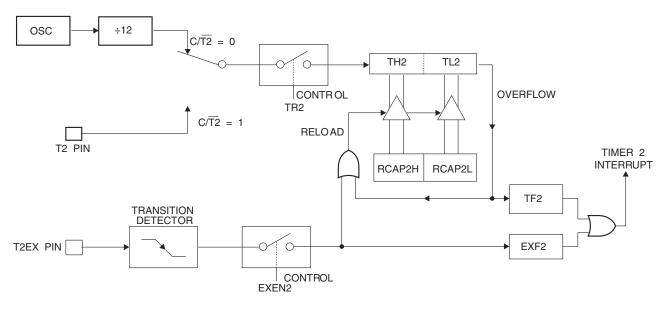
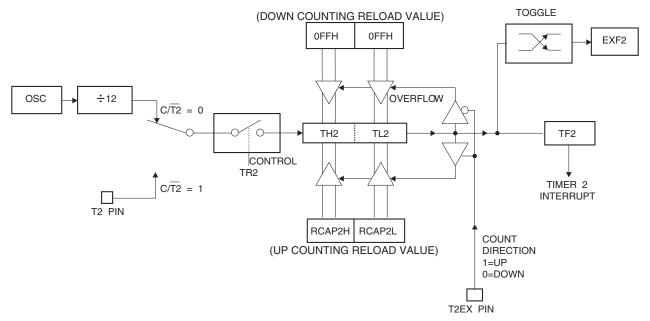
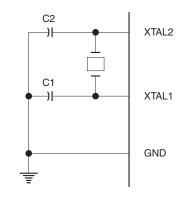



Figure 10-3. Timer 2 Auto Reload Mode (DCEN = 1)

14. Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 16-1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 16-2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clock-ing circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

15. Idle Mode


In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

16. Power-down Mode

In the Power-down mode, the oscillator is stopped, and the instruction that invokes Power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by an enabled external interrupt. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

Figure 16-1. Oscillator Connections

Note: 1. C1, C2 = $30 \text{ pF} \pm 10 \text{ pF}$ for Crystals = $40 \text{ pF} \pm 10 \text{ pF}$ for Ceramic Resonators

Figure 16-2. External Clock Drive Configuration

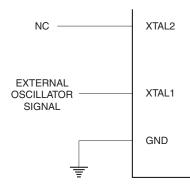


 Table 16-1.
 Status of External Pins During Idle and Power-down Modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

17. Program Memory Lock Bits

The AT89S52 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in Table 17-1.

	Program	Lock Bits		
	LB1	LB2	LB3	Protection Type
1	U	U	U	No program lock features
2	Ρ	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, $\overline{\text{EA}}$ is sampled and latched on reset, and further programming of the Flash memory is disabled
3	Р	Р	U	Same as mode 2, but verify is also disabled
4	Р	Р	Р	Same as mode 3, but external execution is also disabled

Table 17-1.Lock Bit Protection Modes

When lock bit 1 is programmed, the logic level at the \overline{EA} pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of \overline{EA} must agree with the current logic level at that pin in order for the device to function properly.

19. Programming the Flash – Serial Mode

The Code memory array can be programmed using the serial ISP interface while RST is pulled to V_{cc} . The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

20. Serial Programming Algorithm

To program and verify the AT89S52 in the serial programming mode, the following sequence is recommended:

- 1. Power-up sequence:
 - a. Apply power between VCC and GND pins.
 - b. Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- 2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
- 3. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.
- 4. Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output MISO/P1.6.
- 5. At the end of a programming session, RST can be set low to commence normal device operation.

Power-off sequence (if needed):

- 1. Set XTAL1 to "L" (if a crystal is not used).
- 2. Set RST to "L".
- 3. Turn V_{CC} power off.

Data Polling: The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

21. Serial Programming Instruction Set

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 24-1.

22. Programming Interface – Parallel Mode

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

Most major worldwide programming vendors offer support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

				ALE/	EA/						P0.7-0	P2.4-0	P1.7-0
Mode	v_{cc}	RST	PSEN	PROG	V _{PP}	P2.6	P2.7	P3.3	P3.6	P3.7	Data	Add	ress
Write Code Data	5V	н	L	(2)	12V	L	н	н	н	н	D _{IN}	A12-8	A7-0
Read Code Data	5V	н	L	Н	Н	L	L	L	н	н	D _{OUT}	A12-8	A7-0
Write Lock Bit 1	5V	н	L	(3)	12V	н	Н	Н	н	Н	х	х	х
Write Lock Bit 2	5V	н	L	(3)	12V	н	н	Н	L	L	х	x	х
Write Lock Bit 3	5V	н	L	(3)	12V	н	L	Н	н	L	х	х	х
Read Lock Bits 1, 2, 3	5V	н	L	н	Н	н	Н	L	н	L	P0.2, P0.3, P0.4	x	х
Chip Erase	5V	н	L	(1)	12V	н	L	Н	L	L	х	х	х
Read Atmel ID	5V	н	L	Н	Н	L	L	L	L	L	1EH	X 0000	00H
Read Device ID	5V	н	L	Н	Н	L	L	L	L	L	52H	X 0001	00H
Read Device ID	5V	н	L	Н	Н	L	L	L	L	L	06H	X 0010	00H

Table 22-1. Flash Programming Modes

Notes: 1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.

2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.

4. RDY/BSY signal is output on P3.0 during programming.

5. X = don't care.

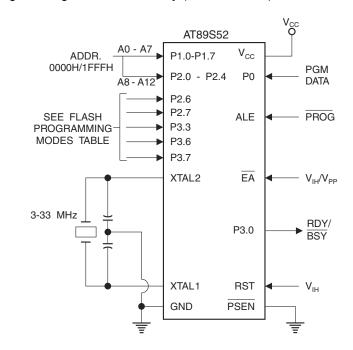
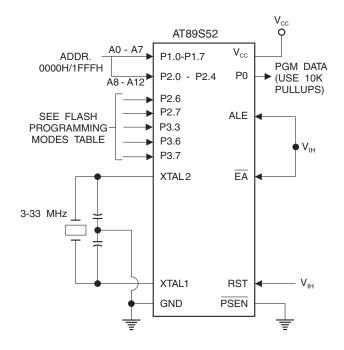
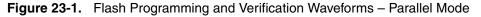



Figure 22-1. Programming the Flash Memory (Parallel Mode)


Figure 22-2. Verifying the Flash Memory (Parallel Mode)

23. Flash Programming and Verification Characteristics (Parallel Mode)

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	11.5	12.5	V
I _{PP}	Programming Supply Current		10	mA
I _{CC}	V _{CC} Supply Current		30	mA
1/t _{CLCL}	Oscillator Frequency	3	33	MHz
t _{AVGL}	Address Setup to PROG Low	48 t _{CLCL}		
t _{GHAX}	Address Hold After PROG	48 t _{CLCL}		
t _{DVGL}	Data Setup to PROG Low	48 t _{CLCL}		
t _{GHDX}	Data Hold After PROG	48 t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48 t _{CLCL}		
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs
t _{GHSL}	V _{PP} Hold After PROG	10		μs
t _{GLGH}	PROG Width	0.2	1	μs
t _{AVQV}	Address to Data Valid		48 t _{CLCL}	
t _{ELQV}	ENABLE Low to Data Valid		48 t _{CLCL}	
t _{EHQZ}	Data Float After ENABLE	0	48 t _{CLCL}	
t _{GHBL}	PROG High to BUSY Low		1.0	μs
t _{wc}	Byte Write Cycle Time		50	μs

 $T_A = 20^{\circ}C$ to $30^{\circ}C$, $V_{CC} = 4.5$ to 5.5V

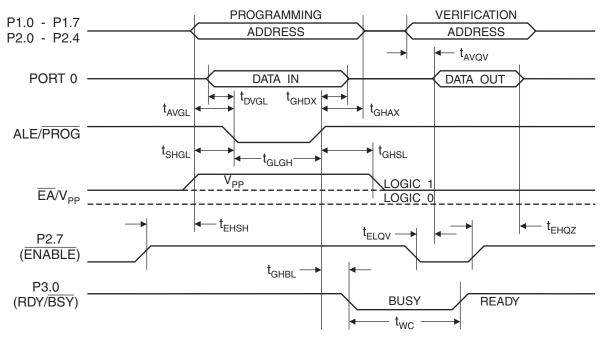
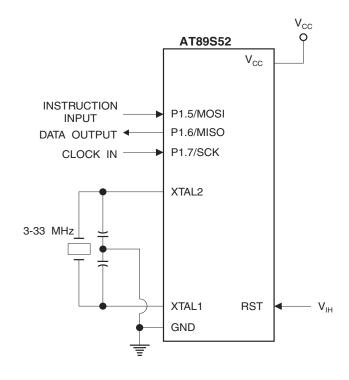



Figure 23-2. Flash Memory Serial Downloading

24. Flash Programming and Verification Waveforms – Serial Mode

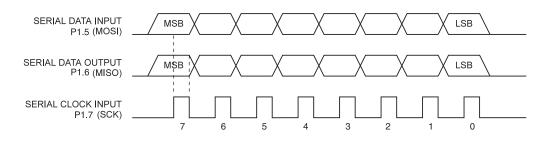


Figure 24-1. Serial Programming Waveforms

Table 24-1. Se	erial Programming	Instruction Set
----------------	-------------------	-----------------

	Instruction Format					
Instruction	Byte 1	Byte 2	Byte 3	Byte 4	Operation	
Programming Enable	1010 1100	0101 0011	xxxx xxxx	xxxx xxxx 0110 1001 (Output on MISO)	Enable Serial Programming while RST is high	
Chip Erase	1010 1100	100x xxxx	XXXX XXXX	XXXX XXXX	Chip Erase Flash memory array	
Read Program Memory (Byte Mode)	0010 0000	A12 A11 A12 A12 A12 A12 A12 A12 A12 A12	AAAA 4567 AAAA 4567	0000 0000	Read data from Program memory in the byte mode	
Write Program Memory (Byte Mode)	0100 0000	A11 2 A11 2 A90 A30 A11 2 A30 A11 2 A12	AAAA 4567	0000 0000 0000 0000	Write data to Program memory in the byte mode	
Write Lock Bits ⁽¹⁾	1010 1100	1110 00 品品	xxxx xxxx	xxxx xxxx	Write Lock bits. See Note (1).	
Read Lock Bits	0010 0100	XXXX XXXX	XXXX XXXX	XXX BI BY XXX	Read back current status of the lock bits (a programmed lock bit reads back as a "1")	
Read Signature Bytes	0010 1000	A12 A11 A12 A12 A12 A12 A12	⊱xxx xxx0	Signature Byte	Read Signature Byte	
Read Program Memory (Page Mode)	0011 0000	A12 XXX A12 XXX A200 A12 XXX	Byte 0	Byte 1 Byte 255	Read data from Program memory in the Page Mode (256 bytes)	
Write Program Memory (Page Mode)	0101 0000	A11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Byte 0	Byte 1 Byte 255	Write data to Program memory in the Page Mode (256 bytes)	

Note:

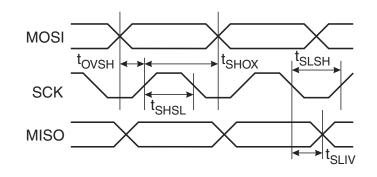
1. B1 = 0, $B2 = 0 \longrightarrow Mode 1$, no lock protection

 $B1 = 0, B2 = 1 \dots$ Mode 2, lock bit 1 activated $B1 = 1, B2 = 0 \dots$ Mode 3, lock bit 2 activated

B1 = 1, $B2 = 1 \longrightarrow Mode 4$, lock bit 3 activated

 \underline{Each} of the lock bit modes needs to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.


For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

25. Serial Programming Characteristics

Figure 25-1. Serial Programming Timing

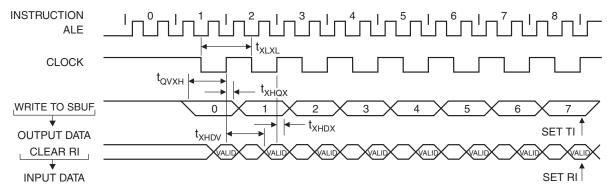
Table 25-1.Serial Programming Characteristics, $T_A = -40$ · C to 85· C, $V_{CC} = 4.0 - 5.5V$ (Unless Otherwise Noted)

Symbol	Parameter	Min	Тур	Max	Units
1/t _{CLCL}	Oscillator Frequency	3		33	MHz
t _{CLCL}	Oscillator Period	30			ns
t _{SHSL}	SCK Pulse Width High	8 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	8 t _{CLCL}			ns
t _{ovsh}	MOSI Setup to SCK High	t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10	16	32	ns
t _{ERASE}	Chip Erase Instruction Cycle Time			500	ms
t _{swc}	Serial Byte Write Cycle Time			64 t _{CLCL} + 400	μs

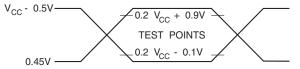
28. AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

Symbol	Parameter	12 MHz	12 MHz Oscillator		Oscillator	
		Min	Мах	Min	Мах	Units
1/t _{CLCL}	Oscillator Frequency			0	33	MHz
t _{LHLL}	ALE Pulse Width	127		2t _{CLCL} -40		ns
t _{AVLL}	Address Valid to ALE Low	43		t _{CLCL} -25		ns
t _{LLAX}	Address Hold After ALE Low	48		t _{CLCL} -25		ns
t _{LLIV}	ALE Low to Valid Instruction In		233		4t _{CLCL} -65	ns
t _{LLPL}	ALE Low to PSEN Low	43		t _{CLCL} -25		ns
t _{PLPH}	PSEN Pulse Width	205		3t _{CLCL} -45		ns
t _{PLIV}	PSEN Low to Valid Instruction In		145		3t _{CLCL} -60	ns
t _{PXIX}	Input Instruction Hold After PSEN	0		0		ns
t _{PXIZ}	Input Instruction Float After PSEN		59		t _{CLCL} -25	ns
t _{PXAV}	PSEN to Address Valid	75		t _{CLCL} -8		ns
t _{AVIV}	Address to Valid Instruction In		312		5t _{CLCL} -80	ns
t _{PLAZ}	PSEN Low to Address Float		10		10	ns
t _{RLRH}	RD Pulse Width	400		6t _{CLCL} -100		ns
t _{wLWH}	WR Pulse Width	400		6t _{CLCL} -100		ns
t _{RLDV}	RD Low to Valid Data In		252		5t _{CLCL} -90	ns
t _{RHDX}	Data Hold After RD	0		0		ns
t _{RHDZ}	Data Float After RD		97		2t _{CLCL} -28	ns
t _{LLDV}	ALE Low to Valid Data In		517		8t _{CLCL} -150	ns
t _{AVDV}	Address to Valid Data In		585		9t _{CLCL} -165	ns
t _{LLWL}	ALE Low to RD or WR Low	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	Address to RD or WR Low	203		4t _{CLCL} -75		ns
t _{QVWX}	Data Valid to WR Transition	23		t _{CLCL} -30		ns
t _{QVWH}	Data Valid to WR High	433		7t _{CLCL} -130		ns
t _{wHQX}	Data Hold After WR	33		t _{CLCL} -25		ns
t _{RLAZ}	RD Low to Address Float		0		0	ns
t _{WHLH}	RD or WR High to ALE High	43	123	t _{CLCL} -25	t _{CLCL} +25	ns

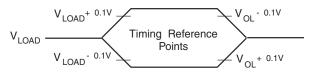

28.1 External Program and Data Memory Characteristics

34. Serial Port Timing: Shift Register Mode Test Conditions


		12 Mł	12 MHz Osc Variable Oscillator		Dscillator	
Symbol	Parameter	Min	Max	Min	Мах	Units
t _{XLXL}	Serial Port Clock Cycle Time	1.0		12 t _{CLCL}		μs
t _{QVXH}	Output Data Setup to Clock Rising Edge	700		10 t _{CLCL} -133		ns
t _{XHQX}	Output Data Hold After Clock Rising Edge	50		2 t _{CLCL} -80		ns
t _{XHDX}	Input Data Hold After Clock Rising Edge	0		0		ns
t _{XHDV}	Clock Rising Edge to Input Data Valid		700		10 t _{CLCL} -133	ns

The values in this table are valid for V_{CC} = 4.0V to 5.5V and Load Capacitance = 80 pF.

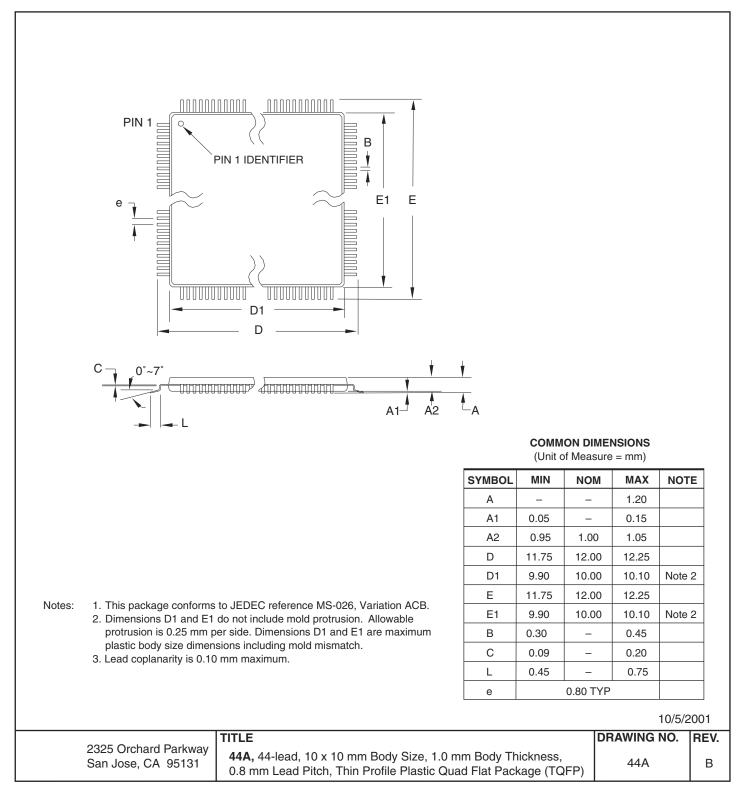
35. Shift Register Mode Timing Waveforms



36. AC Testing Input/Output Waveforms⁽¹⁾

Note: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.

37. Float Waveforms⁽¹⁾



Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs.

39. Packaging Information

39.1 44A – TQFP

