

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1840-e-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- · 16-level Stack with Overflow and Underflow
- · File Select Registers
- Instruction Set

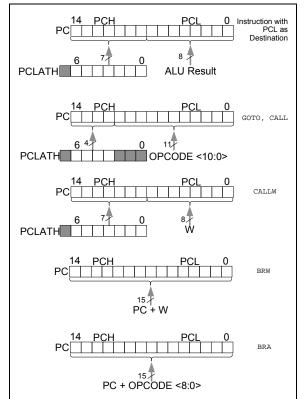


FIGURE 2-1: CORE BLOCK DIAGRAM

3.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS

3.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.4.3 COMPUTED FUNCTION CALLS

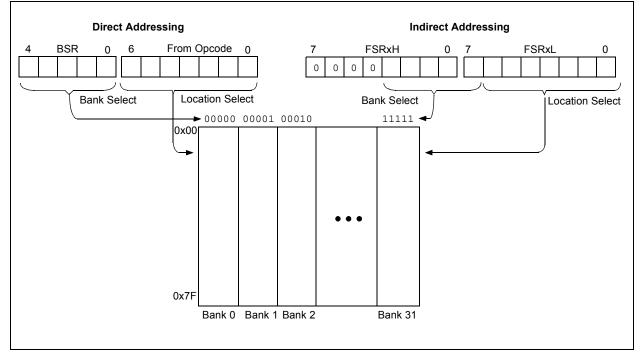
A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.


If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-9: TRADITIONAL DATA MEMORY MAP

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm)
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

Note 1: PLL inactive.

11.4 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.
- 8. Repeat steps 6 and 7 as many times as required to reprogram the erased row.

11.5 User ID, Device ID and Configuration Word Access

Instead of accessing program memory or EEPROM data memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the EECON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-2.

When read access is initiated on an address outside the parameters listed in Table 11-2, the EEDATH:EEDATL register pair is cleared.

Address	Address Function		Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

TABLE 11-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

EXAMPLE 11-3: CONFIGURATION WORD AND DEVICE ID ACCESS

* * *	This code block will read 1 word of program memory at the memory address: PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; PROG_DATA_HI, PROG_DATA_LO							
	BANKSEL MOVLW MOVWF CLRF	EEADRL PROG_ADDR_LO EEADRL EEADRH	; ; Store LSB of address					
	BSF BCF BSF NOP NOP BSF	EECON1, CFGS INTCON, GIE EECON1, RD INTCON, GIE	5 1					
	MOVF MOVWF MOVF MOVWF	PROG_DATA_LO EEDATH,W	<pre>; Get LSB of word ; Store in user location ; Get MSB of word ; Store in user location</pre>					

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 12-6: WPUA: WEAK PULL-UP PORTA REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 WPUA<5:0>: Weak Pull-up Register bits^(1, 2) 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—		—	ANSA4		ANSA2	ANSA1	ANSA0	103
APFCON	RXDTSEL	SDOSEL	SSSEL		T1GSEL	TXCKSEL	P1BSEL	CCP1SEL	99
LATA	—	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	103
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		145
PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	102
TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	102
WPUA	_		WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	104

TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-3: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		—	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	22
CONFIG1	7:0 CI		MCLRE	PWRTE	WDTE	E<1:0>		FOSC<2:0>		33

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "ADC Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

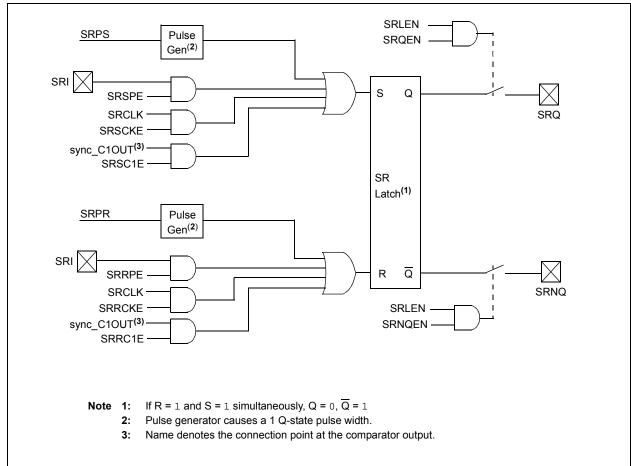
When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 16-2: SPECIAL EVENT TRIGGER

Device	ECCP1
PIC12(L)F1840	ECCP1


Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 24.0 "Capture/Compare/PWM Modules" for more information.

16.3 Register Definitions: ADC Control

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	OR/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7	Unimplomo	nted: Read as '	0'				
bit 6-2	-	Analog Channel					
	11111 = FV 11110 = DA 11101 = Tei 11100 = Re • • • •	R (Fixed Voltage C_output ⁽¹⁾ mperature Indica served. No char served. No char	e Reference) E ator ⁽³⁾ . nnel connected	J.	2)		
	$00011 = AN \\ 00010 = AN \\ 00001 = AN \\ 00000 = AN $	12 11 10					
bit 1	1 = ADC co This bit i	ADC Conversion nversion cycle ir is automatically nversion comple	n progress. Se cleared by har	dware when th			eted.
bit 0	ADON: ADO 1 = ADC is e	C Enable bit		-			
2:	See Section 17. See Section 14. See Section 15.	0 "Fixed Voltag	e Reference ((FVR)" for more	e information.	nformation.	

FIGURE 18-1:	SR LATCH SIMPLIFIED BLOCK DIAGRAM

TABLE 18-1: SRCLK FF	REQUENCY TABLE
----------------------	----------------

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

19.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the C1HYS bit of the CM1CON0 register.

See **Section 30.0 "Electrical Specifications"** for more information.

19.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 21.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

19.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from comparator C1 can be synchronized with Timer1 by setting the C1SYNC bit of the CM1CON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 19-2) and the Timer1 Block Diagram (Figure 21-1) for more information.

19.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a Falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (C1INTP and/or C1INTN bits of the CM1CON1 register), the Corresponding Interrupt Flag bit (C1IF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- C1ON, C1POL and C1SP bits of the CM1CON0 register
- C1IE bit of the PIE2 register
- C1INTP bit of the CM1CON1 register (for a rising edge detection)
- C1INTN bit of the CM1CON1 register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, C1IF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note:	Although a comparator is disabled, an
	interrupt can be generated by changing
	the output polarity with the C1POL bit of
	the CM1CON0 register, or by switching
	the comparator on or off with the C1ON bit
	of the CM1CON0 register.

19.6 Comparator Positive Input Selection

Configuring the C1PCH<1:0> bits of the CM1CON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · C1IN+ analog pin
- DAC_output
- FVR Buffer2
- Vss (Ground)

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (C1ON = 0), all comparator inputs are disabled.

19.7 Comparator Negative Input Selection

The C1NCH bit of the CM1CON1 register directs one of two analog pins to the comparator inverting input.

Note: To use C1IN+ and C1INx- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

19.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 30.0 "Electrical Specifications"** for more details.

19.9 Interaction with ECCP Logic

The C1 comparator can be used as a general purpose comparator. The output can be brought out to the C1OUT pin. When the ECCP auto-shutdown is active it can use the comparator signal. If auto-restart is also enabled, the comparator can be configured as a closed loop analog feedback to the ECCP, thereby, creating an analog controlled PWM.

Note:	When the comparator module is first
	initialized the output state is unknown.
	Upon initialization, the user should verify
	the output state of the comparator prior to
	relying on the result, primarily when using
	the result in connection with other
	peripheral features, such as the ECCP
	Auto-Shutdown mode.

19.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
C1INTP	C1INTN	C1PCH	l<1:0>	_	_	_	C1NCH
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is uncha	inged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is set		'0' = Bit is cleare	ed				
bit 6	 1 = The C1IF interrupt flag will be set upon a positive going edge of the C1OUT bit 0 = No interrupt flag will be set on a positive going edge of the C1OUT bit C1INTN: Comparator Interrupt on Negative Going Edge Enable bits 1 = The C1IF interrupt flag will be set upon a negative going edge of the C1OUT bit 0 = No interrupt flag will be set on a negative going edge of the C1OUT bit 						
bit 5-4 C1PCH<1:0>: Comparator Positive Input Channel Select bits 10 = C1VP connects to FVR Voltage Reference 01 = C1VP connects to DAC Voltage Reference 00 = C1VP connects to C1IN+ pin							
bit 3-1	Unimplemente	ed: Read as '0'					
bit 0	1 = C1VN co	parator Negative I ponnects to C1IN1- ponnects to C1IN0-	pin	elect bit			

REGISTER 19-2: CM1CON1: COMPARATOR C1 CONTROL REGISTER 1

REGISTER 19-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0/0
_	_	—	—	—	_	—	MC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 MC10UT: Mirror Copy of C10UT bit

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	-	—	ANSA4	—	ANSA2	ANSA1	ANSA0	103
CM1CON0	C1ON	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	141
CM1CON1	C1INTP	C1INTN	C1PCI	H<1:0>	_	—	_	C1NCH	142
CMOUT	_	—	—	—	—	—	_	MC1OUT	142
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	72
PIE2	OSFIE	—	C1IE	EEIE	BCL1IE	—	-	—	74
PIR2	OSFIF	_	C1IF	EEIF	BCL1IF	—	_	—	76
TRISA	—		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	102

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
MDCLODIS	MDCLPOL	MDCLSYNC			MDCI	_<3:0>				
bit 7							bit C			
Legend:										
R = Readable	bit	W = Writable I	oit	•	nented bit, read					
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR					R/Value at all o	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7		Modulator Low		•		POS of the MD(CADL register			
	is disable	• •	periprierar	output pin (selec			JARL register			
	0 = Output s	ignal driving the	peripheral	output pin (selec	ted by MDCL<3	3:0> of the MD	CARL register			
	is enable									
bit 6		DL: Modulator Low Carrier Polarity Select bit								
	 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted 									
bit 5		0			ahle hit					
bit 5		MDCLSYNC: Modulator Low Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the low time carrier signal before allowing a switch to the high								
	time carr	rier			·	Ū.	literi te tire riig.			
	0 = Modulate	or Output is not	synchronize	ed to the low time	e carrier signal ⁽	1)				
bit 4	•	nted: Read as 'o								
bit 3-0				r Selection bits	1)					
	1111 = Res	erved. No char	inel connect	ted.						
	•									
	•									
	0101 = Reserved. No channel connected.									
		P1 output (PWM	•	• •						
		erence Clock me	0							
	$0.010 = R_{}$	erved No char	inel connect	hed						
	0010 = Res 0001 = MD(erved. No char CIN1 port pin	inel connect	ted.						

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—	MDCH<3:0>				169
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_	MDCL<3:0>				170
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	_	—	MDBIT	167
MDSRC	MDMSODIS	—	—		MDMS<3:0>			168	

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
P1RSEN				P1DC<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unkno			nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	P1RSEN: P	WM Restart Ena	able bit				
	1 = Upon auto-shutdown, the CCP1ASE bit clears automatically once the shutdown event away; the PWM restarts automatically						
	0 = Upon a	uto-shutdown, C	CP1ASE mus	st be cleared in a	software to res	tart the PWM	
bit 6-0	bit 6-0 P1DC<6:0>: PWM Delay Count bits						
P1DC1 = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signa should transition active and the actual time it transitions active							a PWM signal
	N	:					

REGISTER 24-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

REGISTER 24-4: PSTR1CON: PWM STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
—	—	—	STR1SYNC	Reserved	Reserved	STR1B	STR1A
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

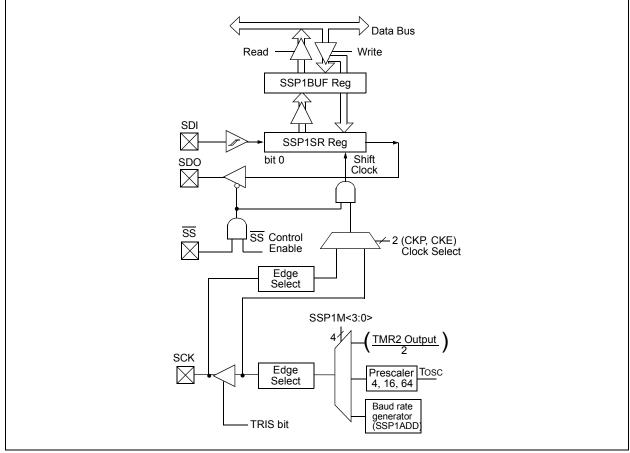
bit 7-5	Unimplemented: Read as '0'
bit 4	STR1SYNC: Steering Sync bit
	 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3-2	Reserved: Read as '0'. Maintain these bits clear.
bit 1	STR1B: Steering Enable bit B
	1 = P1B pin has the PWM waveform with polarity control from CCP1M<1:0>
	0 = P1B pin is assigned to port pin
bit 0	STR1A: Steering Enable bit A
	1 = P1A pin has the PWM waveform with polarity control from CCP1M<1:0>
	0 = P1A pin is assigned to port pin

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

25.0 MASTER SYNCHRONOUS SERIAL PORT MODULE

25.1 Master SSP (MSSP1) Module Overview

The Master Synchronous Serial Port (MSSP1) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP1 module can operate in one of two modes:


- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

27.5 Timer Resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

27.6 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated
	by the timer resource that the capacitive
	sensing oscillator is clocking.

27.6.1 TIMER0

To select Timer0 as the timer resource for the CPS module:

- Set the T0XCS bit of the CPSCON0 register.
- Clear the TMR0CS bit of the OPTION_REG register.

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0 "Timer0 Module"** for additional information.

27.6.2 TIMER1

To select Timer1 as the timer resource for the CPS module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 Gate, be used to develop the fixed time base required by the software portion of the CPS module. Refer to **Section 21.6 "Timer1 Gate**" for additional information.

TABLE 27-2: TIMER1 ENABLE FUNCTION

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

27.7 Software Control

The software portion of the CPS module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1.
- Establishing the nominal frequency for the capacitive sensing oscillator.
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load.
- Set the frequency threshold.

27.7.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer, divided by the period of the fixed time base.

27.7.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin.
- Use the same fixed time base as the nominal frequency measurement.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base, save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer, divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

30.2 DC Characteristics: Supply Current (IDD) (Continued)

PIC12LF1840		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq Ta \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq Ta \leq +125^\circ C \mbox{ for extended} \end{array} $							
PIC12F1840			rd Operat ng temper		-40°C ≤ T	e rwise stated) C for industrial IC for extended			
Param	Device	Min.	Typ†	Max.	Units		Conditions		
No.	Characteristics	WIIII.	мпі. турт		Units	VDD	Note		
	Supply Current (IDD) ⁽¹	, 2)							
D014		_	118	210	μA	1.8	Fosc = 4 MHz		
		—	222	380	μΑ	3.0	External Clock (ECM), Medium-Power mode		
D014			172	250	μA	2.3	Fosc = 4 MHz		
		—	290	380	μA	3.0	External Clock (ECM), Medium-Power mode		
		—	350	480	μA	5.0			
D015		—	6.5	20	μA	1.8	Fosc = 31 kHz		
		—	9.0	31	μA	3.0	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D015		_	18	45	μA	2.3	Fosc = 31 kHz		
		—	24	50	μA	3.0	☐ LFINTOSC 40°C ≤ TA ≤ +85°C		
		—	25	60	μΑ	5.0			
D016			103	190	μA	1.8	Fosc = 500 kHz		
		—	124	220	μA	3.0	MFINTOSC		
D016		—	132	200	μA	2.3	Fosc = 500 kHz		
			165	250	μΑ	3.0	MFINTOSC		
			210	300	μA	5.0			
D017			0.5	0.9	mA	1.8	Fosc = 8 MHz HFINTOSC		
		-	0.8	1.3	mA	3.0			
D017			0.7	0.9	mA	2.3	Fosc = 8 MHz HFINTOSC		
			0.9	1.3	mA	3.0	-		
D010		-	1.0	1.5	mA	5.0			
D018			0.7	1.2	mA mA	1.8 3.0	Fosc = 16 MHz HFINTOSC		
D018			0.9	1.8	mA	2.3	Fosc = 16 MHz		
0010			1.2	1.5 2.0	mA	3.0	HFINTOSC		
				-			-		
		—	1.3	2.1	mA	5.0	motors are fer design guidance only and ar		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

- 3: 8 MHz internal oscillator with 4x PLL enabled.
- 4: 8 MHz crystal oscillator with 4x PLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

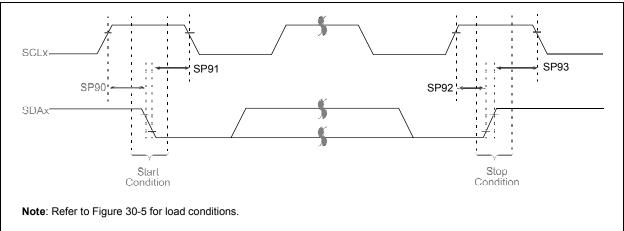
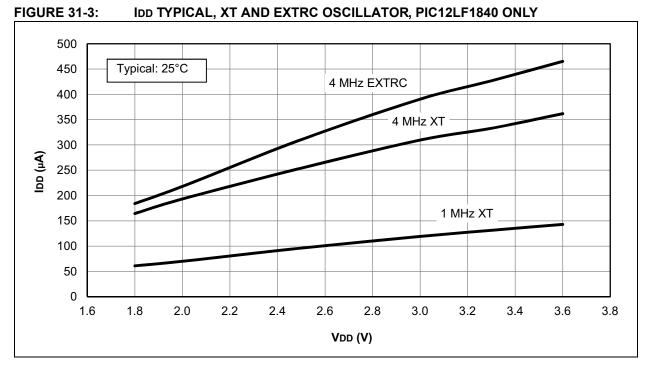
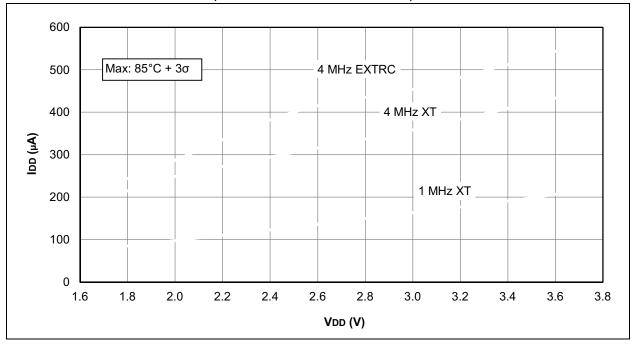
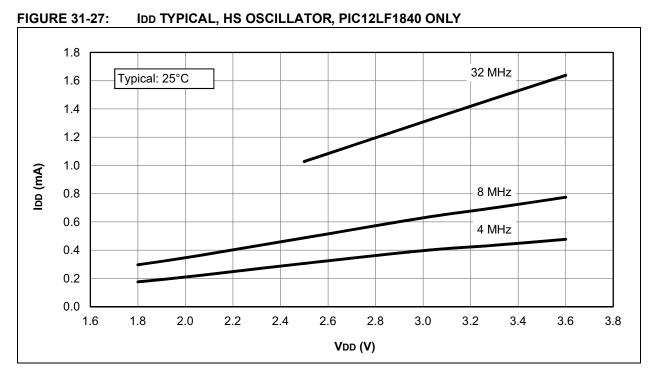
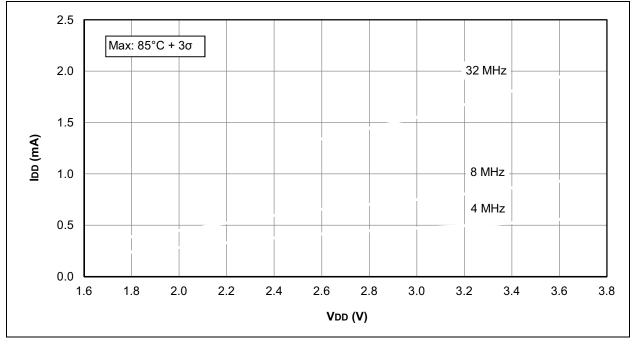


TABLE 30-15: I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700			ns	Only relevant for
		Setup time	400 kHz mode	600	-	_		repeated Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000	-	—	ns	After this period, the first
		Hold time	400 kHz mode	600	-	—		clock pulse is generated
SP92*	TSU:STO	Stop condition	100 kHz mode	4700	_	—	ns	
		Setup time	400 kHz mode	600	—	_		
SP93*	THD:STO	Stop condition	100 kHz mode	4000	_		ns	
		Hold time	400 kHz mode	600		—		

* These parameters are characterized but not tested.


FIGURE 31-4: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC12LF1840 ONLY

© 2011-2015 Microchip Technology Inc.

