

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1840-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC12(L)F1840 PINOUT DESCRIPTION

RAUARNOCPSOCINH-/ DACOUT/IXCSRDD// SS ¹⁰ /P1B/MDOUT/ICSPDAT/ ICDDAT RA0 TTL CMOS General purpose I/O. NO AN - ADC Channel 0 input. Comparator C1 positive input. ICDDAT CPS0 AN - Capacitive sensing input 0. ICDDAT CPS0 AN - Capacitive sensing input 0. ICDDAT AN - Capacitive sensing input 0. Comparator C1 positive input. ICDDAT AN - Comparator C1 positive input. Comparator C1 positive input. ICDDAT AN - CMOS USART asynchronous transmit. CK ST - Stave Select input. TX - CMOS Selve Select input. P1B - CMOS Selve Select input. RAVANI/CPS1/NEE/CINO-/ SRI/RX/DT/SCL/SCK/ RA1 TTL CMOS General purpose I/O. RAVANI/CPS1/NEE/CINO-/ SRI/RX/DT/SCL/SCK/ RA1 TTL CMOS General purpose I/O. RAVANI/CPS1/NEE/CINO-/ SRI/RX/DT/SCL/SCK RA1 TTL CMOS General purpose I/O. <th>Name</th> <th>Function</th> <th>Input Type</th> <th>Output Type</th> <th>Description</th>	Name	Function	Input Type	Output Type	Description	
DACOUTTXICK/SD0/ ICDDAT AN0 AN — ADC Channel 0 input. SSIVPE1BM/DOUT/ICSPDAT/ ICDDAT CPS0 AN — Capacitive sensing input 0. ICDDAT CIIN+ AN — Comparator C1 positive input. DACOUT — AN Digital-to-Analog Converter output. TX — CMOS USART synchronous transmit. CIIN+ AN — CMOS USART synchronous transmit. SS ST — Steve Select input. P1B — CMOS IVAN output. MDOUT — CMOS PVM output. MDOUT — CMOS General purpose I/O. SXIRX/D7/SCL/SCK/ MDMIN/CSPCLK/ICDCLK RA1 TIL CMOS RA1 AN — ADC channel 1 input. VREF AN — ADC Channel 1 input. VREF AN — ADC and DAC Positive Voltage Reference input. SRI ST — SR Latch input. SRI ST — SComparator C1 neg	RA0/AN0/CPS0/C1IN+/	RA0	TTL	CMOS	General purpose I/O.	
SS ^{MURDEDATI} CPS0 AN — Capacitive sensing input 0. ICDDAT CIIN+ AN — Capacitive sensing input 0. ICDDAT CIIN+ AN — Comparator C1 positive input. DACOUT — AN Digital-to-Analog Converter output. TX — CMOS USART synchronous clock. SD0 — CMOS SPI data output. TX — CMOS SPI data output. ICSPDAT ST CMOS SPI data output. ICSPDAT ST CMOS Molulator output. ICSPDAT CMOS CCPNM Moutput. CMOS MDMINICSPCLICICCLX RA1 TTL CMOS General purpose I/O. RA1/AN1/CPS1/VREF/CIND-/ RA1 AN — ADC and DAC Positive Voltage Reference input. CTINO- AN — Capacitive sensing input 1. VREF VREF AN — Capacitive sensing input 1. Citino- ST — USART synchronous input. <	DACOUT/TX/CK/SDO/	AN0	AN	_	ADC Channel 0 input.	
C1IN+ AN — Comparator C1 positive input. DACOUT — AN Digital-to-Analog Converter output. DACOUT — AN Digital-to-Analog Converter output. TX — CMOS USART synchronous transmit. CK ST CMOS SPI data output. SS ST — CMOS PMU dutput. MDOUT — CMOS Modulator output. ICSPDAT ST CMOS General purpose I/O. RA1/AN1/CPS1/VREP/C1INO-/ RA1 TIL CMOS General purpose I/O. SRIRX/D1/SCL/SCK/ RA1 AN — ADC channel 1 input. OPS1 AN — Capacitive sensing input 1. CYNE AN — Comparator C1 negative input. SRI ST — SRI acth input. C1IN0- AN — Comparator C1 negative input. SRI ST — SRI acth input. SRI ST SRI acth input.	SS ⁽¹⁾ /P1B/MDOUT/ICSPDAT/	CPS0	AN	_	Capacitive sensing input 0.	
DACOUT — AN Digital-to-Analog Converter output. TX — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous dock. SDD — CMOS SPI data output. FS ST — Slave Select input. P1B — CMOS PVM output. MDOUT — CMOS Modulator output. ICSPDAT ST CMOS Modulator output. ICSPDAT ST CMOS Modulator output. MDUIT.SCL/SCK/ AN1 AN — ADC channel 1 input. CPS1 AN — ADC and DAC Positive Voltage Reference input. CTINO AN — Capacitive sensing input 1. VEEF AN — ADC and DAC Positive Voltage Reference input. ST ST — SR Latch input. ST CMOS SPI dock. SCL SCL FC M OD FC M clock. SCL ST CMOS </td <td></td> <td>C1IN+</td> <td>AN</td> <td>—</td> <td>Comparator C1 positive input.</td>		C1IN+	AN	—	Comparator C1 positive input.	
TX — CMOS USART synchronous dock. SD0 — CMOS SDART synchronous dock. SD0 — CMOS SPI data output. SS ST — Slave Select input. P1B — CMOS PVM output. MDDUT — CMOS Revent output. ICSPDAT ST CMOS General purpose I/O. RA1/AN1/CPS1/NEF/C1IND- SRI/RX/D1/SCL/SCK/ RA1 TTL CMOS General purpose I/O. MDMINI/CSPCLK/ICDCLK RA1 TTL CMOS General purpose I/O. AN1 AN — ADC Channel 1 input. CPS1 AN — Capacitive sensing input 1. Viere AN — Comparator C1 negative input. SRI ST — SR Latch input. RX ST — SR Latch input. RX ST — Serial Programming Clock. SCL I ² C™ OD I ² C™ clock. SDA/SDI/INT/MDCINI		DACOUT	_	AN	Digital-to-Analog Converter output.	
CK ST CMOS USART synchronous clock. SDO - CMOS SPI data output. SS ST - Stave Select input. PIB - CMOS PPI data output. MDOUT - CMOS PVM output. ICSPDAT ST CMOS ICSP™ Data I/O. RA1/AN1/CPS1/NEE/C1ND/ RA1 TTL CMOS General purpose I/O. SRIRX/DT/SCL/SCK/ RA1 AN - Capacitive sensing input 1. VEFF AN - Capacitive sensing input 1. C1100- VEFF AN - Capacitive sensing input 1. C1100- VEFF AN - Capacitive sensing input 1. C1100- VEFF AN - Comparator C1 negative input. C1100- ST CMOS USART synchronous data. SCL SCK ST CMOS SPI clock. SCK ST CMOS General purpose I/O. Anu ADC Channel 2 input. C100- CAPC* clo		ТΧ		CMOS	USART asynchronous transmit.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		СК	ST	CMOS	USART synchronous clock.	
SS ST — Slave Select input. P1B - CMOS PVMM output. MDOUT - CMOS Modulator output. ICSPDAT ST CMOS General purpose I/O. RA1/AN1/CPS1/VREF/C1IND-/ SRURX/DT/SCL/SCK/ RA1 TTL CMOS General purpose I/O. ANI AN - Capacitive sensing input 1. CMOS VREF AN - Capacitive sensing input 1. CINO AN - Capacitive sensing input 1. TT ST - USART synchronous data. SCL F2c ^w OD P2c ^w clock. SCK ST - Modulator source input. ICSPCL/CPUT/SRO/ RA2 ST CMOS SOA/SDJ		SDO		CMOS	SPI data output.	
P1B — CMOS PVM output. MDOUT — CMOS Modulator output. ICSPDAT ST CMOS ICSP [™] Data I/O. RA1/AN1/CPS1/VREF/C1IND-/ SRIRX/DTSCL/SCK/ RA1 TTL CMOS General purpose I/O. MDMIN/ICSPCLK/ICDCLK RA1 AN — ADC Channel 1 input. CPS1 AN — Capacitive sensing input 1. VREF AN — Capacitive sensing input 1. VREF AN — Capacitive sensing input 1. C1INO- AN — Capacitive sensing input 1. VREF AN — Capacitive sensing input 1. C1INO- AN — Capacitive sensing input 1. ST T SR Latch input. ST TT ST CMOS USART synchronous data. SCL I ² CMOS SPI clock. SCK MDMIN ST — Modulator source input. ICSPCLK ST — Serial Programming Clock.		SS	ST		Slave Select input.	
MDOUT — CMOS Modulator output. ICSPDAT ST CMOS ICSP™ Data I/O. RA1/AN1/CPS1/VREF/CIINO/ MDMIN/ICSPCLK/ICDCLK RA1 TTL CMOS General purpose I/O. RRRX/DT/SCL/SCK/ MDMIN/ICSPCLK/ICDCLK RA1 AN — ADC Channel 1 input. CPS1 AN — ADC and DAC Positive Voltage Reference input. C1INO- AN — Comparator C1 negative input. SRI ST — USART synchronous input. DT ST CMOS USART synchronous data. SCL I ² C™ OD I ² C™ clock. SCK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ TOCK/CCP1/P1A/FLT0/ RA2 ST CMOS SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. C10UT — CMOS General purpose I/O. C10UT. SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. SDA CMOS SR Latch non-inverting output. <td></td> <td>P1B</td> <td>_</td> <td>CMOS</td> <td>PWM output.</td>		P1B	_	CMOS	PWM output.	
ICSPDAT ST CMOS ICSP™ Data I/O. RA1/AN1/CPS1/VRE/C1INO-/ SRRX/D75CUSCK/ RA1 TTL CMOS General purpose I/O. RAWLOTSCUSCK/ AN1 AN — ADC Channel 1 input. CPS1 AN — CApacitive sensing input 1. VREF AN — CApacitive sensing input 1. VREF AN — Comparator C1 negative input. C1INO- AN — Comparator C1 negative input. ST — SR Latch input. RX RX ST — USART synchronous data. SCL I ² C™ OD I ² C™ clock. SCK ST — Modulator source input. ICSPCK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ T0CKI/CCP1/P14/FLT0/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. SALSDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. C10UT — CMOS General purpose I/O. CAUCH		MDOUT		CMOS	Modulator output.	
RA1/AN1/CPS1/VREF/C1N0-/ SRIRX/DT/SCL/SCK/ RA1 TTL CMOS General purpose I/O. AN1 AN — ADC Channel 1 input. CPS1 AN — Capacitive sensing input 1. VREX/DT/SCL/SCK/ AN — Capacitive sensing input 1. VREF AN — Capacitive sensing input 1. VREF AN — Comparator C1 negative input. SRI ST — SR Latch input. RX ST — USART synchronous input. DT ST CMOS USART synchronous data. SCL ݲC™ OD I²C™ clock. MDMIN ST — Modulator source input. ICSPCLK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRO/ TOCK/ICCP1/P1A/FLTO RA2 ST CMOS CPS2 AN — Capacitive sensing input 2. C10UT — CMOS Capacitive sensing input 2. C10UT — CMOS Capacitive sensing input 2. <		ICSPDAT	ST	CMOS	ICSP™ Data I/O.	
SRIRX/DT/SCL/SCK/ MDMIN/ICSPCLK/ICDCLK AN1 AN — ADC Channel 1 input. CPS1 AN — Capacitive sensing input 1.	RA1/AN1/CPS1/VREF/C1IN0-/	RA1	TTL	CMOS	General purpose I/O.	
MDMIN/ICSPCLNICDCLK CPS1 AN — Capacitive sensing input 1. VREF AN — ADC and DAC Positive Voltage Reference input. C1IN0 AN — Comparator C1 negative input. SRI ST — SR Latch input. RX ST — USART asynchronous input. DT ST CMOS USART synchronous data. SCL I ² C TM OD I ² C TM clock. SCK ST CMOS SPI clock. MDMIN ST — Modulator source input. ICSPCLK ST — Modulator source input. ICSPCLK ST — Modulator source input. ICSPCLK ST — Modulator source input. ICK//CCP1/P1A/FLTO/ AN2 AN — ADC Channel 2 input. SDA/SDI/INT/MDCIN1 RA2 ST CMOS Comparator C1 output. SRQ — CMOS SR Latch non-inverting output. CPS2 C10UT — CMOS </td <td>SRI/RX/DT/SCL/SCK/</td> <td>AN1</td> <td>AN</td> <td></td> <td>ADC Channel 1 input.</td>	SRI/RX/DT/SCL/SCK/	AN1	AN		ADC Channel 1 input.	
VREF AN — ADC and DAC Positive Voltage Reference input. C1IN0- AN — Comparator C1 negative input. SRI ST — SR Latch input. RX ST — USART asynchronous input. DT ST CMOS USART synchronous data. SCL I ² C TM OD I ² C TM clock. SCK ST CMOS SPI clock. MDMIN ST — Modulator source input. ICSPCLK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ TOCKI/CCP1/P1A/FLTO/ RA2 ST CMOS SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. CCKI/CCP1/P1A/FLTO/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. SDA/SDI/INT/MDCIN1 RQ — CMOS SR Latch non-inverting output. CPS2 AN — Capacitive sensing input 2. CiOUT C10UT — CMOS SR Latch non-inverting output. SRQ <td>MDMIN/ICSPCLK/ICDCLK</td> <td>CPS1</td> <td>AN</td> <td></td> <td>Capacitive sensing input 1.</td>	MDMIN/ICSPCLK/ICDCLK	CPS1	AN		Capacitive sensing input 1.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VREF	AN		ADC and DAC Positive Voltage Reference input.	
SRI ST — SR Latch input. RX ST — USART asynchronous input. DT ST CMOS USART synchronous data. SCL I ² C TM OD I ² C TM clock. SCK ST CMOS SPI clock. SCK ST CMOS SPI clock. MDMIN ST — Modulator source input. ICSPCLK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ TOCKI/CCP1/P1A/FLT0/ RA2 ST CMOS SDA/SDI/INT/MDCIN1 RA2 AN — ADC Channel 2 input. CCPS2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. SRQ — CMOS Capacitive sensing input 2. C10UT — CMOS Capacitive sensing input 2. C10UT — CMOS Capacitive sensing input 2. C10UT — CMOS Capacitive down prover finguta. SRQ — CMOS SR Latch non-inverting output. SDA I		C1IN0-	AN		Comparator C1 negative input.	
RX ST — USART asynchronous input. DT ST CMOS USART synchronous data. SCL I ² C [™] OD I ² C [™] clock. SCK ST CMOS SPI clock. MDMIN ST — Modulator source input. ICSPCLK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ TOCKI/CCP1/P1A/FLT0/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS RA2 AN — ADC Channel 2 input. CCFS2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. SRQ — CMOS SR Latch non-inverting output. TOCKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C [™] OD I ² C [™] data input/output. SDA I ² C [™] OD I ² C [™] data input/output. SDA I ² C [™] OD I ² C [™] data input/output. SDA I ² C [™] OD I ² C [™] data input/output. SDI CMOS		SRI	ST		SR Latch input.	
$ \begin{array}{ c c c c c c } \hline DT & ST & CMOS & USART synchronous data. \\ \hline SCL & l^2C^{TM} & OD & l^2C^{TM} clock. \\ \hline SCK & ST & CMOS & SPI clock. \\ \hline SCK & ST & CMOS & SPI clock. \\ \hline MDMIN & ST & & Modulator source input. \\ \hline ICSPCLK & ST & & Serial Programming Clock. \\ \hline RA2/AN2/CPS2/C10UT/SRQ/ & RA2 & ST & CMOS & General purpose I/O. \\ \hline TOCKI/CCP1/P1A/FLT0/ \\ SDA/SDI/INT/MDCIN1 & \hline RA2 & ST & CMOS & General purpose I/O. \\ \hline CPS2 & AN & & ADC Channel 2 input. \\ \hline CPS2 & AN & & Capacitive sensing input 2. \\ \hline C10UT & & CMOS & Comparator C1 output. \\ \hline SRQ & & CMOS & SR Latch non-inverting output. \\ \hline TOCKI & ST & & Timer0 clock input. \\ \hline CCP1 & ST & CMOS & Capture/Compare/PWM 1. \\ \hline P1A & & CMOS & PWM output. \\ \hline SDA & l^2C^{TM} & OD & l^2C^{TM} data input/output. \\ \hline SDA & l^2C^{TM} & OD & l^2C^{TM} data input/output. \\ \hline SDA & l^2C^{TM} & OD & l^2C^{TM} data input. \\ \hline RA3/SS/T1G^{(1)}/VPP/MCLR & RA3 & TTL & & General purpose input. \\ \hline RA3/SS/T1G^{(1)}/VPP/MCLR & RA3 & TTL & & Slave Select input. \\ \hline MCIR & ST & & Timer1 Gate input. \\ \hline MCIR & ST & & Master Clear with internal null-un \\ \hline MCIR & ST & & Master Clear with internal null-un \\ \hline MCIR & ST & & Master Clear with internal null-un \\ \hline MCIR & ST & & Master Clear with internal null-un \\ \hline \end{tabular}$		RX	ST		USART asynchronous input.	
SCL I ² C TM OD I ² C TM clock. SCK ST CMOS SPI clock. MDMIN ST — Modulator source input. ICSPCLK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ TOCKI/CCP1/P1A/FLT0/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. AN2 AN — ADC Channel 2 input. CCOM CPS2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. SRQ — C10UT CMOS SR Latch non-inverting output. TOCKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C TM OD I ² C TM data input/output. SDI CMOS SPI data input/output. SDI CMOS — SPI data input/output. SDI SS ST — Mod		DT	ST	CMOS	USART synchronous data.	
SCK ST CMOS SPI clock. MDMIN ST - Modulator source input. ICSPCLK ST - Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ TOCKI/CCP1/P1A/FLT0/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. AN2 AN - ADC Channel 2 input. CCOUNT/SCOUNT/SDC/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS Comparator C1 output. SRQ - CMOS SR Latch non-inverting output. COUNT TOCKI ST - Timer0 clock input. CCP1 TOCKI ST - Timer0 clock input. CCP1 TOCKI ST - Timer0 clock input. CCP1 TOCKI ST - ECCP Auto-Shutdown Fault input. CCP1 FLT0 ST - ECCP Auto-Shutdown Fault input. SD1 SDA I ² CTM OD I ² CTM data input/output. SD1 INT ST - Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR </td <td></td> <td>SCL</td> <td>l²C™</td> <td>OD</td> <td>I²C[™] clock.</td>		SCL	l ² C™	OD	I ² C [™] clock.	
MDMIN ST — Modulator source input. ICSPCLK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SRQ/ T0CKI/CCP1/P1A/FLT0/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. AN2 AN — ADC Channel 2 input. C SDA/SDI/INT/MDCIN1 AN2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. C SRQ — CMOS SR Latch non-inverting output. T0CKI ST — Timer0 clock input. CCP1 ST CMOS Capatrie/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDI CMOS — SPI data input/output. SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3		SCK	ST	CMOS	SPI clock.	
ICSPCLK ST — Serial Programming Clock. RA2/AN2/CPS2/C10UT/SR0/ T0CKI/CCP1/P1A/FLT0/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. AN2 AN — ADC Channel 2 input. CC SDA/SDI/INT/MDCIN1 AN2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. SRQ — CMOS SR Latch non-inverting output. T0CKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C TM OD I ² C TM data input/output. SDA I ² C TM OD I ² C TM data input/output. SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T16 ⁽¹ /VPP/MCLR RA3 </td <td></td> <td>MDMIN</td> <td>ST</td> <td>—</td> <td>Modulator source input.</td>		MDMIN	ST	—	Modulator source input.	
RA2/AN2/CPS2/C10UT/SRQ/ T0CKI/CCP1/P1A/FLT0/ SDA/SDI/INT/MDCIN1 RA2 ST CMOS General purpose I/O. AN2 AN — ADC Channel 2 input. CPS2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. SRQ — CMOS SR Latch non-inverting output. T0CKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C™ OD I ² C™ data input/output. SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — General purpose input. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 ST — Slave Select input. T1G ST — Slave Select input. Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VP		ICSPCLK	ST	_	Serial Programming Clock.	
TOCKI/CCP1/P1A/FLT0/ SDA/SDI/INT/MDCIN1 AN2 AN — ADC Channel 2 input. CPS2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. SRQ — CMOS SR Latch non-inverting output. TOCKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PVM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C™ OD I ² C™ data input/output. SDI CMOS — SPI data input/output. SDI CMOS — SPI data input/output. SDI CMOS — SPI data input. INT ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. Timer1 Gate input. VPP HV — Programming voltage. Module	RA2/AN2/CPS2/C1OUT/SRQ/	RA2	ST	CMOS	General purpose I/O.	
SDA/SD/INT/MDCINT CPS2 AN — Capacitive sensing input 2. C10UT — CMOS Comparator C1 output. SRQ — CMOS SR Latch non-inverting output. T0CKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C™ OD I ² C™ data input/output. SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. T1G ST — Slave Select input. Timer1 Gate input. VPP HV — Programming voltage. Master Clear with internal pull-up	TOCKI/CCP1/P1A/FLT0/	AN2	AN	_	ADC Channel 2 input.	
C1OUT — CMOS Comparator C1 output. SRQ — CMOS SR Latch non-inverting output. T0CKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C™ OD I ² C™ data input/output. SDI CMOS — SPI data input/output. SDI CMOS — SPI data input/output. MDCIN1 ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. T1G T1G ST — Timer1 Gate input. VPP VPP HV — Programming voltage. Master Clear with internal pull-up		CPS2	AN		Capacitive sensing input 2.	
SRQ CMOS SR Latch non-inverting output. T0CKI ST Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A CMOS PWM output. FLT0 ST ECCP Auto-Shutdown Fault input. SDA I ² C™ OD I ² C™ data input/output. SDI CMOS SPI data input. INT ST External interrupt. MDCIN1 ST Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL RA3 ST Slave Select input. T1G ST Slave Select input. VPP HV Programming voltage. WCLR ST Master Clear with internal null-un		C10UT		CMOS	Comparator C1 output.	
TOCKI ST — Timer0 clock input. CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² CTM OD I ² CTM data input/output. SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. T1G ST — Slave Select input. Timer1 Gate input. VPP HV — Programming voltage. Moter Clear with internal pull-up		SRQ		CMOS	SR Latch non-inverting output.	
CCP1 ST CMOS Capture/Compare/PWM 1. P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² CTM OD I ² CTM data input/output. SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCL R ST — Master Clear with internal pull-up		TOCKI	ST		Timer0 clock input.	
P1A — CMOS PWM output. FLT0 ST — ECCP Auto-Shutdown Fault input. SDA I ² C TM OD I ² C TM data input/output. SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCLR ST — Master Clear with internal pull-up		CCP1	ST	CMOS	Capture/Compare/PWM 1.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P1A	—	CMOS	PWM output.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		FLT0	ST		ECCP Auto-Shutdown Fault input.	
SDI CMOS — SPI data input. INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCLR ST — Master Clear with internal pull-up		SDA	l ² C™	OD	I ² C™ data input/output.	
INT ST — External interrupt. MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCLR ST — Master Clear with internal pull-up.		SDI	CMOS	—	SPI data input.	
MDCIN1 ST — Modulator Carrier Input 1. RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCL R ST — Master Clear with internal pull-up.		INT	ST		External interrupt.	
RA3/SS/T1G ⁽¹⁾ /VPP/MCLR RA3 TTL — General purpose input. SS ST — Slave Select input. T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCL R ST — Master Clear with internal pull-up.		MDCIN1	ST	—	Modulator Carrier Input 1.	
SS ST — Slave Select input. T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCL R ST — Master Clear with internal pull-up.	RA3/SS/T1G ⁽¹⁾ /VPP/MCLR	RA3	TTL	—	General purpose input.	
T1G ST — Timer1 Gate input. VPP HV — Programming voltage. MCLR ST — Master Clear with internal pull-up.		SS	ST	—	Slave Select input.	
VPP HV — Programming voltage. MCLR ST — Master Clear with internal pull-up.		T1G	ST		Timer1 Gate input.	
MCLR ST — Master Clear with internal pull-up		VPP	HV	—	Programming voltage.	
		MCLR	ST	_	Master Clear with internal pull-up.	

AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C gend:

HV = High Voltage XTAL = Crystal levels

Note 1: Alternate pin function selected with the APFCON (Register 12-1) register.

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- · Linear Data Memory
- Program Flash Memory

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 4-3 WDTE<1:0>: Watchdog Timer Enable bit
 - 11 = WDT enabled
 - 10 = WDT enabled while running and disabled in Sleep
 - 01 = WDT controlled by the SWDTEN bit in the WDTCON register
 - 00 = WDT disabled
- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- **Note 1:** Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

11.3.2 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the EEADRH:EEADRL register pair with the address of new row to be erased.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD, FREE and WREN bits of the EECON1 register.
- 4. Write 55h, then AAh, to EECON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the EECON1 register to begin the erase operation.
- Poll the FREE bit in the EECON1 register to determine when the row erase has completed.

See Example 11-4.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

11.3.3 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the starting address of the word(s) to be programmed.
- 2. Load the write latches with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-2 (block writes to program memory with 32 write latches) for more details. The write latches are aligned to the address boundary defined by EEADRL as shown in Table 11-1. Write operations do not cross these boundaries. At the completion of a program memory write operation, the write latches are reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a block of program memory. These steps are divided into two parts. First, all write latches are loaded with data except for the last program memory location. Then, the last write latch is loaded and the programming sequence is initiated. A special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. This unlock sequence should not be interrupted.

- 1. Set the EEPGD and WREN bits of the EECON1 register.
- 2. Clear the CFGS bit of the EECON1 register.
- Set the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the EEADRH:EEADRL register pair with the address of the location to be written.
- 5. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The write latch is now loaded.
- 7. Increment the EEADRH:EEADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- 11. Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The entire latch block is now written to Flash program memory.

It is not necessary to load the entire write latch block with user program data. However, the entire write latch block will be written to program memory.

An example of the complete write sequence for 32 words is shown in Example 11-5. The initial address is loaded into the EEADRH:EEADRL register pair; the 32 words of data are loaded using indirect addressing.

16.3 Register Definitions: ADC Control

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

11_0	R/M_0/0	R/M/_0/0	R/M/_0/0	R/M/_0/0	R/M/_0/0	R/M/_0/0	R/M/_0/0
0-0	10,00-0/0	11/00-0/0	CHS<4.0>	11/00-0/0	11/07-0/0		
bit 7			011074.02			SO/DONE	
							DIL U
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	DR/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-2	CHS<4:0>: /	Analog Channel	Select bits				
	11111 = FVF	R (Fixed Voltage	e Reference) B	uffer 1 Output ^{(;}	2)		
	11110 = DA	C_output ⁽¹⁾	(3)				
	11101 = lemperature Indicator ^(*) .						
	11100 = Res	served. No char		1.			
	•						
	•						
	00100 = Res	served. No char	nel connected	l.			
	00011 = AN3	3					
	00010 = AN	2					
	00001 = AN	1					
	00000 = AN	J					
bit 1	GO/DONE: A	ADC Conversion	n Status bit				
	1 = ADC con	iversion cycle in	i progress. Sel	tting this bit star	rts an ADC co	nversion cycle.	to d
	0 = ADC con	s automatically (ted/not in proc		e ADC convers	sion has comple	eled.
hit 0		Enable bit	icumot in prog	1033			
DILU	1 = ADC is e						
	0 = ADC is d	isabled and cor	nsumes no ope	erating current			
Note 1: Se	e Section 17.0) "Digital-to-An	alog Convert	er (DAC) Modı	ule" for more i	nformation.	
2 : Se	e Section 14.0) "Fixed Voltag	e Reference (FVR)" for more	e information.		
3 : Se	ee Section 15.0) "Temperature	Indicator Mo	dule" for more	information.		

16.4 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 16-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 16-4. **The maximum recommended impedance for analog sources is 10 k** Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 16-1: ACQUISITION TIME EXAMPLE

sumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - I}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} (1 - \frac{1}{(2^{n+1}) - I}) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

As

$$Tc = -C_{HOLD}(RIC + RSS + RS) \ln(1/511)$$

= -12.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.001957)
1.72\mus

Therefore:

$$TACQ = 2\mu s + 1.72\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.97\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

FIGURE 18-1	SR I ATCH	SIMPLIFIED	BLOCK DI	AGRAM
			DLOOK DI	

TABLE 18-1: SRCLK FREQUENCY	TABLE
-----------------------------	-------

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	103
CCP1CON	P1M	<1:0>	DC1B	3<1:0>		CCP1N	/<3:0>		189
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	72
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	73
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	75
TMR1H	Holding Re	gister for the	Most Signi	ficant Byte	of the 16-bit	TMR1 Regi	ster		150*
TMR1L	Holding Re	gister for the	Least Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		150*
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	102
T1CON	TMR1C	S<1:0>	T1CKPS<1:0> T1OSCEN T1SYNC -		_	TMR10N	154		
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	155	

TABLE 21-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	P1M·	<1:0> DC1B<1:0>				CCP1M<3:0>				
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	72	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	73	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	75	
PR2	Timer2 Module Period Register									
T2CON	—	T2OUTPS<3:0> TMR2ON T2CKPS<1:0>							159	
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					157*	

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

24.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 24-9). This mode can be used for Half-Bridge applications, as shown in Figure 24-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the P1DC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 24.4.4 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 24-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

24.4.5 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one or two output pins by setting the appropriate STR1 bits of the PSTR1CON register, as shown in Table 24-8.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, the CCP1M<1:0> bits of the CCP1CON register determine the polarity of the output pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 24.4.2 "Enhanced PWM Auto-Shutdown Mode"**. An autoshutdown event will only affect pins that have PWM outputs enabled.

FIGURE 24-14: SIMPLIFIED STEERING BLOCK DIAGRAM

- Note 1: Port outputs are configured as shown when the CCP1CON register bits P1M<1:0> = 00 and CCP1M<3:2> = 11.
 - **2:** Single PWM output requires setting at least one of the STR1 bits.

24.4.5.1 Steering Synchronization

The STR1SYNC bit of the PSTR1CON register gives the user two selections of when the steering event will happen. When the STR1SYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTR1CON register. In this case, the output signal at the output pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STR1SYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 24-15 and 24-16 illustrate the timing diagrams of the PWM steering depending on the STR1SYNC setting.

24.4.6 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each of the PWM output pins (P1A and P1B). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.

The P1A and P1B output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the highimpedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

25.0 MASTER SYNCHRONOUS SERIAL PORT MODULE

25.1 Master SSP (MSSP1) Module Overview

The Master Synchronous Serial Port (MSSP1) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP1 module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

3 60K (0302 = 6 088 = 6) * Shift register SSP ISR gand bit countiare reset 83P180F to ø 83218R 386 0.461* *** 读社学 10 14. 20000 14 49 Ą. 痰 -* 137 *

FIGURE 25-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

25.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSP1STAT register is cleared. The received address is loaded into the SSP1BUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSP1STAT register is set, or bit SSP1OV of the SSP1CON1 register is set. The BOEN bit of the SSP1CON3 register modifies this operation. For more information see Register 25-4.

An MSSP1 interrupt is generated for each transferred data byte. Flag bit, SSP1IF, must be cleared by software.

When the SEN bit of the SSP1CON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSP1CON1 register, except sometimes in 10-bit mode. See **Section 25.2.3 "SPI Master Mode"** for more detail.

25.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP1 module configured as an I^2C Slave in 7-bit Addressing mode. All decisions made by hardware or software and their effect on reception. Figure 25-14 and Figure 25-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSP1IF bit.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSP1BUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSP1IF bit.
- 10. Software clears SSP1IF.
- 11. Software reads the received byte from SSP1BUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSP1STAT, and the bus goes idle.

25.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus™ that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 25-16 displays a module using both address and data holding. Figure 25-17 includes the operation with the SEN bit of the SSP1CON2 register set.

- 1. S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSP1IF is set and CKP cleared after the 8th falling edge of SCL.
- 3. Slave clears the SSP1IF.
- Slave can look at the ACKTIM bit of the SSP1CON3 register to <u>determine</u> if the SSP1IF was after or before the ACK.
- 5. Slave reads the address value from SSP1BUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSP1IF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSP1IF.

Note: SSP1IF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSP1IF not set

- 11. SSP1IF set and CKP cleared after 8th falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSP1CON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSP1BUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

REGISTER 25-2: SSP1CON1: SSP1 CONTROL REGISTER 1

R/C/HS-0/	0 R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
WCOL	SSP10V	SSP1EN	CKP		SSP1M<	<3:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimplement	ed bit, read as '0'				
u = Bit is unch	nanged	x = Bit is unknow	n	-n/n = Value at PO	OR and BOR/Value	at all other Rese	ts		
'1' = Bit is set		'0' = Bit is cleared	ed HS = Bit is set by hardware C = User cleared						
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to th 0 = No collision	ollision Detect bit ne SSP1BUF regis	ter was attempte	ed while the I ² C con	ditions were not va	lid for a transmiss	ion to be started		
	<u>Slave mode:</u> 1 = The SSP1B 0 = No collision	UF register is writte า	n while it is still tra	ansmitting the previou	us word (must be cle	ared in software)			
bit 6	SSP10V: Receive In SPI mode: 1 = A new byte is lost. Over data, to avoc initiated by 0 = No overflow In I ² C mode: 1 = A byte is res mode (mus 0 = No overflow	ve Overflow Indica is received while the flow can only occur id setting overflow. writing to the SSP1 v ceceived while the S to be cleared in sof	tor bit ⁽¹⁾ e SSP1BUF regis r in Slave mode. I In Master mode, BUF register (mu SP1BUF registe tware).	ter is still holding the In Slave mode, the u the overflow bit is n st be cleared in soft r is still holding the	previous data. In ca user must read the S ot set since each ne ware). previous byte. SSF	se of overflow, the SSP1BUF, even if o w reception (and t P1OV is a "don't o	data in SSP1SR only transmitting ransmission) is care" in Transmit		
bit 5	 SSP1EN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins In I²C mode: 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins⁽³⁾ 0 = Disables active and configures the SDA and SCL pins as the source of the serial port pins⁽³⁾ 								
bit 4	CKP: Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I2C Slave mod SCL release con 1 = Enable clock 0 = Holds clock I In I2C Master mod Unused in this m	arity Select bit clock is a high lev clock is a low leve le: trol w (clock stretch). de: oode	el I (Used to ensure	e data setup time.)					
bit 3-0	SSPM<3:0>: Sym 1111 = I ² C Slave 1100 = I ² C Slave 1101 = Reserved 1001 = Reserved 1011 = I ² C firmw 1010 = SPI Mast 1001 = Reserved 1000 = I ² C Maste 0110 = I ² C Slave 0110 = SPI Slave 0100 = SPI Slave 0110 = SPI Mast 0001 = SPI Mast 0001 = SPI Mast	chronous Serial Po mode, 10-bit addres mode, 7-bit addres are controlled Master er mode, clock = Fo mode, clock = Fo mode, 10-bit addres mode, 7-bit addres mode, clock = SCI er mode, clock = SCI er mode, clock = Fo er mode, clock = Fo er mode, clock = Fo er mode, clock = Fo er mode, clock = Fo	rt Mode Select bit iss with Start and s with Start and S er mode (slave id issc/(4 * (SSPADE ss < pin, <u>SS</u> pin com < pin, <u>SS</u> pin com /R2 output/2 issc/16 issc/16 issc/4	ts Stop bit interrupts en Stop bit interrupts en (e) (+1)) ⁽⁵⁾ D+1)) ⁽⁴⁾ trol disabled, SS car trol enabled	nabled abled n be used as I/O pin				
Note 1: 2: 3: 4:	In Master mode, the ov register. When enabled, these p When enabled, the SD SSP1ADD values of 0,	verflow bit is not se bins must be prope A and SCL pins m 1 or 2 are not sup	et since each new orly configured as ust be configure ported for I ² C m	v reception (and tra s input or output. d as inputs. ode.	insmission) is initia	ted by writing to t	ne SSP1BUF		

5: SSP1ADD value of '0' is not supported. Use SSP1M = 0000 instead.

