

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s52-24pc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000								0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0CFH
0C0H									0C7H
0B8H	IP XX000000								0BFH
0B0H	P3 11111111								0B7H
0A8H	IE 0X000000								0AFH
0A0H	P2 11111111		AUXR1 XXXXXXX0				WDTRST XXXXXXXX		0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111								97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXX00XX0		8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000		PCON 0XXX0000	87H

 Table 5-1.
 AT89S52 SFR Map and Reset Values

Table 5-3.AUXR: Auxiliary Register

AUXR	Address = 8EH Reset Value = XXX00XX0B									
	Not Bit Addressable									
		-	_	_	WDIDLE	DISRTO	_	-	DISALE	
	Bit	7	6	5	4	3	2	1	0	
-	Reserved for future expansion									
DISALE	Disable/Enal	Disable/Enable ALE								
	DISALE	Operating Mode								
	0	ALE is emitted at a constant rate of 1/6 the oscillator frequency								
	1	ALE is active only during a MOVX or MOVC instruction								
DISRTO	Disable/Enal	ble/Enable Reset out								
	DISRTO									
	0	Reset pin	is driven Hig	gh after WD	T times out					
	1	Reset pin	is input only	,						
WDIDLE	Disable/Enal	ble WDT in I	DLE mode							
	WDIDLE									
	0	WDT cont	inues to cou	Int in IDLE I	mode					
	1	WDT halts	counting ir	IDLE mode	e					

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should **ALWAYS** initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 5-4. AUXR1: Auxiliary Register 1

AUXR1	Address = A2H Reset Value = XXXXXX0B										
	Not Bit Addressable										
		_	_	_	_	_	_	_	DPS		
	Bit	7	6	5	4	3	2	1	0		
										-	
-	Reserved for future expansion										
DPS	Data Pointer Register Select										
	DPS										
	0	Selects D	PTR Regist	ers DP0L, D	P0H						
	1	Selects D	PTR Regist	ers DP1L, D	P1H						

6. Memory Organization

MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.

6.1 Program Memory

If the EA pin is connected to GND, all program fetches are directed to external memory.

On the AT89S52, if \overline{EA} is connected to V_{CC}, program fetches to addresses 0000H through 1FFFH are directed to internal memory and fetches to addresses 2000H through FFFFH are to external memory.

6.2 Data Memory

The AT89S52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. This means that the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions which use direct addressing access the SFR space.

For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).

MOV 0A0H, #data

Instructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

MOV @R0, #data

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

7. Watchdog Timer (One-time Enabled with Reset-out)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

7.1 Using the WDT

To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When

WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is 98xTOSC, where TOSC = 1/FOSC. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

7.2 WDT During Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Powerdown mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level-activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S52 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode.

To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode.

Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S52 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode.

With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.

8. UART

The UART in the AT89S52 operates the same way as the UART in the AT89C51 and AT89C52. For further information on the UART operation, please click on the document link below:

http://www.atmel.com/dyn/resources/prod_documents/DOC4316.PDF

9. Timer 0 and 1

Timer 0 and Timer 1 in the AT89S52 operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52. For further information on the timers' operation, please click on the document link below:

http://www.atmel.com/dyn/resources/prod_documents/DOC4316.PDF

Figure 10-1. Timer in Capture Mode

Table 10-2.	T2MOD – Timer 2 Mode Control F	Register
-------------	--------------------------------	----------

T2MOD Address = 0C9H Reset Value = XXXX XX00B									
Not Bit Addressable									
	-	_	_	_	-	_	T2OE	DCEN	
Bit	7	6	5	4	3	2	1	0	
Symbol	Function								
-	Not im	Not implemented, reserved for future							
T2OE	Timer	Timer 2 Output Enable bit							
DCEN	When	set, this bit all	ows Timer 2 t	o be configure	ed as an up/do	wn counter			

Figure 10-2 shows Timer 2 automatically counting up when DCEN = 0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in Timer in Capture ModeRCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.

Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 10-2. In this mode, the T2EX pin controls the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.

Figure 10-2. Timer 2 Auto Reload Mode (DCEN = 0)

Figure 10-3. Timer 2 Auto Reload Mode (DCEN = 1)

Figure 11-1. Timer 2 in Baud Rate Generator Mode

12. Programmable Clock Out

A 50% duty cycle clock can be programmed to come out on P1.0, as shown in Figure 12-1. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed to input the external clock for Timer/Counter 2 or to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz (for a 16-MHz operating frequency).

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer.

The clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L), as shown in the following equation.

Clock-Out Frequency =
$$\frac{\text{Oscillator Frequency}}{4 \times [65536-(\text{RCAP2H},\text{RCAP2L})]}$$

In the clock-out mode, Timer 2 roll-overs will not generate an interrupt. This behavior is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies cannot be determined independently from one another since they both use RCAP2H and RCAP2L.

Figure 12-1. Timer 2 in Clock-Out Mode

13. Interrupts

The AT89S52 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 13-1.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

Note that Table 13-1 shows that bit position IE.6 is unimplemented. User software should not write a 1 to this bit position, since it may be used in future AT89 products.

Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.

Table 13-1. Interrupt Enable (IE) Register

(MS	B)				(LSB)					
	EA	-	ET2		ES	ET1	EX1	ET0	EX0	
Ena	Enable Bit = 1 enables the interrupt.									
Enable Bit = 0 disables the interrupt.										
Symbo	bl	Position		Func	tion					
EA		IE.7		Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.						
_		IE.6		Reserved.						
ET2		IE.5		Timer 2 interrupt enable bit.						
ES		IE.4		Serial Port interrupt enable bit.						
ET1		IE.3		Timer 1 interrupt enable bit.						
EX1		IE.2		External interrupt 1 enable bit.						
ET0		IE.1		Timer 0 interrupt enable bit.						
EX0		IE.0		External interrupt 0 enable bit.						
User se	oftware should r	never write 1s to	reserved	d bits, I	because they m	nay be used in f	uture AT89 pro	ducts.		

Figure 13-1. Interrupt Sources

18 AT89S52

Figure 16-2. External Clock Drive Configuration

 Table 16-1.
 Status of External Pins During Idle and Power-down Modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

17. Program Memory Lock Bits

The AT89S52 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in Table 17-1.

	Program Lock Bits			
	LB1	LB2	LB3	Protection Type
1	U	U	U	No program lock features
2	Ρ	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the Flash memory is disabled
3	Р	Р	U	Same as mode 2, but verify is also disabled
4	Р	Р	Р	Same as mode 3, but external execution is also disabled

Table 17-1.Lock Bit Protection Modes

When lock bit 1 is programmed, the logic level at the \overline{EA} pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of \overline{EA} must agree with the current logic level at that pin in order for the device to function properly.

Figure 22-1. Programming the Flash Memory (Parallel Mode)

Figure 22-2. Verifying the Flash Memory (Parallel Mode)

23. Flash Programming and Verification Characteristics (Parallel Mode)

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	11.5	12.5	V
I _{PP}	Programming Supply Current		10	mA
I _{CC}	V _{CC} Supply Current		30	mA
1/t _{CLCL}	Oscillator Frequency	3	33	MHz
t _{AVGL}	Address Setup to PROG Low	48 t _{CLCL}		
t _{GHAX}	Address Hold After PROG	48 t _{CLCL}		
t _{DVGL}	Data Setup to PROG Low	48 t _{CLCL}		
t _{GHDX}	Data Hold After PROG	48 t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48 t _{CLCL}		
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs
t _{GHSL}	V _{PP} Hold After PROG	10		μs
t _{GLGH}	PROG Width	0.2	1	μs
t _{AVQV}	Address to Data Valid		48 t _{CLCL}	
t _{ELQV}	ENABLE Low to Data Valid		48 t _{CLCL}	
t _{EHQZ}	Data Float After ENABLE	0	48 t _{CLCL}	
t _{GHBL}	PROG High to BUSY Low		1.0	μs
t _{wc}	Byte Write Cycle Time		50	μs

 $T_A = 20^{\circ}C$ to $30^{\circ}C$, $V_{CC} = 4.5$ to 5.5V

Figure 23-2. Flash Memory Serial Downloading

24. Flash Programming and Verification Waveforms – Serial Mode

Figure 24-1. Serial Programming Waveforms

	Table 24-1.	Serial Programming Instruction Se
--	-------------	-----------------------------------

	Instruction Format				
Instruction	Byte 1	Byte 2	Byte 3	Byte 4	Operation
Programming Enable	1010 1100	0101 0011	XXXX XXXX	xxxx xxxx 0110 1001 (Output on MISO)	Enable Serial Programming while RST is high
Chip Erase	1010 1100	100x xxxx	XXXX XXXX	XXXX XXXX	Chip Erase Flash memory array
Read Program Memory (Byte Mode)	0010 0000	A11 2 A11 2 A90 A30 A11 2 A12	AAAA AAAA 7700 4000000000000000000000000000000000	0000 0000 0000 0000	Read data from Program memory in the byte mode
Write Program Memory (Byte Mode)	0100 0000	A11 2 A11 2 A11 2 A11 2 A12	AAAA 45601 01203 45601	0000 0000 2000 0000	Write data to Program memory in the byte mode
Write Lock Bits ⁽¹⁾	1010 1100	1110 00 🔤 🛗	xxxx xxxx	xxxx xxxx	Write Lock bits. See Note (1).
Read Lock Bits	0010 0100	XXXX XXXX	XXXX XXXX	XXX EB3 LB2 XXX EB1	Read back current status of the lock bits (a programmed lock bit reads back as a "1")
Read Signature Bytes	0010 1000	A12 A11 A12 A11 A12 A12 A12	⊱xxx xxx0	Signature Byte	Read Signature Byte
Read Program Memory (Page Mode)	0011 0000	A12 XXX A11 2 A11 2 A12 XXX A12 XXX A12 XXX	Byte 0	Byte 1 Byte 255	Read data from Program memory in the Page Mode (256 bytes)
Write Program Memory (Page Mode)	0101 0000	A12 XXX A11 2 A11 2 A12 XXX	Byte 0	Byte 1 Byte 255	Write data to Program memory in the Page Mode (256 bytes)

Note:

1. B1 = 0, $B2 = 0 \longrightarrow Mode 1$, no lock protection

 $B1 = 0, B2 = 1 \dots$ Mode 2, lock bit 1 activated $B1 = 1, B2 = 0 \dots$ Mode 3, lock bit 2 activated

B1 = 1, $B2 = 1 \longrightarrow Mode 4$, lock bit 3 activated

Each of the lock bit modes needs to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.

For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

25. Serial Programming Characteristics

Figure 25-1. Serial Programming Timing

Table 25-1.Serial Programming Characteristics, $T_A = -40$ · C to 85· C, $V_{CC} = 4.0 - 5.5V$ (Unless Otherwise Noted)

Symbol	Parameter	Min	Тур	Max	Units
1/t _{CLCL}	Oscillator Frequency	3		33	MHz
t _{CLCL}	Oscillator Period	30			ns
t _{SHSL}	SCK Pulse Width High	8 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	8 t _{CLCL}			ns
t _{OVSH}	MOSI Setup to SCK High	t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10	16	32	ns
t _{ERASE}	Chip Erase Instruction Cycle Time			500	ms
t _{SWC}	Serial Byte Write Cycle Time			64 t _{CLCL} + 400	μs

28. AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

		12 MHz	12 MHz Oscillator		Variable Oscillator	
Symbol	Parameter	Min	Max	Min	Мах	Units
1/t _{CLCL}	Oscillator Frequency			0	33	MHz
t _{LHLL}	ALE Pulse Width	127		2t _{CLCL} -40		ns
t _{AVLL}	Address Valid to ALE Low	43		t _{CLCL} -25		ns
t _{LLAX}	Address Hold After ALE Low	48		t _{CLCL} -25		ns
t _{LLIV}	ALE Low to Valid Instruction In		233		4t _{CLCL} -65	ns
t _{LLPL}	ALE Low to PSEN Low	43		t _{CLCL} -25		ns
t _{PLPH}	PSEN Pulse Width	205		3t _{CLCL} -45		ns
t _{PLIV}	PSEN Low to Valid Instruction In		145		3t _{CLCL} -60	ns
t _{PXIX}	Input Instruction Hold After PSEN	0		0		ns
t _{PXIZ}	Input Instruction Float After PSEN		59		t _{CLCL} -25	ns
t _{PXAV}	PSEN to Address Valid	75		t _{CLCL} -8		ns
t _{AVIV}	Address to Valid Instruction In		312		5t _{CLCL} -80	ns
t _{PLAZ}	PSEN Low to Address Float		10		10	ns
t _{RLRH}	RD Pulse Width	400		6t _{CLCL} -100		ns
t _{wLWH}	WR Pulse Width	400		6t _{CLCL} -100		ns
t _{RLDV}	RD Low to Valid Data In		252		5t _{CLCL} -90	ns
t _{RHDX}	Data Hold After RD	0		0		ns
t _{RHDZ}	Data Float After RD		97		2t _{CLCL} -28	ns
t _{LLDV}	ALE Low to Valid Data In		517		8t _{CLCL} -150	ns
t _{AVDV}	Address to Valid Data In		585		9t _{CLCL} -165	ns
t _{LLWL}	ALE Low to RD or WR Low	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	Address to RD or WR Low	203		4t _{CLCL} -75		ns
t _{QVWX}	Data Valid to WR Transition	23		t _{CLCL} -30		ns
t _{QVWH}	Data Valid to WR High	433		7t _{CLCL} -130		ns
t _{wHQX}	Data Hold After WR	33		t _{CLCL} -25		ns
t _{RLAZ}	RD Low to Address Float		0		0	ns
t _{wn n}	RD or WR High to ALE High	43	123	t _{ci ci} -25	t _{ci ci} +25	ns

28.1 External Program and Data Memory Characteristics

31. External Data Memory Write Cycle

32. External Clock Drive Waveforms

33. External Clock Drive

Symbol	Parameter	Min	Мах	Units	
1/t _{CLCL}	Oscillator Frequency	0	33	MHz	
t _{CLCL}	Clock Period	30		ns	
t _{CHCX}	High Time	12		ns	
t _{CLCX}	Low Time	12		ns	
t _{CLCH}	Rise Time		5	ns	
t _{CHCL}	Fall Time		5	ns	

38. Ordering Information

38.1	Green	Package	Option	(Pb/Halide-free))
------	-------	---------	--------	------------------	---

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range	
		AT89S52-24AU	44A	Industrial	
24	4.0V to 5.5V	AT89S52-24JU	44J		
		AT89S52-24PU	40P6	(-40 C to 85 C)	
		AT89S52-33AU	44A	Industrial	
33	4.5V to 5.5V	.5V AT89S52-33JU 44J	$(40^{\circ} \text{C to } 85^{\circ} \text{C})$		
		AT89S52-33PU	40P6	(-40 C to 85 C)	

Package Type		
44 A	44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)	
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)	
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)	

34 AT89S52

39. Packaging Information

39.1 44A – TQFP

39.2 44J - PLCC

