

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s52-24pu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Pin Configurations

2.1 40-lead PDIP

	\cup		
(T2) P1.0 🗆	1	40	□ vcc
(T2 EX) P1.1 🗆	2	39	D P0.0 (AD0)
P1.2	3	38	DP0.1 (AD1)
P1.3 🗆	4	37	DP0.2 (AD2)
P1.4 🗆	5	36	D P0.3 (AD3)
(MOSI) P1.5 🗆	6	35	D P0.4 (AD4)
(MISO) P1.6 🗆	7	34	D P0.5 (AD5)
(SCK) P1.7 🗆	8	33	DP0.6 (AD6)
RST 🗆	9	32	D P0.7 (AD7)
(RXD) P3.0 🗆	10	31	□ ĒĀ/VPP
(TXD) P3.1 🗆	11	30	ALE/PROG
(INT0) P3.2 🗆	12	29	D PSEN
(INT1) P3.3 🗆	13	28	🗆 P2.7 (A15)
(T0) P3.4 🗆	14	27	🗆 P2.6 (A14)
(T1) P3.5 🗆	15	26	🗆 P2.5 (A13)
(WR) P3.6 🗆	16	25	🗆 P2.4 (A12)
(RD) P3.7 🗆	17	24	🗆 P2.3 (A11)
XTAL2	18	23	🗆 P2.2 (A10)
XTAL1 🗆	19	22	🗆 P2.1 (A9)
GND 🗆	20	21	🗆 P2.0 (A8)

2.2 44-lead TQFP

2.3 44-lead PLCC

AT89S52

2

3. Block Diagram

4. Pin Description

4.1 VCC Supply voltage.

Ground.

4.3 Port 0

GND

4.2

Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.

Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.

Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. **External pull-ups are required during program verification**.

4.4 Port 1

Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}) because of the internal pull-ups.

In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table.

Port 1 also receives the low-order address bytes during Flash programming and verification.

Port Pin	Alternate Functions
P1.0	T2 (external count input to Timer/Counter 2), clock-out
P1.1	T2EX (Timer/Counter 2 capture/reload trigger and direction control)
P1.5	MOSI (used for In-System Programming)
P1.6	MISO (used for In-System Programming)
P1.7	SCK (used for In-System Programming)

4.5 Port 2

Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

4.6 Port 3

Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S52, as shown in the following table.

Port Pin	Alternate Functions
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (timer 0 external input)
P3.5	T1 (timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

4.7 RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives high for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

4.8 ALE/PROG

Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Table 5-2. T2CON – Timer/Counter 2 Control Register

T2CC	DN Address = 0C8H Reset Value = 0000 0000B										
Bit Ac	ldressable										
D :4	TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2										
Bit	7 6 5 4 3 2 1 0										
Symbol	Function										
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or TCLK = 1.										
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).										
RCLK	Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.										
TCLK	Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.										
EXEN2	I2Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.										
TR2	Start/Stop control for Timer 2. TR2 = 1 starts the timer.										
C/T2	Timer or counter select for Timer 2. $C/\overline{T2} = 0$ for timer function. $C/\overline{T2} = 1$ for external event counter (falling edge triggered).										
CP/RL2	Capture/Reloa causes automa either RCLK o	d select. CP/Ī atic reloads to r TCLK = 1, th	RL2 = 1 cause occur when 1 is bit is ignore	s captures to imer 2 overflo d and the tim	occur on neg ows or negativ er is forced to	ative transition e transitions c auto-reload c	ns at T2EX if occur at T2EX on Timer 2 ove	EXEN2 = 1. C (when EXEN2 erflow.	P/RL2 = 0 2 = 1. When		

8

10. Timer 2

Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit $C/\overline{12}$ in the SFR T2CON (shown in Table 5-2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON, as shown in Table 10-1. Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

RCLK +TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud Rate Generator
Х	Х	0	(Off)

 Table 10-1.
 Timer 2 Operating Modes

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

10.1 Capture Mode

In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 = 1, Timer 2 performs the same operation, but a 1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 10-1.

10.2 Auto-reload (Up or Down Counter)

Timer 2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit located in the SFR T2MOD (see Table 10-2). Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin.

Figure 10-2. Timer 2 Auto Reload Mode (DCEN = 0)

Figure 10-3. Timer 2 Auto Reload Mode (DCEN = 1)

11. Baud Rate Generator

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 5-2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 11-1.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

Modes 1 and 3 Baud Rates = $\frac{\text{Timer 2 Overflow Rate}}{16}$

The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation (CP/T2 = 0). The timer operation is different for Timer 2 when it is used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at 1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time (at 1/2 the oscillator frequency). The baud rate formula is given below.

 $\frac{\text{Modes 1 and 3}}{\text{Baud Rate}} = \frac{\text{Oscillator Frequency}}{32 \times [65536-\text{RCAP2H},\text{RCAP2L})]}$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 11-1. This figure is valid only if RCLK or TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2 and will not generate an interrupt. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus, when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.

Note that when Timer 2 is running (TR2 = 1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. Under these conditions, the Timer is incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Figure 11-1. Timer 2 in Baud Rate Generator Mode

12. Programmable Clock Out

A 50% duty cycle clock can be programmed to come out on P1.0, as shown in Figure 12-1. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed to input the external clock for Timer/Counter 2 or to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz (for a 16-MHz operating frequency).

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer.

The clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L), as shown in the following equation.

Clock-Out Frequency =
$$\frac{\text{Oscillator Frequency}}{4 \times [65536-(\text{RCAP2H},\text{RCAP2L})]}$$

In the clock-out mode, Timer 2 roll-overs will not generate an interrupt. This behavior is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies cannot be determined independently from one another since they both use RCAP2H and RCAP2L.

Table 13-1. Interrupt Enable (IE) Register

(MS	B)				(LSB)					
	EA	-	ET2		ES	ET1	EX1	ET0	EX0	
Ena	able Bit = 1 enable	es the interrupt.								
Ena	able Bit = 0 disabl	es the interrupt.								
Symbol Position Function										
EA	IE.7 Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable						ə bit.			
_		IE.6 Reserved.								
ET2		IE.5		Timer 2 interrupt enable bit.						
ES IE.4					Serial Port interrupt enable bit.					
ET1		IE.3		Time	r 1 interrupt ena	able bit.				
EX1		IE.2		Exter	nal interrupt 1 e	enable bit.				
ET0		IE.1		Time	r 0 interrupt ena	able bit.				
EX0	EX0 IE.0 External interrupt 0 enable bit.									
User se	oftware should r	never write 1s to	reserved	d bits, I	because they m	nay be used in f	uture AT89 pro	ducts.		

Figure 13-1. Interrupt Sources

18 AT89S52

18. Programming the Flash – Parallel Mode

The AT89S52 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S52 code memory array is programmed byte-by-byte.

Programming Algorithm: Before programming the AT89S52, the address, data, and control signals should be set up according to the "Flash Programming Modes" (Table 22-1) and Figure 22-1 and Figure 22-2. To program the AT89S52, take the following steps:

- 1. Input the desired memory location on the address lines.
- 2. Input the appropriate data byte on the data lines.
- 3. Activate the correct combination of control signals.
- 4. Raise \overline{EA}/V_{PP} to 12V.
- 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than 50 μs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

Data Polling: The AT89S52 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. **The status of the individual lock bits can be verified directly by reading them back**.

Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (100H) = 52H indicates AT89S52 (200H) = 06H

Chip Erase: In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns - 500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.

22. Programming Interface – Parallel Mode

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

Most major worldwide programming vendors offer support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

				ALE/	EA/						P0.7-0	P2.4-0	P1.7-0
Mode	V _{cc}	RST	PSEN	PROG	V _{PP}	P2.6	P2.7	P3.3	P3.6	P3.7	Data	Add	ress
Write Code Data	5V	н	L	(2)	12V	L	н	н	Н	н	D _{IN}	A12-8	A7-0
Read Code Data	5V	н	L	н	Н	L	L	L	Н	н	D _{OUT}	A12-8	A7-0
Write Lock Bit 1	5V	н	L	(3)	12V	н	Н	Н	Н	Н	х	х	х
Write Lock Bit 2	5V	н	L	(3)	12V	н	н	Н	L	L	х	х	х
Write Lock Bit 3	5V	н	L	(3)	12V	н	L	Н	Н	L	х	х	х
Read Lock Bits 1, 2, 3	5V	н	L	н	н	н	н	L	н	L	P0.2, P0.3, P0.4	х	х
Chip Erase	5V	н	L	(1)	12V	н	L	Н	L	L	х	х	х
Read Atmel ID	5V	н	L	н	Н	L	L	L	L	L	1EH	X 0000	00H
Read Device ID	5V	н	L	Н	Н	L	L	L	L	L	52H	X 0001	00H
Read Device ID	5V	Н	L	Н	Н	L	L	L	L	L	06H	X 0010	00H

Table 22-1. Flash Programming Modes

Notes: 1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.

2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.

4. RDY/BSY signal is output on P3.0 during programming.

5. X = don't care.

23. Flash Programming and Verification Characteristics (Parallel Mode)

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	11.5	12.5	V
I _{PP}	Programming Supply Current		10	mA
I _{CC}	V _{CC} Supply Current		30	mA
1/t _{CLCL}	Oscillator Frequency	3	33	MHz
t _{AVGL}	Address Setup to PROG Low	48 t _{CLCL}		
t _{GHAX}	Address Hold After PROG	48 t _{CLCL}		
t _{DVGL}	Data Setup to PROG Low	48 t _{CLCL}		
t _{GHDX}	Data Hold After PROG	48 t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48 t _{CLCL}		
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs
t _{GHSL}	V _{PP} Hold After PROG	10		μs
t _{GLGH}	PROG Width	0.2	1	μs
t _{AVQV}	Address to Data Valid		48 t _{CLCL}	
t _{ELQV}	ENABLE Low to Data Valid		48 t _{CLCL}	
t _{EHQZ}	Data Float After ENABLE	0	48 t _{CLCL}	
t _{GHBL}	PROG High to BUSY Low		1.0	μs
t _{wc}	Byte Write Cycle Time		50	μs

 $T_A = 20^{\circ}C$ to $30^{\circ}C$, $V_{CC} = 4.5$ to 5.5V

	Table 24-1.	Serial Programming Instruction Se
--	-------------	-----------------------------------

	Instruction Format				
Instruction	Byte 1	Byte 2	Byte 3	Byte 4	Operation
Programming Enable	1010 1100	0101 0011	XXXX XXXX	xxxx xxxx 0110 1001 (Output on MISO)	Enable Serial Programming while RST is high
Chip Erase	1010 1100	100x xxxx	XXXX XXXX	XXXX XXXX	Chip Erase Flash memory array
Read Program Memory (Byte Mode)	0010 0000	A11 2 A11 2 A90 A30 A11 2 A12	AAAA AAAA 7700 4000000000000000000000000000000000	0000 0000 0000 0000	Read data from Program memory in the byte mode
Write Program Memory (Byte Mode)	0100 0000	A11 2 A11 2 A11 2 A11 2 A12	AAAA 45601 01203 45601	0000 0000 2000 0000	Write data to Program memory in the byte mode
Write Lock Bits ⁽¹⁾	1010 1100	1110 00 🔤 🛗	xxxx xxxx	xxxx xxxx	Write Lock bits. See Note (1).
Read Lock Bits	0010 0100	XXXX XXXX	XXXX XXXX	XXX EB3 LB2 XXX EB1	Read back current status of the lock bits (a programmed lock bit reads back as a "1")
Read Signature Bytes	0010 1000	A12 A11 A12 A11 A12 A12 A12	⊱xxx xxx0	Signature Byte	Read Signature Byte
Read Program Memory (Page Mode)	0011 0000	A12 XXX A11 2 A11 2 A12 XXX A12 XXX A12 XXX	Byte 0	Byte 1 Byte 255	Read data from Program memory in the Page Mode (256 bytes)
Write Program Memory (Page Mode)	0101 0000	A12 XXX A11 2 A11 2 A12 XXX	Byte 0	Byte 1 Byte 255	Write data to Program memory in the Page Mode (256 bytes)

Note:

1. B1 = 0, $B2 = 0 \longrightarrow Mode 1$, no lock protection

 $B1 = 0, B2 = 1 \dots$ Mode 2, lock bit 1 activated $B1 = 1, B2 = 0 \dots$ Mode 3, lock bit 2 activated

B1 = 1, B2 = 1 ---> Mode 4, lock bit 3 activated

Each of the lock bit modes needs to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.

For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

25. Serial Programming Characteristics

Figure 25-1. Serial Programming Timing

Table 25-1.Serial Programming Characteristics, $T_A = -40$ · C to 85· C, $V_{CC} = 4.0 - 5.5V$ (Unless Otherwise Noted)

Symbol	Parameter	Min	Тур	Max	Units
1/t _{CLCL}	Oscillator Frequency	3		33	MHz
t _{CLCL}	Oscillator Period	30			ns
t _{SHSL}	SCK Pulse Width High	8 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	8 t _{CLCL}			ns
t _{OVSH}	MOSI Setup to SCK High	t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10	16	32	ns
t _{ERASE}	Chip Erase Instruction Cycle Time			500	ms
t _{SWC}	Serial Byte Write Cycle Time			64 t _{CLCL} + 400	μs

28. AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

		12 MHz	12 MHz Oscillator		Variable Oscillator		
Symbol	Parameter	Min	Max	Min	Мах	Units	
1/t _{CLCL}	Oscillator Frequency			0	33	MHz	
t _{LHLL}	ALE Pulse Width	127		2t _{CLCL} -40		ns	
t _{AVLL}	Address Valid to ALE Low	43		t _{CLCL} -25		ns	
t _{LLAX}	Address Hold After ALE Low	48		t _{CLCL} -25		ns	
t _{LLIV}	ALE Low to Valid Instruction In		233		4t _{CLCL} -65	ns	
t _{LLPL}	ALE Low to PSEN Low	43		t _{CLCL} -25		ns	
t _{PLPH}	PSEN Pulse Width	205		3t _{CLCL} -45		ns	
t _{PLIV}	PSEN Low to Valid Instruction In		145		3t _{CLCL} -60	ns	
t _{PXIX}	Input Instruction Hold After PSEN	0		0		ns	
t _{PXIZ}	Input Instruction Float After PSEN		59		t _{CLCL} -25	ns	
t _{PXAV}	PSEN to Address Valid	75		t _{CLCL} -8		ns	
t _{AVIV}	Address to Valid Instruction In		312		5t _{CLCL} -80	ns	
t _{PLAZ}	PSEN Low to Address Float		10		10	ns	
t _{RLRH}	RD Pulse Width	400		6t _{CLCL} -100		ns	
t _{wLWH}	WR Pulse Width	400		6t _{CLCL} -100		ns	
t _{RLDV}	RD Low to Valid Data In		252		5t _{CLCL} -90	ns	
t _{RHDX}	Data Hold After RD	0		0		ns	
t _{RHDZ}	Data Float After RD		97		2t _{CLCL} -28	ns	
t _{LLDV}	ALE Low to Valid Data In		517		8t _{CLCL} -150	ns	
t _{AVDV}	Address to Valid Data In		585		9t _{CLCL} -165	ns	
t _{LLWL}	ALE Low to RD or WR Low	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns	
t _{AVWL}	Address to RD or WR Low	203		4t _{CLCL} -75		ns	
t _{QVWX}	Data Valid to WR Transition	23		t _{CLCL} -30		ns	
t _{QVWH}	Data Valid to WR High	433		7t _{CLCL} -130		ns	
t _{wHQX}	Data Hold After WR	33		t _{CLCL} -25		ns	
t _{RLAZ}	RD Low to Address Float		0		0	ns	
t _{wn n}	RD or WR High to ALE High	43	123	t _{ci ci} -25	t _{ci ci} +25	ns	

28.1 External Program and Data Memory Characteristics

31. External Data Memory Write Cycle

32. External Clock Drive Waveforms

33. External Clock Drive

Symbol	Parameter	Min	Мах	Units	
1/t _{CLCL}	Oscillator Frequency	0	33	MHz	
t _{CLCL}	Clock Period	30		ns	
t _{CHCX}	High Time	12		ns	
t _{CLCX}	Low Time	12		ns	
t _{CLCH}	Rise Time		5	ns	
t _{CHCL}	Fall Time		5	ns	

34. Serial Port Timing: Shift Register Mode Test Conditions

		12 MI	Iz Osc	Variable Oscillator		
Symbol	Parameter	Min	Max	Min	Мах	Units
t _{XLXL}	Serial Port Clock Cycle Time	1.0		12 t _{CLCL}		μs
t _{QVXH}	Output Data Setup to Clock Rising Edge	700		10 t _{CLCL} -133		ns
t _{XHQX}	Output Data Hold After Clock Rising Edge	50		2 t _{CLCL} -80		ns
t _{XHDX}	Input Data Hold After Clock Rising Edge	0		0		ns
t _{XHDV}	Clock Rising Edge to Input Data Valid		700		10 t _{CLCL} -133	ns

The values in this table are valid for V_{CC} = 4.0V to 5.5V and Load Capacitance = 80 pF.

35. Shift Register Mode Timing Waveforms

36. AC Testing Input/Output Waveforms⁽¹⁾

Note: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.

37. Float Waveforms⁽¹⁾

Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs.

38. Ordering Information

38.1	Green	Package	Option	(Pb/Halide-free))
------	-------	---------	--------	------------------	---

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
		AT89S52-24AU	44A	Industrial
24	4.0V to 5.5V	AT89S52-24JU	44J	$(40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C})$
		AT89S52-24PU	40P6	(-40 C to 85 C)
		AT89S52-33AU	44A	Industrial
33	4.5V to 5.5V	AT89S52-33JU	44J	$(40^{\circ} \text{C to } 85^{\circ} \text{C})$
		AT89S52-33PU	40P6	(-40 C to 85 C)

Package Type		
44 A	44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)	
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)	
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)	

34 AT89S52

39.3 40P6 – PDIP

