
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1840-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 8.5 "Automatic Context Saving"**, for more information.

2.2 16-level Stack with Overflow and Underflow

These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See **Section 3.5 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 29.0 "Instruction Set Summary"** for more details.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
20Ch	WPUA	—		WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
20Dh to 210h	_	Unimplement	ed							-	_
211h	SSP1BUF	Synchronous	Serial Port Re	eceive Buffer/T	ransmit Regis	ster				xxxx xxxx	uuuu uuuu
212h	SSP1ADD				ADD<7	:0>				0000 0000	0000 0000
213h	SSP1MSK				MSK<7	:0>				1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSP10V	SSP1EN	CKP		SSP1N	1<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h to 21Fh	_	Unimplement	ed							_	_
Bank 5	5										
28Ch to 290h	_	Unimplement	Inimplemented							_	_
291h	CCPR1L	Capture/Com	Capture/Compare/PWM Register 1 (LSB)							XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Com	pare/PWM Re	gister 1 (MSB))	-				xxxx xxxx	uuuu uuuu
293h	CCP1CON	P1M	<1:0>	DC1B	<1:0>		CCP1N	/<3:0>		0000 0000	0000 0000
294h	PWM1CON	P1RSEN			F	21DC<6:0>				0000 0000	0000 0000
295h	CCP1AS	CCP1ASE		CCP1AS<2:0>	-	PSS1A	C<1:0>	PSS1B	3D<1:0>	0000 0000	0000 0000
296h	PSTR1CON	—	—	—	STR1SYNC	Reserved	Reserved	STR1B	STR1A	0 rr01	0 rr01
297h to 29Fh	_	Unimplement	ed							_	_
Bank 6	;										
30Ch to 31Fh	_	Unimplement	Unimplemented						-	_	
Bank 7	,									1	
38Ch to 390h	_	Unimplement	ed							-	—
391h	IOCAP	_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	—	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h to 399h	_	Unimplement	ed							_	_
39Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRD	C<1:0>	C	LKRDIV<2:0)>	0011 0000	0011 0000
39Bh	—	Unimplement	ed							-	—
39Ch	MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	—	—	MDBIT	00100	00100
39Dh	MDSRC	MDMSODIS	_	_	_		MDMS	6<3:0>		x xxxx	u uuuu
39Eh	MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCL	<3:0>		xxx- xxxx	uuu- uuuu
39Fh	MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCH	<3:0>		xxx- xxxx	uuu- uuuu
Legend:	x = unknown	n, u = unchange	ed, q = value	depends on co	ndition, - = un	implemented	, r = reserve	d.			

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: PIC12F1840 only.

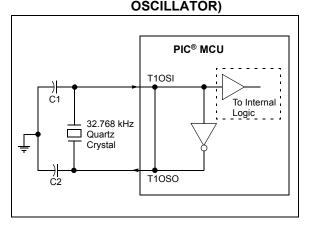
3: Unimplemented, read as '1'.

5.2.1.4 4x PLL

The oscillator module contains a 4x PLL that can be used with both external and internal clock sources to provide a system clock source. The input frequency for the 4x PLL must fall within specifications. See the PLL Clock Timing Specifications in **Section 30.0 "Electrical Specifications"**.

The 4x PLL may be enabled for use by one of two methods:

- 1. Program the PLLEN bit in Configuration Words to a '1'.
- Write the SPLLEN bit in the OSCCON register to a '1'. If the PLLEN bit in Configuration Words is programmed to a '1', then the value of SPLLEN is ignored.


5.2.1.5 TIMER1 Oscillator

The Timer1 oscillator is a separate crystal oscillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 oscillator can be used as an alternate system clock source and can be selected during run-time using clock switching. Refer to **Section 5.3 "Clock Switching"** for more information.

FIGURE 5-5:

QUARTZ CRYSTAL OPERATION (TIMER1

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - 3: For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

5.2.1.6 External RC Mode

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required.

The RC circuit connects to OSC1. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

Figure 5-6 shows the external RC mode connections.

9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 9-	I. WAN			INKU		RUPI		
OSC1 ⁽¹⁾ CLKOUT ⁽²⁾	1	Q1 Q2 Q3 Q4 _/_/_/ 		T1osc ⁽³		Q1 Q2 Q3 Q4 /~_/~_/~_/ //	Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4 ~~~~~~
Interrupt flag			/	•	Interrupt Laten	cy ⁽⁴⁾	· 	· · · · · · · · · · · · · · · · · · ·
GIE bit (INTCON reg.)	;;		Processor in	'			· ·	
Instruction Flow PC	х РС X	PC + 1	X PC	+ 2	(PC + 2	PC + 2	X 0004h	X 0005h
Instruction { Fetched	Inst(PC) = Sleep	Inst(PC + 1)	1	1 1 1	Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	i 1	1 1 1	Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
2: 3:	XT, HS or LP Oscilla CLKOUT is shown h T1osc; See Sectior GIE = 1 assumed. Ir	ere for timing re 30.0 "Electrica	ference. al Specificatio		calls the ISR at 0	0004h. If GIE = 0,	execution will con	tinue in-line.

FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>				SCS<1:0>		53
STATUS	—	_	—	TO	PD	Z	DC	С	15
WDTCON	—	_		١	WDTPS<4:0	>		SWDTEN	83

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		—	22
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		FOSC<2:0>			33

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

R/W-x/u LATA0

bit 0

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	_
—	—	LATA5	LATA4	—	LATA2	LATA1	
bit 7							

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾
bit 3	Unimplemented: Read as '0'
bit 2-0	LATA<2:0>: RA<2:0> Output Latch Value bits ⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

13.0 INTERRUPT-ON-CHANGE

The PORTA pins can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORTA pin, or combination of PORTA pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

13.1 Enabling the Module

To allow individual PORTA pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

13.2 Individual Pin Configuration

For each PORTA pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated IOCAPx bit of the IOCAP register is set. To enable a pin to detect a falling edge, the associated IOCANx bit of the IOCAN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both the IOCAPx bit and the IOCANx bit of the IOCAP and IOCAN registers, respectively.

13.3 Interrupt Flags

The IOCAFx bits located in the IOCAF register are status flags that correspond to the Interrupt-on-change pins of PORTA. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAFx bits.

13.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 13-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCAF register will be updated prior to the first instruction executed out of Sleep.

17.7 Register Definitions: DAC Control

REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0
DACEN	DACLPS	DACOE	_	DACP	SS<1:0>	_	_
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpleme	ented bit, read as '	0'	
u = Bit is uncha	anged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	llue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	DACEN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled						
bit 6	1 = DAC Posi	 DACLPS: DAC Low-Power Voltage State Select bit 1 = DAC Positive reference source selected 0 = DAC Negative reference source selected 					
bit 5	 DAC Negative reference source selected DACOE: DAC Voltage Output Enable bit 1 = DAC voltage level is also an output on the DACOUT pin 0 = DAC voltage level is disconnected from the DACOUT pin 						
bit 4	Unimplemente	ed: Read as '0'					
bit 3-2	DACPSS<1:0>: DAC Positive Source Select bits 11 = Reserved, do not use 10 = FVR Buffer2 output 01 = VREF pin 00 = VDD						
bit 1-0	Unimplemente	ed: Read as '0'					

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFVF	R<1:0>	111
DACCON0	DACEN	DACLPS	DACOE	_	DACPS	S<1:0>		_	130
DACCON1	—		_			DACR<4:0>			130

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the DAC module.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
SRSPE	SRSCKE	Reserved	SRSC1E	SRRPE	SRRCKE	Reserved	SRRC1E		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	SRSPE: SR	Latch Periphera	al Set Enable b	pit					
		is set when the							
	•	has no effect or		of the SR latch	l				
bit 6		R Latch Set Clo							
		t of SR latch is nas no effect or							
h:4 F			•						
bit 5		ead as '0'. Mai		ear.					
bit 4	••••••	R Latch C1 Set							
			set when the C1 Comparator output is high ator output has no effect on the set input of the SR latch						
bit 3	-	Latch Periphera		•					
DIL 3		•							
	 1 = SR latch is reset when the SRI pin is high 0 = SRI pin has no effect on the reset input of the SR latch 								
bit 2	•	R Latch Reset (•						
	1 = Reset in	put of SR latch	is pulsed with	SRCLK					
		has no effect or			ch				
bit 1	Reserved: R	ead as '0'. Mai	ntain this bit cl	ear.					
bit 0	SRRC1E: SF	R Latch C1 Res	et Enable bit						
	1 = SR latch	is reset when t	the C1 Compa	rator output is	high				
					ut of the SR late	ch			

REGISTER 18-2: SRCON1: SR LATCH CONTROL 1 REGISTER

TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH SR LATCH MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
SRCON0	SRLEN	SRCLK<2:0>			SRQEN	SRNQEN	SRPS	SRPR	133
SRCON1	SRSPE	SRSCKE	Reserved	SRSC1E	SRRPE	SRRCKE	Reserved	SRRC1E	134
TRISA	_		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	102

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the SR Latch module.

FIGURE 19-2: COMPARATOR 1 MODULE SIMPLIFIED BLOCK DIAGRAM

24.3 PWM Overview

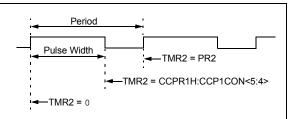
Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 24-3 shows a typical waveform of the PWM signal.

24.3.1 STANDARD PWM OPERATION


The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCP1 pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- · PR2 registers
- T2CON registers
- · CCPR1L registers
- · CCP1CON registers

Figure 24-4 shows a simplified block diagram of PWM operation.

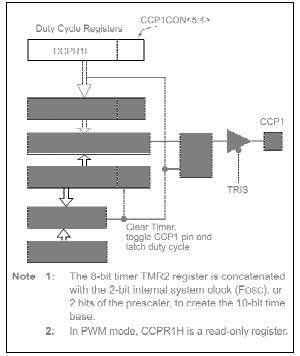
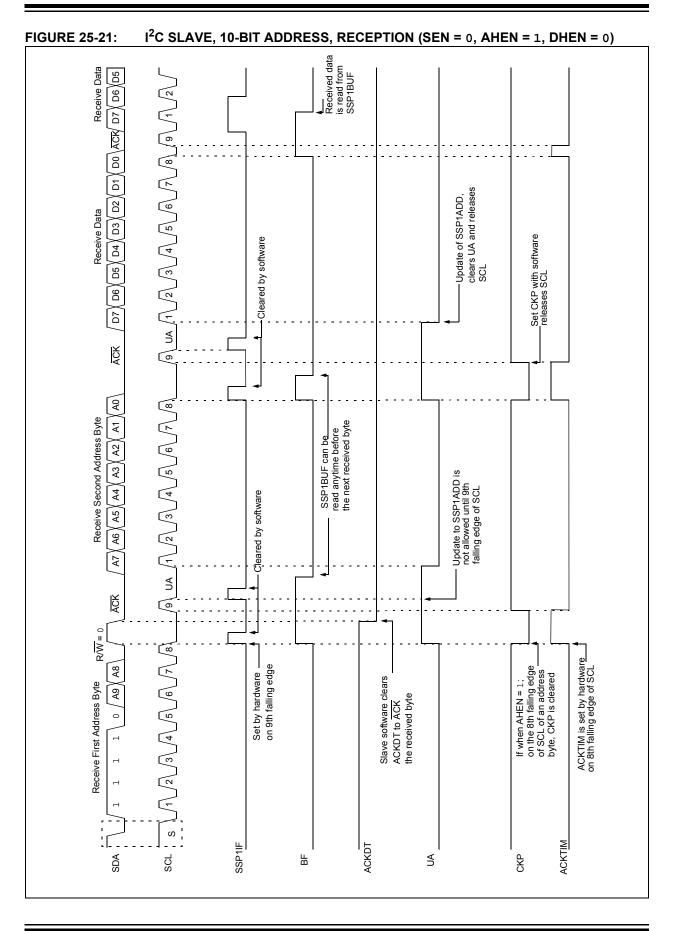

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCP1 pin.
 - **2:** Clearing the CCP1CON register will relinquish control of the CCP1 pin.

FIGURE 24-3: CCP1 PWM OUTPUT SIGNAL


SIMPLIFIED PWM BLOCK DIAGRAM

24.5 Register Definitions: CCP Control

REGISTER 24-1: CCP1CON: CCP1 CONTROL REGISTER

R/W-00	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
P1N	P1M<1:0> DC1B<1:0>		8<1:0>		CCP1I	vl<3:0>			
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable bi	t	U = Unimpleme	ented bit, read as	· 'O'			
u = Bit is unch		x = Bit is unkno		•	POR and BOR/\		Reset		
'1' = Bit is set		'0' = Bit is clear							
bit 7-6	P1M<1:0>: En	hanced PWM Ou	tput Configurat	ion bits					
	Capture mode:								
	Unused								
	<u>Compare mode</u> Unused	<u>e:</u>							
	PWM mode:								
		<u>2> = 00,01,10:</u>	(2)		(4)				
		•	re/Compare inp	out; P1B assigned	as port pins(")				
	<u>If CCP1M<3:</u> 11 = Reserv								
			, P1B modulate	d with dead-band	control				
	01 = Reserv				_				
	00 = Single output; P1A modulated; P1B assigned as port pins								
bit 5-4	DC1B<1:0>: PWM Duty Cycle Least Significant bits								
	<u>Capture mode:</u> Unused								
	Compare mode	Compare mode:							
	Unused								
	PWM mode:								
			-	cycle. The eight M	Sbs are found in	CCPR1L.			
bit 3-0	CCP1M<3:0>:	ECCP1 Mode Se	elect bits						
		11 = Compare mode: Special Event Trigger (CCP1 resets Timer, sets CCP1IF bit, and starts ADC conversion if ADC module is enabled)							
			,	terrupt only; ECCI	P1 pin reverts to	I/O state			
	•		•	high; clear output	•	· · · · ·			
	1000 = Compare mode: initialize ECCP1 pin low; set output on compare match (set CCP1IF)								
	0111 = Captu	ure mode: every 1	6th risina edae	2					
		ure mode: every 4							
	•	ure mode: every r							
	0100 = Captu	ure mode: every f	alling edge						
	0011 = Rese	rved							
		pare mode: toggle	e output on mat	ch					
	0001 = Rese								
	0000 = Captu	ure/Compare/PW	M off (resets E	CCP1 module)					
	PWM mode:								
		mode: P1A activ	e-low; P1B act	ive-low					
	1110 = PWM	mode: P1A activ	e-low; P1B act	ive-high					
		mode: P1A activ	-						
	1100 = PWM	mode: P1A activ	e-nigh; P1B ac	tive-high					

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

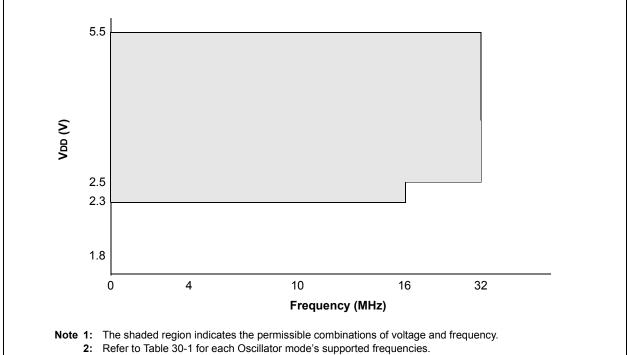
BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + $1 + k$. This instruction is a 2-cycle instruction. This branch has a limited range.

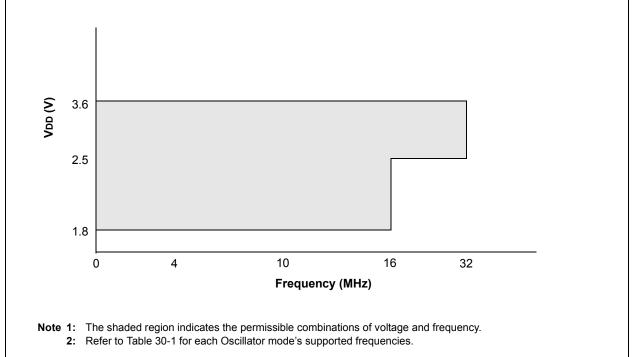
BRW	Relative Branch with W
Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BTFSS	Bit Test f, Skip if Set			
Syntax:	[label]BTFSS f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$			
Operation:	skip if (f) = 1			
Status Affected:	None			
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.			


30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)


Ambient temperature under bias40°C to +125°C						
Storage temperature	65°C to +150°C					
Voltage on VDD with respect to Vss, PIC12F1840	0.3V to +6.5V					
Voltage on VDD with respect to Vss, PIC12LF1840	-0.3V to +4.0V					
Voltage on MCLR with respect to Vss	0.3V to +9.0V					
Voltage on all other pins with respect to Vss						
Total power dissipation ⁽¹⁾ 800 mV						
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	aximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial					
Maximum current out of Vss pin, -40°C \leq Ta \leq +125°C for extended						
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial						
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended						
Clamp current, Ik (VPIN < 0 or VPIN > VDD)	± 20 mA					
Maximum output current sunk by any I/O pin						
Maximum output current sourced by any I/O pin	25 mA					
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD	– Voh) x Ioh} + Σ (Vol x Iol).					

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

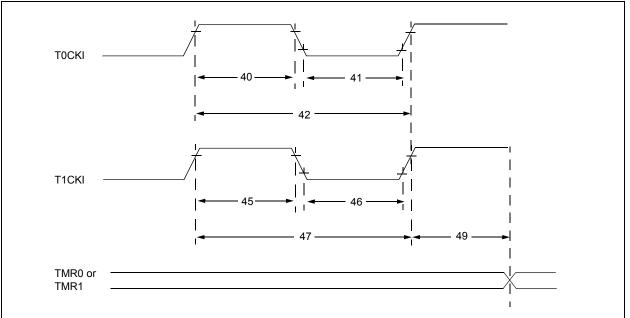


FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

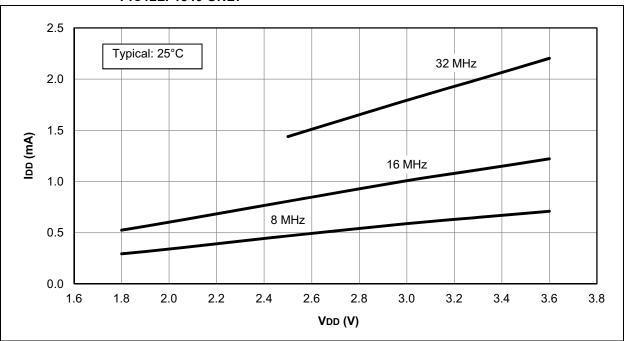
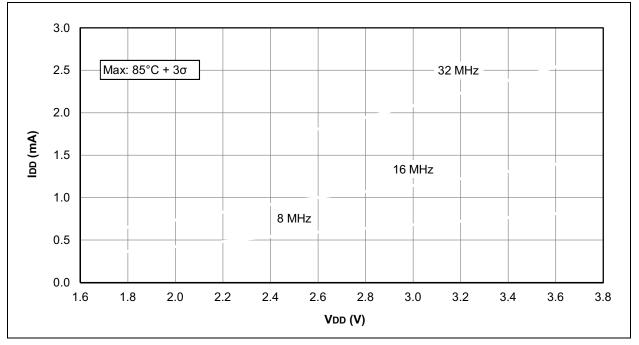
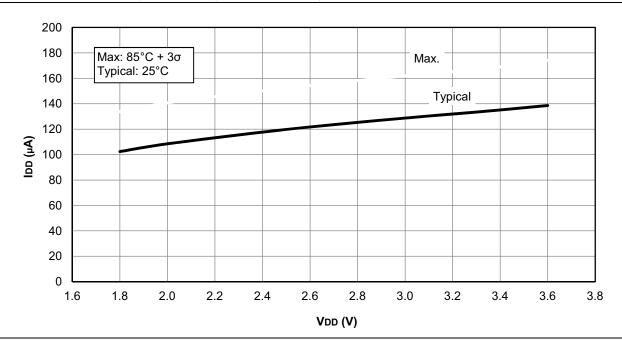
TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

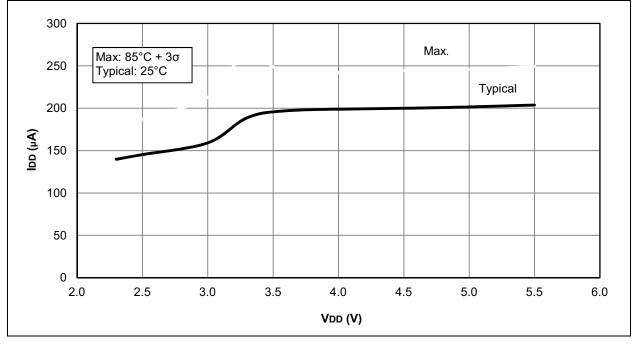
Param No.	Sym.		Characteristic			Тур†	Max.	Units	Conditions
40*	Тт0Н	T0CKI High Pulse Width No Prescaler With Prescaler		No Prescaler	0.5 Tcy + 20	_	—	ns	
				10	_	_	ns		
41*	TT0L	T0CKI Low Pulse Width No Prescaler With Prescaler		0.5 Tcy + 20	_		ns		
				10	_		ns		
42*	Тт0Р	T0CKI Period	1	Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value	
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	_	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	_		ns	
			Asynchronous		30	_		ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous		60	_	_	ns	
48	F⊤1	Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	2 Tosc	—	7 Tosc	—	Timers in Sync mode	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

FIGURE 31-15: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC12LF1840 ONLY


FIGURE 31-16: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC12LF1840 ONLY

