

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A7, ARM® Cortex®-M4
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR2, LPDDR3, DDR3, DDR3L
Graphics Acceleration	No
Display & Interface Controllers	Keypad, LCD, MIPI
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1), USB 2.0 OTG + PHY (2)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	0°C ~ 85°C (TJ)
Security Features	A-HAB, ARM TZ, CAAM, CSU, SJC, SNVS
Package / Case	488-TFBGA
Supplier Device Package	488-TFBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx7d2dvk12sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

i.MX 7Dual introduction

Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the specific part number.

¹ Restricted electrical specifications for parts with CPU maximum frequency of 1.2 GHz:

- Temperature range 0 to 85 degrees C (see Table 1)
- VDD_ARM requirements (see Table 9)

Figure 1. Part number nomenclature—i.MX 7Dual family of processors

1.2 Features

The i.MX 7Dual family of processors is based on ARM Cortex-A7 MPCore[™] Platform, which has the following features:

- Two ARM Cortex-A7 Cores (with TrustZone[®] technology)
- The core configuration is symmetric, where each core includes:
 - 32 KByte L1 Instruction Cache
 - 32 KByte L1 Data Cache
 - Private Timer and Watchdog
 - NEON MPE (media processing engine) coprocessor

The ARM Cortex-A7 Core complex shares:

- General interrupt controller (GIC) with 128 interrupt support
- Global timer
- Snoop control unit (SCU)
- 512 KB unified I/D L2 cache

The package contact assignments can be found in Section 6, "Package information and contact assignments." Signal descriptions are provided in the *i.MX 7Dual Application Processor Reference Manual* (IMX7DRM).

Signal Name	Remarks
CCM_CLK1_P/ CCM_CLK1_N CCM_CLK2	 One general purpose differential high speed clock input/output and one single-ended clock input are provided. Either or both of them can be used: To feed an external reference clock to the PLLs and to the modules inside the SoC, for example, as an alternate reference clock for PCIe, Video/Audio interfaces and so forth. To output the internal SoC clock to be used outside the SoC as either a reference clock or as a functional clock for peripherals; for example, it can be used as an output of the PCIe master clock (root complex use) See the <i>i.MX 7Dual Application Processor Reference Manual</i> (IMX7DRM) for details on the respective clock trees. The CCM_CLK1_* inputs/outputs are an LVDS differential pair. Alternatively, a single-ended signal may be used to drive CCM_CLK1_P input. In this case corresponding CCM_CLK1_N input should be tied to the constant voltage level equal to 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. See the LVDS pad electrical specification for further details. CCM_CLK2 is a single-ended input referenced to ground. After initialization: The CCM_CLK1_* inputs/outputs can be disabled if not used. Any of the unused CCM_CLK1_* pins may be left floating. The CCM_CLK2 input should be grounded if not used.
RTC_XTALI/RTC_XTALO	If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. It is recommended to use the configurable load capacitors provided in the IP instead of adding them externally. To hit the exact oscillation frequency, the configurable capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and RTC_XTALO pin should be left floating or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level. In the case when a high-accuracy realtime clock is not required, the system may use internal low frequency oscillator. It is recommended to connect RTC_XTALI to ground and keep RTC_XTALO floating. This will however result in increased power consumption, because the internal oscillator uses higher power than the RTC oscillator. Thus for lowest power configuration it is recommended to always install a crystal.
XTALI/XTALO	A 24.0 MHz crystal should be connected between XTALI and XTALO.

Module	Package Net Name	Recommendation if Unused
PCle	PCIE_REFCLKIN_N, PCIE_REFCLKIN_P, PCIE_REFCLKOUT_N, PCIE_REFCLKOUT_P, PCIE_RX_N, PCIE_RX_P, PCIE_TX_N, PCIE_TX_P	Floating
	PCIE_VP,PCIE_VP_RX,PCIE_VP_TX, PCIE_VPH,PCIE_VPH_RX,PCIE_VPH_TX, PCIE_REXT	Tie to ground
SNVS	SNVS_TAMPER00, SNVS_TAMPER01, SNVS_TAMPER02, SNVS_TAMPER03, SNVS_TAMPER04, SNVS_TAMPER05, SNVS_TAMPER06, SNVS_TAMPER07, SNVS_TAMPER08, SNVS_TAMPER09	Float—configure with software
Temperature sensor	TEMPSENSOR_REXT	Tie to ground or pulldown with 100 K $\!\Omega$ resistor
	TEMPSENSOR_RESERVE	Floating
	VDD_TEMPSENSOR_1P8	1.8 V
USB HSIC	VDD_USB_H_1P2	Tie to ground
	USB_H_DATA, USB_H_STROBE	Floating
USB OTG1	VDD_USB_OTG1_3P3_IN, VDD_USB_OTG1_1P0_CAP	Tie to ground
	USB_OTG1_VBUS, USB_OTG1_DP, USB_OTG1_DN, USB_OTG1_ID, USB_OTG1_REXT, USB_OTG1_CHD_B	Floating
USB OTG2	VDD_USB_OTG2_3P3_IN, VDD_USB_OTG2_1P0_CAP	Tie to ground
	USB_OTG2_VBUS, USB_OTG2_DP, USB_OTG2_DN, USB_OTG2_ID, USB_OTG2_REXT	Floating

 Table 5. Recommended connections for unused analog interfaces(continued)

4 Electrical characteristics

This section provides the device and module-level electrical characteristics for the i.MX 7Dual family of processors.

4.1 Chip-level conditions

This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections.

Table 6. i.MX 7Dual (Chip-level conditions
-----------------------	-----------------------

For these characteristics,	Topic appears
Absolute maximum ratings	on page 21
FPBGA case "X" and case "Y" package thermal resistance	on page 22
Operating ranges	on page 23
External clock sources	on page 25

Table 10 shows on-chip LDO regulators that can supply on-chip loads.

Voltage Source	Load	Comment
VDDD_1P0_CAP	VDD_MIPI_1P0	Connect directly (short) via board level
	PCIE_VP	
	PCIE_VP_RX	
	PCIE_VP_TX	
VDD_1P2_CAP	VDD_USB_H_1P2	Connect directly (short) via board level
VDDA_PHY_1P8	VDDA_MIPI_1P8	Connect directly (short) via board level
	PCIE_VPH	
	PCIE_VPH_RX	
	PCIE_VPH_TX	

Table 10. On-chip LDOs¹ and their on-chip loads

¹ On-chip LDOs are designed to supply i.MX 7Dual loads and must not be used to supply external loads.

4.1.4 External clock sources

Each i.MX 7Dual processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI).

The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal resistor-capacitor (RC) oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.

The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either an external oscillator or a crystal using internal oscillator amplifier.

Table 11 shows the interface frequency requirements.

Table 11	. External	input	clock	frequency
----------	------------	-------	-------	-----------

Parameter Description	Symbol	Min	Тур	Max	Unit
RTC_XTALI Oscillator ^{1,2}	f _{ckil}	—	32.768 ³	—	kHz
XTALI Oscillator ^{2,4}	f _{xtal}		24		MHz

External oscillator or a crystal with internal oscillator amplifier.

² The required frequency stability of this clock source is application dependent. See *Hardware Development Guide for i.MX7Dual and 7Solo Applications Processors.*

³ Recommended nominal frequency 32.768 kHz.

⁴ External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier.

4.1.7.2 4.1.7.2 Power-Down modes

Table 17 shows the USB interface current consumption with only the OTG block powered down.

Table 17. USB PHY current consumption with VBUS Valid Comparators disabled¹

	VDD_USB_OTG1_3P3_IN	VDD_USB_OTG2_3P3_IN		
Current	730 uA	730 uA		

VBUS Valid comparators can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1. This signal powers down only the VBUS Valid comparator, and does not control power to the Session Valid Comparator, ADP Probe and Sense comparators, or the ID detection circuitry.

In Power-Down mode, everything is powered down, including the USB_VBUS valid comparators and their associated bandgap circuity in typical condition. Table 18 shows the USB interface current consumption in Power-Down mode.

Table 18. USB PHY current consumption in Power-Down mode¹

	VDD_USB_OTG1_3P3_IN	VDD_USB_OTG2_3P3_IN		
Current	200 uA	200 uA		

¹ The VBUS Valid Comparators and their associated bandgap circuits can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1 and USBNC_OTG*_PHY_CFG2[DRVVBUS0] to 0, respectively.

4.1.8 PCIe phy 2.1 DC electrical characteristics

Parameter	Description		Min	Max	Unit
V _{DD}	Low Power Supply Voltage for PHY Core	1 V	0.95	1.05	V
	High Power Supply Voltage for PHY Core	1.8 V	1.71	1.89	
T _A	Commercial Temperature Range		0	70	°C
TJ	Simulation Junction Temperature Range		-40	125	°C

Table 19. PCIe recommended operating conditions

Note: V_{DD} should have no more than 40 mVpp AC power supply noise superimposed on the high power supply voltage for the PHY core (1.8 V nominal DC value). At the same time, VDD should have no more than 20 mVpp AC power supply noise superimposed on the low power supply voltage for the PHY core.

The power supply voltage variation for the PHY core should have less than +/-5% including the board-level power supply variation and on-chip power supply variation due to the finite impedances in the package.

High Speed I/O Characteristics							
Description	Symbol	Speed	Min.	Тур.	Max.	Unit	
PCIe Tx deterministic jitter < 1.5 MHz	TRJ	2.5 Gbps/ 5.0 Gbps	_		3 ps	ps, rms	
PCIe Tx deterministic jitter > 1.5 MHz	TDJ	5.0 Gbps/ 2.5 Gbps	_	—	30 ps/ 60 ps	ps, pk–pk	
RX Serial data input voltage (Differential pk-pk)	ΔV_{RX}	1.5 Gbps	325	—	600	mVp–p	
		2.5 Gbps	120	—	1200		
		3.0 Gbps	275	—	750		
		5.0 Gbps	120	—	1200		
		6.0 Gbps	240	—	1000		

Table 21. PCIe PHY high-speed characteristics(continued)

Table 22. PCIe PHY reference clock timing requirements

Description	Symbol	Min.	Тур.	Max.	Unit
Frequency Tolerance	F _{TOL}	-100	—	100	ppm
Duty Cycle	D _C	40	_	60	%
Rise and Fall Time	T _R ,T _F	_	_	1.5	ns
Peak to peak Jitter	Jitter	_	_	40	ps,pk–pk
RMS Jitter		_	_	2.5	ps,rms
Period Jitter		_	_	25	ps
External Clock source output impedence	Z _C , _{DC}	40	_	60	Ω
Differential input high voltage	V _{IH}	150	_		mV
Differential input low voltage	V _{IL}	_	_	-150	mV
Absolute maximum input voltage	V _{MAX}	33	—	1.15	V
Absolute minimum input voltage	V _{MIN}	400	_	-0.3	V
Absolute crossing point voltage	V _{CROSS}	250		1550	mV

• Irreversible damage to the processor (worst-case scenario)

4.1.9 Power-up sequence

The i.MX7 processor has the following power-up sequence requirements:

- VDD_SNVS_IN to be turned on before any other power supply. If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on.
- VDD_SOC to be turned on before NVCC_DRAM and NVCC_DRAM_CKE.
- VDD_ARM, VDD_SOC, VDDA_1P8_IN, VDD_LPSR_IN and all I/O power (NVCC_*) should be turned on after VDD_SVNS_IN is active. But there is no sequence requirement among these power rails other than the sequence requirement between VDD_SOC and NVCC_DRAM/NVCC_DRAM_CKE.
- There are no special timing requirements for VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN.

The POR_B input (if used) must be immediately asserted at power-up and remain asserted until the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control.

The power-up sequence is shown in Figure 4 with the following timing parameters:

- T1 Time from SVNS power stable to other power rails start to ramp, minimal delay is 2ms, no max delay requirement.
- T2 Time from first power rails (except SNVS) ramp up to all the power rails get stable, minimal delay is 0ms, no max delay requirement.
- T3 Time from all power rails get stable to power-on reset, minimal delay is 0ms, no max delay requirement.
- T6 Time from VDD_SOC get stable to NVCC_DRAM/NVCC_DRAM_CKE start to ramp, minimal delay is 0ms, no max delay requirement.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.4.2 OSC32K

This block implements an internal amplifier, trimable load capacitors and a resistor that when combined with a suitable quartz crystal implements a low power oscillator.

In addition, if the clock monitor determines that the OSC32K is not present then the source of the 32 kHz clock will automatically switch to the internal relaxation oscillator of lesser frequency accuracy.

CAUTION

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage and temperature variations. NXP strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The OSC32k runs from VDD_SNVS_1p8_CAP, which is regulated from VDD_SNVS. The target battery is an ~3 V coin cell for VDD_SNVS and the regulated output is ~1.75V.

	Min	Тур	Max	Comments
Fosc	—	32.768 KHz	—	This frequency is nominal and determined by the crystal selected. 32.0 K would work as well.
Current consumption	_	350 nA	_	The typical value shown is only for the oscillator, driven by an external crystal. If the interrelaxation oscillator is used instead of an external crystal then approximately 250 nA should be added to this value.
Bias resistor	_	200 MΩ		This is the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain and will impact the circuit's ability to start up and maintain oscillations.
			Та	arget Crystal Properties
Cload	_	10 pF	_	Usually, crystals can be purchased tuned for different Cload. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin but increases current oscillating through the crystal. The Cload is programmable in 2 pF steps.
ESR	—	50 ΚΩ	_	Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease oscillating margin.

Table 28.	OSC32K	Main	Characteristics
Table 28.	OSC32K	Main	Characteristics

4.5 I/O DC parameters

This section includes the DC parameters of the following I/O types:

DDRMC operation with the standards stated above is contingent upon the board DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 7 application processor.

Table 30. DC input logic level

Characteristics	Symbol	Min	Мах	Unit
DC input logic high ¹	V _{IH(DC)}	V _{REF} +100	—	mV
DC input logic low ¹	V _{IL(DC)}	—	V _{REF} –100	

¹ It is the relationship of the V_{DDQ} of the driving device and the V_{REF} of the receiving device that determines noise margins. However, in the case of V_{IH}(DC) max (that is, input overdrive), it is the V_{DDQ} of the receiving device that is referenced.

Table 31. Output DC current drive

Characteristics	Symbol	Min	Мах	Unit
Output minimum source DC current ¹	I _{OH} (DC)	-4	—	mA
Output minimum sink DC current ¹	I _{OL} (DC)	4	—	mA
DC output high voltage($I_{OH} = -0.1 \text{mA}$) ^{1,2}	V _{OH}	$0.9 imes V_{DDQ}$	—	V
DC output low voltage($I_{OL} = 0.1 \text{mA}$) ^{1,2}	V _{OL}	—	$0.1 imes V_{DDQ}$	V

¹ When DDS=[111] and without ZQ calibration.

 $^2~$ The values of V_{OH} and V_{OL} are valid only for 1.2 V range.

Table 32. Input DC current

Characteristics	Symbol	Min	Мах	Unit
High level input current ^{1,2}	Ι _{ΙΗ}	-25	25	μA
Low level input current ^{1,2}	I _{IL}	-25	25	μA

 1 The values of V_{OH} and V_{OL} are valid only for 1.2 V range.

² Driver Hi-Z and input power-down (PD=High)

4.5.2.1 LPDDR3 mode I/O DC parameters

Table 33. LPDDR3 I/O DC electrical parameters

Parameters	Symbol	Test Conditions	Min	Max	Unit
High-level output voltage	VOH	loh= -0.1mA	$0.9 \times \text{OVDD}$	—	V
Low-level output voltage	VOL	lol= 0.1mA	_	$0.1 \times OVDD$	V
Input Reference Voltage	Vref	_	$0.49 \times \text{OVDD}$	$0.51 \times OVDD$	V

Parameters	Symbol	Test Conditions	Min	Max	Unit
DC High-Level input voltage	Vih_DC	_	VRef + 0.100	OVDD	V
DC Low-Level input voltage	Vil_DC	_	OVSS	VRef – 0.100	V
Differential Input Logic High	Vih_diff	_	0.26	See note ¹	_
Differential Input Logic Low	Vil_diff	_	See note ¹	-0.26	_
Pull-up/Pull-down Impedance Mismatch	Mmpupd	—	-15	15	%
240 ?unit calibration resolution	Rres	_	—	10	?
Keeper Circuit Resistance	Rkeep	—	110	175	k?
Input current (no pull-up/down)	lin	VI = 0, VI = OVDD	-2.5	2.5	μA

Table 33. LPDDR3 I/O DC electrical parameters(continued)

¹ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

4.5.3 Differential I/O port (CCM_CLK1P/N)

The clock I/O interface is designed to be compatible with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, *Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits* (2001), for details.

Table 34 shows the clock I/O DC parameters.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	Notes
Vod	Output Differential Voltage	Rload=100 Ω between padp	250	350	450	mV	Vpadp–Vpadn
Voh	High-level output voltage	and padh	1.025	1.175	1.325	V	1
Vol	Low-level output voltage	C		0.825	0.975		2
Vocm	Output common mode voltage		0.9	1	1.1		Core supply is used
Vid	Input Differential Voltage		100		600	mV	Vpadp–Vpadn
Vicm	Input common mode voltage		50m		1.57	V	Vicm(max)=ovdd(m in)-Vid(min)/2
lcc-ovdd	Tri-state I/O supply current	ipp_ibe=ipp_obe=0 irefin disabled (0uA)			0.46	uA	

Table 34. Differential clock I/O DC electrical characteristics

4.7.1 DDR I/O output buffer impedance

The LPDDR2 interface is designed to be fully compatible with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The LPDDR3 interface mode is designed to be compatible with JESD209-3B JEDEC standard released August, 2013. The DDR3 interface is designed to be fully compatible with JESD79-3F DDR3 JEDEC standard release July, 2012.

- ¹ t is the maximum EIM logic (axi_clk) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed latency configuration, whereas the maximum allowed EIM_BCLK frequency is:
 - -Fixed latency for both read and write is 132 MHz.
 - -Variable latency for read only is 132 MHz.
 - -Variable latency for write only is 52 MHz.
- In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi_clk must be 104 MHz. Write BCD = 1 and 104 MHz axi_clk, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other buses are impacted which are clocked from this source. See the CCM chapter of the *i.MX 7Dual Application Processor Reference Manual* (IMX7DRM) for a detailed clock tree description.
- ² EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is defined as 50% as signal value.
- ³ For signal measurements, "High" is defined as 80% of signal value and "Low" is defined as 20% of signal value.

Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings.

Figure 14. Synchronous memory read access, WSC=1

Figure 16. Muxed Address/Data (A/D) mode, synchronous write access, WSC=6, ADVA=0, ADVN=1, and ADH=1

NOTE

In 32-bit Muxed Address/Data (A/D) mode the 16 MSBs are driven on the data bus.

Figure 31 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in Table 54.

Table 54. LPDDR2 write cycle

п	Parameter	Symbol	CK = 53	Unit	
	Falameter	Symbol	Min	Max	Onit
LP17	DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe)	tDS	360	—	ps
LP18	DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe)	tdн	360	—	ps
LP21	DRAM_SDQSx_P latching rising transitions to associated clock edges	tDQSS	-0.25	+0.25	tCK
LP22	DRAM_SDQSx_P high level width	t DQSH	0.4	—	tCK
LP23	DRAM_SDQSx_P low level width	tDQSL	0.4	_	tCK

¹ To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

 $^3\,$ Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF.

4.10.11.2 DDR Mode

Figure 74. QuadSPI Input/Read Timing (DDR mode with internal sampling) Table 82. QuadSPI Input/Read Timing (DDR mode with internal sampling)

Symbol	Parameter	Val	Unit	
Symbol	i didineter	Min	Max	Onit
T _{IS}	Setup time for incoming data	8.67	_	ns
T _{IH}	Hold time requirement for incoming data	0	—	ns

Figure 75. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)

Table 83. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)

Symbol	Parameter	Val	Unit		
Symbol	i diameter	Min	Max	onit	
T _{IS}	Setup time for incoming data	2	_	ns	
Т _{IH}	Hold time requirement for incoming data	1	—	ns	

NOTE

• For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0.

4.10.14.2.1 UART transmitter

Figure 83 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit format. Table 89 lists the UART RS-232 Serial mode transmit timing characteristics.

Table 89.	RS-232 Serial mode transmit timing parameters
	ne zez eena mede tranenit annig parametere

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	1/F _{baud_rate} ¹ - T _{ref_clk} ²	1/F _{baud_rate} + T _{ref_clk}	

¹ F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref_clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.10.14.2.2 UART receiver

Figure 84 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 90 lists Serial mode receive timing characteristics.

Figure 84. UART RS-232 Serial mode receive timing diagram

Table 90.	RS-232 Serial	mode receive	timing parameters
-----------	---------------	--------------	-------------------

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² - 1/(16 x F _{baud_rate})	1/F _{baud_rate} + 1/(16 x F _{baud_rate})	_

¹ The UART receiver can tolerate 1/(16 x F_{baud_rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x F_{baud_rate}).

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

4.10.15 USB HSIC timing

This section describes the electrical information of the USB HSIC port.

Boot mode configuration

Interface	IP Instance	Allocated Pads During Boot	Comment
SPI	ECSPI-2	ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO, ECSPI2_SS0, ENET1_RX_CTL, ENET1_RXC, ENET1_TD0	The chip-select pin used depends on the fuse "CS select (SPI only)"
SPI	ECSPI-3	SAI2_TXFS, SAI2_TXC, SAI2_RXD, SAI2_TXD, SD1_DATA3, SD2_CD_B, SD2_WP	The chip-select pin used depends on the fuse "CS select (SPI only)"
SPI	ECSPI-4	SD1_CD_B, SD1_WP, SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_DATA0, SD1_DATA1	The chip-select pin used depends on the fuse "CS select (SPI only)"
EIM	EIM	EPDC_SDCE2, EPDC_SDCE3, EPDC_GDCLK, EPDC_GDOE, EPDC_GDRL, EPDC_GDSP, EPDC_BDR0, LCD_DAT20, LCD_DAT21, LCD_DAT22, LCD_DAT23, EPDC_D8, EPDC_D9, EPDC_D10, EPDC_D12, EPDC_D14, EPDC_PWRSTAT	Used for NOR, OneNAND boot Only CS0 is supported. Allocated pads may differ depending on mux mode. See the "System Boot, Fusemap, and eFuse" chapter of the <i>i.MX 7Dual Application</i> <i>Processor Reference Manual</i> (IMX7DRM) for details.
NAND Flash	GPMI	SD3_CLK, SD3_CMD, SD3_DATA0, SD3_DATA1, SD3_DATA2, SD3_DATA3, SD3_DATA4, SD3_DATA5, SD3_DATA6, SD3_DATA7, SD3_STROBE, SD3_RESET_B, SAI1_TXC, SAI1_TXFS, SAI1_TXD	8 bit Only CS0 is supported
SD/MMC	USDHC-1	SD1_CD_B, SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_DATA0, SD1_DATA1, SD1_DATA2, SD1_DATA3, GPIO1_IO08, ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO, ECSPI2_SS0	1, 4, or 8 bit
SD/MMC	USDHC-2	SD2_RESET_B, SD2_CLK, SD2_CMD, SD2_DATA0, SD2_DATA1, SD2_DATA2, SD2_DATA3, GPIO1_IO12, ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO, ECSPI1_SS0	1, 4, or 8 bit
SD/MMC	USDHC-3	SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1, SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5, SD3_DAT6, SD3_DAT7, SD3_RESET_B	1, 4, or 8 bit
USB	USB-OTG PHY		_

Table 97. Interfac	e allocation	during	boot(continued)
--------------------	--------------	--------	-----------------

Package information and contact assignments

Rail	Ball	Comments
VDD_XTAL_1P8	AH02	
VDDA_1P0_CAP	AH07	Secondary supply for 1.0V. Requires external capacitor
VDDA_1P8_IN	AF04,AG03,AG04	Supply for 1.8V
VDDA_ADC1_1P8	AH04	Supply for ADC
VDDA_MIPI_1P8	J15	Supply for MIPI
VDDA_PHY_1P8	Y14	
VDDD_1P0_CAP	AC13,AE12,AF12	Secondary supply for 1.0V. Requires external capacitor

Table 98. i.MX 7Dual 12 x 12 mm supplies contact assignments(continued)

Table 99 shows an alpha-sorted list of functional contact assignments for the 12 x 12 mm package.

Ball	Ball Name	Power Group	Ball type ¹	Default Mode ¹	Default Function ¹	PD/PU
AB07	ADC1_IN0	ADC1_VDDA_1P8			ADC1_IN0	
AC07	ADC1_IN1	ADC1_VDDA_1P8			ADC1_IN1	
AD07	ADC1_IN2	ADC1_VDDA_1P8			ADC1_IN2	
AD09	ADC1_IN3	ADC1_VDDA_1P8			ADC1_IN3	
Y01	BOOT_MODE0	NVCC_GPIO1	GPIO	ALT0	BOOT_MODE0	100K PD
Y02	BOOT_MODE1	NVCC_GPIO1	GPIO	ALT0	BOOT_MODE1	100K PD
AE04	CCM_CLK1_N	VDDA_1P8			CCM_CLK1_N	
AE03	CCM_CLK1_P	VDDA_1P8			CCM_CLK1_P	
AE02	CCM_CLK2	VDDA_1P8			CCM_CLK2	
AC24	DRAM_ADDR00	NVCC_DRAM	DDR		DRAM_ADDR00	
AC25	DRAM_ADDR01	NVCC_DRAM	DDR		DRAM_ADDR01	
AC26	DRAM_ADDR02	NVCC_DRAM	DDR		DRAM_ADDR02	
AB25	DRAM_ADDR03	NVCC_DRAM	DDR		DRAM_ADDR03	
AB24	DRAM_ADDR04	NVCC_DRAM	DDR		DRAM_ADDR04	
AE23	DRAM_ADDR05	NVCC_DRAM	DDR		DRAM_ADDR05	
AF23	DRAM_ADDR06	NVCC_DRAM	DDR		DRAM_ADDR06	
AE22	DRAM_ADDR07	NVCC_DRAM	DDR		DRAM_ADDR07	
AD22	DRAM_ADDR08	NVCC_DRAM	DDR		DRAM_ADDR08	
AC22	DRAM_ADDR09	NVCC_DRAM	DDR		DRAM_ADDR09	

Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments

Package information and contact assignments

Ball	Ball Name	Power Group	Ball type ¹	Default Mode ¹	Default Function ¹	PD/PU
D21	LCD_DATA00	NVCC_LCD	GPIO	ALT5	GPIO3_IO[5]	100K PD
A22	LCD_DATA01	NVCC_LCD	GPIO	ALT5	GPIO3_IO[6]	100K PD
B22	LCD_DATA02	NVCC_LCD	GPIO	ALT5	GPIO3_IO[7]	100K PD
A23	LCD_DATA03	NVCC_LCD	GPIO	ALT5	GPIO3_IO[8]	100K PD
C22	LCD_DATA04	NVCC_LCD	GPIO	ALT5	GPIO3_IO[9]	100K PD
B23	LCD_DATA05	NVCC_LCD	GPIO	ALT5	GPIO3_IO[10]	100K PD
A24	LCD_DATA06	NVCC_LCD	GPIO	ALT5	GPIO3_IO[11]	100K PD
F20	LCD_DATA07	NVCC_LCD	GPIO	ALT5	GPIO3_IO[12]	100K PD
E21	LCD_DATA08	NVCC_LCD	GPIO	ALT5	GPIO3_IO[13]	100K PD
C23	LCD_DATA09	NVCC_LCD	GPIO	ALT5	GPIO3_IO[14]	100K PD
B24	LCD_DATA10	NVCC_LCD	GPIO	ALT5	GPIO3_IO[15]	100K PD
G20	LCD_DATA11	NVCC_LCD	GPIO	ALT5	GPIO3_IO[16]	100K PD
F21	LCD_DATA12	NVCC_LCD	GPIO	ALT5	GPIO3_IO[17]	100K PD
E22	LCD_DATA13	NVCC_LCD	GPIO	ALT5	GPIO3_IO[18]	100K PD
D23	LCD_DATA14	NVCC_LCD	GPIO	ALT5	GPIO3_IO[19]	100K PD
C24	LCD_DATA15	NVCC_LCD	GPIO	ALT5	GPIO3_IO[20]	100K PD
B25	LCD_DATA16	NVCC_LCD	GPIO	ALT5	GPIO3_IO[21]	100K PD
G21	LCD_DATA17	NVCC_LCD	GPIO	ALT5	GPIO3_IO[22]	100K PD
E23	LCD_DATA18	NVCC_LCD	GPIO	ALT5	GPIO3_IO[23]	100K PD
D24	LCD_DATA19	NVCC_LCD	GPIO	ALT5	GPIO3_IO[24]	100K PD
C25	LCD_DATA20	NVCC_LCD	GPIO	ALT5	GPIO3_IO[25]	100K PD
E24	LCD_DATA21	NVCC_LCD	GPIO	ALT5	GPIO3_IO[26]	100K PD
D25	LCD_DATA22	NVCC_LCD	GPIO	ALT5	GPIO3_IO[27]	100K PD
G23	LCD_DATA23	NVCC_LCD	GPIO	ALT5	GPIO3_IO[28]	100K PD
F25	LCD_ENABLE	NVCC_LCD	GPIO	ALT5	GPIO3_IO[1]	100K PD
E25	LCD_HSYNC	NVCC_LCD	GPIO	ALT5	GPIO3_IO[2]	100K PD
C21	LCD_RESET	NVCC_LCD	GPIO	ALT5	GPIO3_IO[4]	100K PD
F24	LCD_VSYNC	NVCC_LCD	GPIO	ALT5	GPIO3_IO[3]	100K PD
A15	MIPI_CSI_CLK_N	MIPI_VDDA_1P8			MIPI_CSI_CLK_N	
B15	MIPI_CSI_CLK_P	MIPI_VDDA_1P8			MIPI_CSI_CLK_P	
A16	MIPI_CSI_D0_N	MIPI_VDDA_1P8			MIPI_CSI_D0_N	
B16	MIPI_CSI_D0_P	MIPI_VDDA_1P8			MIPI_CSI_D0_P	

Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer,Äôs technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM Powered logo, and Cortex are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2016–2017 NXP B.V.

Document Number: IMX7DCEC Rev. 5 07/2017

