



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Active                                                                  |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | ARM® Cortex®-A7, ARM® Cortex®-M4                                        |
| Number of Cores/Bus Width       | 2 Core, 32-Bit                                                          |
| Speed                           | 1.2GHz                                                                  |
| Co-Processors/DSP               | Multimedia; NEON™ MPE                                                   |
| RAM Controllers                 | LPDDR2, LPDDR3, DDR3, DDR3L                                             |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | Keypad, LCD, MIPI                                                       |
| Ethernet                        | 10/100/1000Mbps (2)                                                     |
| SATA                            | -                                                                       |
| USB                             | USB 2.0 + PHY (1), USB 2.0 OTG + PHY (2)                                |
| Voltage - I/O                   | 1.8V, 3.3V                                                              |
| Operating Temperature           | 0°C ~ 85°C (TJ)                                                         |
| Security Features               | A-HAB, ARM TZ, CAAM, CSU, SJC, SNVS                                     |
| Package / Case                  | 541-LFBGA                                                               |
| Supplier Device Package         | 541-MAPBGA (19x19)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx7d2dvm12sc |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### i.MX 7Dual introduction

Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the specific part number.



<sup>1</sup> Restricted electrical specifications for parts with CPU maximum frequency of 1.2 GHz:

- Temperature range 0 to 85 degrees C (see Table 1)
- VDD\_ARM requirements (see Table 9)

#### Figure 1. Part number nomenclature—i.MX 7Dual family of processors

# 1.2 Features

The i.MX 7Dual family of processors is based on ARM Cortex-A7 MPCore<sup>™</sup> Platform, which has the following features:

- Two ARM Cortex-A7 Cores (with TrustZone<sup>®</sup> technology)
- The core configuration is symmetric, where each core includes:
  - 32 KByte L1 Instruction Cache
  - 32 KByte L1 Data Cache
  - Private Timer and Watchdog
  - NEON MPE (media processing engine) coprocessor

The ARM Cortex-A7 Core complex shares:

- General interrupt controller (GIC) with 128 interrupt support
- Global timer
- Snoop control unit (SCU)
- 512 KB unified I/D L2 cache

#### **Modules list**

| Signal Name                          | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DRAM_VREF                            | When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 k $\Omega$ 0.5% resistor to GND and a 1 k $\Omega$ 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 $\mu$ F capacitor. To reduce supply current, a pair of 1.5 k $\Omega$ 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when four DDR3 ICs plus the i.MX 7Dual are drawing current on the resistor divider. It is recommended to use regulated power supply for "big" memory configurations (more than eight devices) |
| ZQPAD                                | DRAM calibration resistor 240 $\Omega$ 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PCIE_VPH/PCIE_VPH_TX/<br>PCIE_VPH_RX | Short these pins to VDDA_PHY1P8 if using PCIe. User can tie these pins to ground if not using PCIe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PCIE_VP/PCIE_VP_TX/PC<br>IE_VP_RX    | Short these pins to VDDD_1P0CAP if using PCIe. User can tie these pins to ground with a 10 K $\!\Omega$ resistor if not using PCIe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VDDA_MIPI_1P8                        | Short these pins to VDDA_PHY_1P8 if using MIPI. User can leave these pins floating or grounded if not using MIPI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VDD_MIPI_1P0                         | Short these pins to VDDD_1P0_CAP if using MIPI. User can leave these pins floating or grounded if not using MIPI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GPANAIO                              | This signal is reserved for manufacturing use only. User must leave this connection floating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JTAG_nnnn                            | The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      | JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and should be avoided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      | JTAG_MOD is referenced as SJC_MOD in the <i>i.MX 7Dual Application Processor Reference</i><br><i>Manual</i> (IMX7DRM). Both names refer to the same signal. JTAG_MOD must be externally<br>connected to GND for normal operation. Termination to GND through an external pull-down<br>resistor (such as 1 k $\Omega$ ) is allowed. JTAG_MOD set to high configures the JTAG interface to a<br>mode compatible with the IEEE 1149.1 standard. JTAG_MOD set to low configures the JTAG<br>interface for common SW debug adding all the system TAPs to the chain.                                                                                                                                                                              |
| NC                                   | Do not connect. These signals are reserved and should be floated by the user.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| POR_B                                | This cold reset negative logic input resets all modules and logic in the IC.<br>May be used in addition to internally generated power on reset signal (logical AND, both internal<br>and external signals are considered active low).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ONOFF                                | In Normal mode, may be connected to ON/OFF button (De-bouncing provided at this input).<br>Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power<br>management state machine to change state to ON. In ON mode short connection to GND<br>generates interrupt (intended to SW controllable power down). Long above ~5s connection to<br>GND causes "forced" OFF.                                                                                                                                                                                                                                                                                                                                      |
| TEST_MODE                            | TEST_MODE is for factory use. This signal is internally connected to an on-chip pull-down device. The user must tie this signal to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Module             | Package Net Name                                                                                                                                              | Recommendation<br>if Unused                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| PCle               | PCIE_REFCLKIN_N, PCIE_REFCLKIN_P,<br>PCIE_REFCLKOUT_N, PCIE_REFCLKOUT_P,<br>PCIE_RX_N, PCIE_RX_P, PCIE_TX_N, PCIE_TX_P                                        | Floating                                                 |
|                    | PCIE_VP,PCIE_VP_RX,PCIE_VP_TX,<br>PCIE_VPH,PCIE_VPH_RX,PCIE_VPH_TX, PCIE_REXT                                                                                 | Tie to ground                                            |
| SNVS               | SNVS_TAMPER00, SNVS_TAMPER01, SNVS_TAMPER02,<br>SNVS_TAMPER03, SNVS_TAMPER04, SNVS_TAMPER05,<br>SNVS_TAMPER06, SNVS_TAMPER07, SNVS_TAMPER08,<br>SNVS_TAMPER09 | Float—configure with software                            |
| Temperature sensor | TEMPSENSOR_REXT                                                                                                                                               | Tie to ground or pulldown with 100 K $\!\Omega$ resistor |
|                    | TEMPSENSOR_RESERVE                                                                                                                                            | Floating                                                 |
|                    | VDD_TEMPSENSOR_1P8                                                                                                                                            | 1.8 V                                                    |
| USB HSIC           | VDD_USB_H_1P2                                                                                                                                                 | Tie to ground                                            |
|                    | USB_H_DATA, USB_H_STROBE                                                                                                                                      | Floating                                                 |
| USB OTG1           | VDD_USB_OTG1_3P3_IN, VDD_USB_OTG1_1P0_CAP                                                                                                                     | Tie to ground                                            |
|                    | USB_OTG1_VBUS, USB_OTG1_DP, USB_OTG1_DN,<br>USB_OTG1_ID, USB_OTG1_REXT, USB_OTG1_CHD_B                                                                        | Floating                                                 |
| USB OTG2           | VDD_USB_OTG2_3P3_IN, VDD_USB_OTG2_1P0_CAP                                                                                                                     | Tie to ground                                            |
|                    | USB_OTG2_VBUS, USB_OTG2_DP, USB_OTG2_DN,<br>USB_OTG2_ID, USB_OTG2_REXT                                                                                        | Floating                                                 |

 Table 5. Recommended connections for unused analog interfaces(continued)

# 4 Electrical characteristics

This section provides the device and module-level electrical characteristics for the i.MX 7Dual family of processors.

# 4.1 Chip-level conditions

This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections.

| Table 6. i.MX 7Dual ( | Chip-level conditions |
|-----------------------|-----------------------|
|-----------------------|-----------------------|

| For these characteristics,                             | Topic appears |
|--------------------------------------------------------|---------------|
| Absolute maximum ratings                               | on page 21    |
| FPBGA case "X" and case "Y" package thermal resistance | on page 22    |
| Operating ranges                                       | on page 23    |
| External clock sources                                 | on page 25    |

The typical values shown in Table 11 are required for use with NXP BSPs to ensure precise time keeping and USB operation. For RTC\_XTALI operation, two clock sources are available. If there is not an externally applied oscillator to RTC\_XTALI, the internal oscillator takes over.

- On-chip 32 kHz RC oscillator—this clock source has the following characteristics:
  - Approximately 25  $\mu$ A more I<sub>DD</sub> than crystal oscillator
  - Approximately ±10% tolerance
  - No external component required
  - Starts up faster than 32 kHz crystal oscillator
  - Three configurations for this input:
    - External oscillator
    - External crystal coupled to RTC\_XTALI and RTC\_XTALO
    - Internal oscillator

External crystal oscillator with on-chip support circuit:

- At power up, RC oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.
- Higher accuracy than RC oscillator
- If no external crystal is present, then the RC oscillator is utilized

The decision of choosing a clock source should be taken based on real-time clock use and precision timeout.

# 4.1.5 Maximum supply currents

The Power Virus numbers shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption.

The MC3xPF3000xxxx, NXP's power management IC targeted for the i.MX 7Dual family of processors, supports the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal design is required for the increased system power dissipation.

Table 12 represents the maximum momentary current transients on power lines, and should be used for power supply selection. Maximum currents are higher by far than the average power consumption of typical use cases. For typical power consumption information, see the application note, *i.MX 7DS Power Consumption Measurement* (AN5383).

| Power Rail | Source    | Conditions | Max Current | Unit |
|------------|-----------|------------|-------------|------|
| VDD_ARM    | From PMIC | —          | 500         | mA   |
| VDD_SOC    | From PMIC | _          | 1000        | mA   |

| Power Rail    | Source    | Conditions | Max Current | Unit |
|---------------|-----------|------------|-------------|------|
| DRAM_VREF     | From PMIC | —          | 30          | mA   |
| NVCC_DRAM_CKE | From PMIC | —          | 30          | mA   |
| NVCC_DRAM     | From PMIC | —          | 3           | mA   |

<sup>1</sup> The actual maximum current drawn from VDDA\_1P8\_IN is as shown plus any additional current drawn from the VDDD\_1P0\_CAP, VDD\_1P2\_CAP, VDDA\_PHY\_1P8 outputs, depending on actual application configuration (for example, VDD\_MIPI\_1P0, VDD\_USB\_H\_1P2 and PCIE\_VP/VPH supplies).

<sup>2</sup> General equation for estimated, maximal power consumption of an I/O power supply:

 $I_{max} = N \times C \times V \times (0.5 \times F)$ 

where:

N = Number of I/O pins supplied by the power line

- C = Equivalent external capacitive load
- V = IO voltage

 $(0.5 \times F)$  = Data change rate, up to 0.5 of the clock rate (F)

In this equation,  $I_{\text{max}}$  is in amps, C in farads, V in volts, and F in hertz.

<sup>3</sup> The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take into account factors such as signal termination. See the application note, *i.MX 7DS Power Consumption Measurement* (AN5383) for examples of DRAM power consumption during specific use case scenarios.

### 4.1.6 **Power modes**

The i.MX 7Dual has the following power modes:

- OFF mode: all power rails are off
- SNVS mode: only RTC and tamper detection logic is active
- LPSR mode: an extension of SNVS mode, with 16 GPIOs in low power state retention mode
- RUN Mode: all external power rails are on, CPU is active and running, other internal module can be on/off based on application;
- Low Power mode (System Idle, Low Power Idle, and Deep Sleep): most external power rails are still on, CPU is in WFI state or power gated, most of the internal modules are clock gated or power gated

When LPSR mode is not needed for the application, the VDD\_LPSR can be connected to VDDA\_1P8 and NVCC\_GPIO1/2 can be connected to the same power supply as NVCC\_XXX for other GPIO banks.

In LPSR mode, the supported wakeup source are RTC alarm, ONOFF event, security/tamper and also the 16 GPIO pads.

# 4.1.6.4 RUN Mode

In RUN mode, the CPU is active and running, and the analog / digital peripheral modules inside the processor will be enabled. In this mode, all the external power rails to the processor have to be ON and the SoC will be able to draw as many current as listed in the Table 5 Maximum Power Requirement.

In this mode, the PMIC should allow SoC to change the voltage of power rails through I2C/SPI interface. Typically, when the CPU is doing DVFS, it switches the VDD\_ARM voltage according to Table 9 when the CPU's frequency is switching between 1 GHz and 800 MHz (or below).

# 4.1.6.5 Low Power Mode

When the CPU is not running, the processor can enter low power mode. i.MX 7Dual processor supports a very flexible set of power mode configurations in low power mode.

Typically there are 3 low power modes used, System IDLE, Low Power IDLE and SUSPEND:

- System IDLE—This is a mode that the CPU can automatically enter when there is no thread running. All the peripherals can keep working and the CPU's state is retained so the interrupt response can be very short. The cores are able to individually enter the WAIT state.
- Low Power IDLE—This mode is for the case when the system needs to have lower power but still keep some of the peripherals alive. Most of the peripherals, analog modules, and PHYs are shut off; see Table 5-5, "Low Power Mode Definition," in the *i.MX 7Dual Application Processor Reference Manual* (IMX7DRM) for details. The interrupt response in this mode is expected to be longer than the System IDLE, but its power is much lower.
- Suspend—This mode has the greatest power savings; all clocks, unused analog/PHYs, and peripherals are off. The external DRAM stays in Self-Refresh mode. The exit time from this mode is much longer.

In System IDLE and Low Power IDLE mode, the voltage on external power supplies remains the same as in RUN mode, so the external PMIC is not aware of the state of the processor. If any low-power setting needs to be applied to PMIC, it is done through the I2C/SPI interface before the processor enters a low-power mode.

When the processor enters SUSPEND mode, it will assert the PMIC\_STBY\_REQ signal to PMIC. When this signal is asserted, the processor allows the PMIC to shut off VDD\_ARM externally. However, in some application scenario, SW want to keep the data in L2 Cache to avoid performance impact on cache miss. In this case, the VDD\_ARM cannot be shut off. To support both scenarios, the PMIC should have an option to shut off or keep VDD\_ARM when it receives the PMIC\_STBY\_REQ. This should be configured through I2C/SPI interface before the processor enters SUSPEND mode.

Except the VDD\_ARM, the other power rails have to keep active in SUSPEND mode. Since the current on each power rail is greatly reduced in this mode, PMIC can enter its own low power mode to get extra

| Parameter                                                                                                | Description       |                | Min | Тур      | Max | Unit |
|----------------------------------------------------------------------------------------------------------|-------------------|----------------|-----|----------|-----|------|
| V <sub>DD</sub> Power Supply Voltage<br>(VDD of 1.0 V nominal<br>gate oxide /1.8 V for thick gate oxide) |                   | 1.0 - 5%       | 1.0 | 1.0 + 5% | V   |      |
|                                                                                                          |                   | 1.8 - 5%       | 1.8 | 1.8 + 5% | V   |      |
| PD                                                                                                       | Power Consumption | Normal         | —   | 130      | —   | mW   |
|                                                                                                          |                   | Partial Mode   | —   | 108      | —   | mW   |
|                                                                                                          |                   | Slumber Mode   | —   | 7        | —   | mW   |
|                                                                                                          |                   | Full Powerdown | —   | 0.2      |     | mW   |

#### Table 20. PCIe DC electrical characteristics

### Table 21. PCIe PHY high-speed characteristics

| High Speed I/O Characteristics                      |                     |          |      |        |      |       |
|-----------------------------------------------------|---------------------|----------|------|--------|------|-------|
| Description                                         | Symbol              | Speed    | Min. | Тур.   | Max. | Unit  |
| Unit Interval                                       | UI                  | 1.5 Gbps |      | 666.67 | —    | ps    |
|                                                     |                     | 2.5 Gbps | _    | 400    | —    |       |
|                                                     |                     | 3.0 Gbps | _    | 333.33 | —    |       |
|                                                     |                     | 5.0 Gbps | _    | 200    | —    |       |
|                                                     |                     | 6.0 Gbps | _    | 166.67 | —    |       |
| TX Serial output rise time (20% to 80%)             | T <sub>TXRISE</sub> | 1.5 Gbps | 50   | —      | 273  | ps    |
|                                                     |                     | 2.5 Gbps | 50   | —      | —    |       |
|                                                     |                     | 3.0 Gbps | 50   | —      | 136  |       |
|                                                     |                     | 5.0 Gbps | 30   | —      | —    |       |
|                                                     |                     | 6.0 Gbps | 33   | —      | 80   |       |
| TX Serial output fall time (80% to 20%)             | T <sub>TXFALL</sub> | 1.5 Gbps | 50   | —      | 273  | ps    |
|                                                     |                     | 2.5 Gbps | 50   | —      | —    |       |
|                                                     |                     | 3.0 Gbps | 50   | —      | 136  |       |
|                                                     |                     | 5.0 Gbps | 30   | —      | —    |       |
|                                                     |                     | 6.0 Gbps | 33   | —      | 80   |       |
| TX Serial data output voltage (Differential, pk-pk) | $\Delta V_{TX}$     | 1.5 Gbps | 400  | —      | 600  | mVp–p |
|                                                     |                     | 2.5 Gbps | 400  | —      | 1200 |       |
|                                                     |                     | 3.0 Gbps | 400  | —      | 700  |       |
|                                                     |                     | 5.0 Gbps | 400  | —      | 1200 |       |
|                                                     |                     | 6.0 Gbps | 240  | —      | 900  |       |

DDRMC operation with the standards stated above is contingent upon the board DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 7 application processor.

### Table 30. DC input logic level

| Characteristics                  | Symbol              | Min                   | Мах                   | Unit |
|----------------------------------|---------------------|-----------------------|-----------------------|------|
| DC input logic high <sup>1</sup> | V <sub>IH(DC)</sub> | V <sub>REF</sub> +100 | —                     | mV   |
| DC input logic low <sup>1</sup>  | V <sub>IL(DC)</sub> | —                     | V <sub>REF</sub> –100 |      |

<sup>1</sup> It is the relationship of the V<sub>DDQ</sub> of the driving device and the V<sub>REF</sub> of the receiving device that determines noise margins. However, in the case of V<sub>IH</sub>(DC) max (that is, input overdrive), it is the V<sub>DDQ</sub> of the receiving device that is referenced.

### Table 31. Output DC current drive

| Characteristics                                                    | Symbol               | Min                 | Мах                 | Unit |
|--------------------------------------------------------------------|----------------------|---------------------|---------------------|------|
| Output minimum source DC current <sup>1</sup>                      | I <sub>OH</sub> (DC) | -4                  | —                   | mA   |
| Output minimum sink DC current <sup>1</sup>                        | I <sub>OL</sub> (DC) | 4                   | —                   | mA   |
| DC output high voltage( $I_{OH} = -0.1 \text{mA}$ ) <sup>1,2</sup> | V <sub>OH</sub>      | $0.9 	imes V_{DDQ}$ | —                   | V    |
| DC output low voltage( $I_{OL} = 0.1 \text{mA}$ ) <sup>1,2</sup>   | V <sub>OL</sub>      | —                   | $0.1 	imes V_{DDQ}$ | V    |

<sup>1</sup> When DDS=[111] and without ZQ calibration.

 $^2~$  The values of V\_{OH} and V\_{OL} are valid only for 1.2 V range.

### Table 32. Input DC current

| Characteristics                         | Symbol          | Min | Мах | Unit |
|-----------------------------------------|-----------------|-----|-----|------|
| High level input current <sup>1,2</sup> | Ι <sub>ΙΗ</sub> | -25 | 25  | μA   |
| Low level input current <sup>1,2</sup>  | I <sub>IL</sub> | -25 | 25  | μA   |

 $^{1}$  The values of V<sub>OH</sub> and V<sub>OL</sub> are valid only for 1.2 V range.

<sup>2</sup> Driver Hi-Z and input power-down (PD=High)

# 4.5.2.1 LPDDR3 mode I/O DC parameters

# Table 33. LPDDR3 I/O DC electrical parameters

| Parameters                | Symbol | Test<br>Conditions | Min                       | Max                | Unit |
|---------------------------|--------|--------------------|---------------------------|--------------------|------|
| High-level output voltage | VOH    | loh= -0.1mA        | $0.9 \times \text{OVDD}$  | —                  | V    |
| Low-level output voltage  | VOL    | lol= 0.1mA         | _                         | $0.1 \times OVDD$  | V    |
| Input Reference Voltage   | Vref   | _                  | $0.49 \times \text{OVDD}$ | $0.51 \times OVDD$ | V    |

|                        | Max Delay PAD $ ightarrow$ Y (ns)     |                                      |                                      |  |  |  |
|------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|--|--|
| Cell name              | VDD=1.65 V<br>T=125°C<br>Process=Slow | VDD=2.3 V<br>T=125°C<br>Process=Slow | VDD=3.0 V<br>T=125°C<br>Process=Slow |  |  |  |
| PBIDIRPUD_E33_33_NT_DR | 0.9                                   | 1.5                                  | 1.4                                  |  |  |  |

#### Table 35. Maximum input cell delay time

| Parameter |     | Simulated Cell Delay A $\rightarrow$ PAD (ns) |                             |             |              |                        |             |              |                        |             |              |              |
|-----------|-----|-----------------------------------------------|-----------------------------|-------------|--------------|------------------------|-------------|--------------|------------------------|-------------|--------------|--------------|
|           |     |                                               | VDD = 1.65 V, T = 125°C     |             | VDD =        | VDD = 2.3 V, T = 125°C |             |              | VDD = 3.0 V, T = 125°C |             |              |              |
| DS0       | DS1 | SR                                            | Driver Type                 | CL=<br>5 pF | CL=<br>10 pF | CL=<br>40 pF           | CL=<br>5 pF | CL=<br>10 pF | CL=<br>40 pF           | CL=<br>5 pF | CL=<br>10 pF | CL=<br>40 pF |
| 0         | 0   | 1                                             | $1 \times \text{Slow Slew}$ | 4.9         | 6.0          | 12.5                   | 4.8         | 6.1          | 11.9                   | 5.4         | 6.7          | 14.6         |
| 0         | 0   | 0                                             | $1 \times Fast Slew$        | 3.8         | 4.7          | 11.2                   | 3.8         | 5.1          | 12.8                   | 4.2         | 5.3          | 13.5         |
| 0         | 1   | 1                                             | $2 \times \text{Slow Slew}$ | 4.1         | 4.8          | 8.2                    | 4.2         | 4.9          | 8.8                    | 4.5         | 5.3          | 9.1          |
| 0         | 1   | 0                                             | 2× Fast Slew                | 2.8         | 3.3          | 6.4                    | 2.9         | 3.4          | 7.2                    | 3.1         | 3.7          | 7.2          |
| 1         | 0   | 1                                             | $4 \times \text{Slow Slew}$ | 3.6         | 4.1          | 6.0                    | 3.7         | 4.1          | 6.4                    | 3.9         | 4.4          | 6.6          |
| 1         | 0   | 0                                             | 4× Fast Slew                | 2.2         | 2.5          | 4.1                    | 2.3         | 2.6          | 4.6                    | 2.4         | 2.8          | 4.8          |
| 1         | 1   | 1                                             | 6× Slow Slew                | 3.6         | 4.0          | 5.5                    | 3.6         | 4.0          | 5.9                    | 3.8         | 4.3          | 6.2          |
| 1         | 1   | 0                                             | 6× Fast Slew                | 2.0         | 2.3          | 3.4                    | 2.1         | 2.3          | 3.8                    | 2.2         | 2.5          | 3.9          |

### Table 36. Output cell delay time for fixed load

#### Table 37. Maximum frequency of operation for input

| Maximum frequency (MHz) |                       |                         |  |  |  |  |  |
|-------------------------|-----------------------|-------------------------|--|--|--|--|--|
| VDD = 1.8 V, CL = 50 fF | VDD=2.5 V, CL =5 0 fF | VDD = 3.3 V, CL = 50 fF |  |  |  |  |  |
| 550                     | 400                   | 430                     |  |  |  |  |  |



Figure 8. Differential LVDS driver transition time waveform

Table 39 shows the AC parameters for clock I/O.

| Table 39. I/O AC Parameters of LVDS P |
|---------------------------------------|
|---------------------------------------|

| Symbol | Parameter                                         | Test conditions                     | Min | Тур | Max  | Unit | Notes |
|--------|---------------------------------------------------|-------------------------------------|-----|-----|------|------|-------|
| Tphld  | Output Differential propagation delay high to low | Rload=100 $\Omega$ between padp and |     | —   | 0.61 | ns   | 1     |
| Tplhd  | Output Differential propagation delay low to high | padn,<br>Cload = 2pF                | _   | —   | 0.61 |      |       |
| Ttlh   | Output Transition time low to high                |                                     | _   | —   | 0.17 |      | 2     |
| Tthl   | Output Transition time high to low                |                                     |     | —   | 0.17 |      |       |
| Tphlr  | Input Differential propagation delay high to low  | Rload=100 $\Omega$ between padp and | _   | —   | 0.33 | ns   | 3     |
| Tplhr  | Input Differential propagation delay low to high  | padn, Cload on ipp_ind=0.1 pF       |     | —   | 0.33 |      |       |
| Ttx    | Transmitter startup time (ipp-obe low to high)    | —                                   | _   | —   | 40   | ns   | 4     |
| F      | Operating frequency                               | —                                   | —   | 500 | 1000 | MHz  | —     |

<sup>1</sup> At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%. Output differential signal measured.

<sup>2</sup> WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 20-80%. Output differential signal measured

<sup>3</sup> At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%.

<sup>4</sup> TX startup time is defined as the time taken by transmitter for settling after its ipp\_obe has been asserted. It is to stabilize the current reference. Functionality is guaranteed only after the startup time

# 4.7 Output buffer impedance parameters

This section defines the I/O impedance parameters of the i.MX 7Dual family of processors for the following I/O types:

- Double Data Rate I/O (DDR) for LPDDR2, LPDDR3, and DDR3/DDR3L modes
- Differential I/O (CCM\_CLK1)
- USB battery charger detection open-drain output (USB\_OTG1\_CHD\_B)

### NOTE

DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 9).

- <sup>1</sup> t is the maximum EIM logic (axi\_clk) cycle time. The maximum allowed axi\_clk frequency depends on the fixed/non-fixed latency configuration, whereas the maximum allowed EIM\_BCLK frequency is:
  - -Fixed latency for both read and write is 132 MHz.
  - -Variable latency for read only is 132 MHz.
  - -Variable latency for write only is 52 MHz.
- In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi\_clk must be 104 MHz. Write BCD = 1 and 104 MHz axi\_clk, will result in a EIM\_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other buses are impacted which are clocked from this source. See the CCM chapter of the *i.MX 7Dual Application Processor Reference Manual* (IMX7DRM) for a detailed clock tree description.
- <sup>2</sup> EIM\_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is defined as 50% as signal value.
- <sup>3</sup> For signal measurements, "High" is defined as 80% of signal value and "Low" is defined as 20% of signal value.

Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings.



Figure 14. Synchronous memory read access, WSC=1

| Ref No.                 | Parameter                                                                                  | Determination by<br>Synchronous measured<br>parameters <sup>1</sup> | Determination by<br>Synchronous measured Min<br>parameters <sup>1</sup> |                                            | Unit |
|-------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|------|
| WE38                    | EIM_EBx_B Invalid to<br>EIM_CSx_B Invalid (Read<br>access)                                 | WE7 – WE13 + (RBEN –<br>RCSN)                                       | _                                                                       | 3 – (RBEN– RCSN)                           | ns   |
| WE39                    | EIM_CSx_B Valid to<br>EIM_LBA_B Valid                                                      | WE14 – WE6 + (ADVA – CSA)                                           | _                                                                       | 3 + (ADVA – CSA)                           | ns   |
| WE40                    | EIM_LBA_B Invalid to<br>EIM_CSx_B Invalid (ADVL is<br>asserted)                            | WE7 – WE15 – CSN                                                    | _                                                                       | 3 – CSN                                    | ns   |
| WE40A<br>(muxed<br>A/D) | EIM_CSx_B Valid to<br>EIM_LBA_B Invalid                                                    | WE14 – WE6 + (ADVN + ADVA<br>+ 1 – CSA)                             | -3 + (ADVN +<br>ADVA + 1 - CSA)                                         | 3 + (ADVN + ADVA +<br>1 – CSA)             | ns   |
| WE41                    | EIM_CSx_B Valid to Output<br>Data Valid                                                    | WE16 – WE6 – WCSA                                                   | _                                                                       | 3 – WCSA                                   | ns   |
| WE41A<br>(muxed<br>A/D) | EIM_CSx_B Valid to Output<br>Data Valid                                                    | WE16 – WE6 + (WADVN +<br>WADVA + ADH + 1 – WCSA)                    | _                                                                       | 3 + (WADVN +<br>WADVA + ADH + 1 –<br>WCSA) | ns   |
| WE42                    | Output Data Invalid to<br>EIM_CSx_B Invalid                                                | WE17 – WE7 – CSN                                                    | _                                                                       | 3 – CSN                                    | ns   |
| MAXCO                   | Output maximum delay from<br>internal driving<br>EIM_ADDRxx/control FFs to<br>chip outputs | 10                                                                  | _                                                                       | _                                          | ns   |
| MAXCSO                  | Output maximum delay from<br>CSx internal driving FFs to CSx<br>out                        | 10                                                                  | _                                                                       | _                                          | ns   |
| MAXDI                   | EIM_DATAxx maximum delay<br>from chip input data to its<br>internal FF                     | 5                                                                   | _                                                                       | _                                          | ns   |
| WE43                    | Input Data Valid to EIM_CSx_B<br>Invalid                                                   | MAXCO – MAXCSO + MAXDI                                              | MAXCO –<br>MAXCSO +<br>MAXDI                                            | _                                          | ns   |
| WE44                    | EIM_CSx_B Invalid to Input<br>Data invalid                                                 | 0                                                                   | 0                                                                       | _                                          | ns   |
| WE45                    | EIM_CSx_B Valid to<br>EIM_EBx_B Valid (Write<br>access)                                    | WE12 – WE6 + (WBEA – 3 + (WBE<br>WCSA) 3 + (WBE                     |                                                                         | 3 + (WBEA – WCSA)                          | ns   |
| WE46                    | EIM_EBx_B Invalid to<br>EIM_CSx_B Invalid (Write<br>access)                                | WE7 – WE13 + (WBEN –<br>WCSN)                                       | _                                                                       | -3 + (WBEN -<br>WCSN)                      | ns   |

### Table 46. EIM asynchronous timing parameters table relative chip to select(continued)





Figure 43. Toggle mode data read timing

| ID   | Parameter                              | Symbol | Timing<br>T = GPMI Clock Cycle                   |                                       | Unit |
|------|----------------------------------------|--------|--------------------------------------------------|---------------------------------------|------|
|      |                                        |        | Min.                                             | Max.                                  |      |
| NF1  | NAND_CLE setup time                    | tCLS   | (AS + DS) × T - 0.12 [se                         | e note <sup>2</sup> s <sup>,3</sup> ] |      |
| NF2  | NAND_CLE hold time                     | tCLH   | DH × T - 0.72 [see                               | note <sup>2</sup> ]                   |      |
| NF3  | NAND_CE0_B setup time                  | tCS    | (AS + DS) × T - 0.58 [se                         | ee notes <sup>,2</sup> ]              |      |
| NF4  | NAND_CE0_B hold time                   | tCH    | DH × T - 1 [see no                               | ote <sup>2</sup> ]                    |      |
| NF5  | NAND_WE_B pulse width                  | tWP    | DS × T [see not                                  | e <sup>2</sup> ]                      |      |
| NF6  | NAND_ALE setup time                    | tALS   | (AS + DS) × T - 0.49 [see notes, <sup>2</sup> ]  |                                       |      |
| NF7  | NAND_ALE hold time                     | tALH   | DH × T - 0.42 [see                               | note <sup>2</sup> ]                   |      |
| NF8  | Command/address NAND_DATAxx setup time | tCAS   | DS × T - 0.26 [see                               | note <sup>2</sup> ]                   |      |
| NF9  | Command/address NAND_DATAxx hold time  | tCAH   | DH × T - 1.37 [see                               | note <sup>2</sup> ]                   |      |
| NF18 | NAND_CEx_B access time                 | tCE    | CE_DELAY × T [see notes <sup>4,2</sup> ]         | _                                     | ns   |
| NF22 | clock period                           | tCK    |                                                  |                                       | ns   |
| NF23 | preamble delay                         | tPRE   | PRE_DELAY × T [see notes <sup>5,2</sup> ] —      |                                       | ns   |
| NF24 | postamble delay                        | tPOST  | POST_DELAY × T +0.43 [see<br>note <sup>2</sup> ] | —                                     | ns   |

Table 58. Toggle mode timing parameters<sup>1</sup>

## 4.10.2.5 SDR50/SDR104 AC timing

Figure 50 depicts the timing of SDR50/SDR104, and Table 65 lists the SDR50/SDR104 timing characteristics.

![](_page_15_Figure_3.jpeg)

#### Figure 50. SDR50/SDR104 timing

| ID                                                                     | Parameter                                                                            | Symbols Min      |                      | Max                  | Unit |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------|----------------------|----------------------|------|--|--|--|
| Card Input Clock                                                       |                                                                                      |                  |                      |                      |      |  |  |  |
| SD1                                                                    | Clock Frequency Period                                                               | t <sub>CLK</sub> | 5                    | —                    | ns   |  |  |  |
| SD2                                                                    | Clock Low Time                                                                       | t <sub>CL</sub>  | $0.46 	imes t_{CLK}$ | $0.54 	imes t_{CLK}$ | ns   |  |  |  |
| SD3                                                                    | Clock High Time                                                                      | t <sub>CH</sub>  | $0.46 	imes t_{CLK}$ | $0.54 	imes t_{CLK}$ | ns   |  |  |  |
| uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) |                                                                                      |                  |                      |                      |      |  |  |  |
| SD4                                                                    | uSDHC Output Delay                                                                   | t <sub>OD</sub>  | -3                   | 1                    | ns   |  |  |  |
|                                                                        | uSDHC Output/Card Inputs SD_CM                                                       | D, SDx_DATAx i   | n SDR104 (Re         | ference to CLK       | )    |  |  |  |
| SD5                                                                    | uSDHC Output Delay                                                                   | t <sub>OD</sub>  | -1.6                 | 1                    | ns   |  |  |  |
|                                                                        | uSDHC Input/Card Outputs SD_CM                                                       | ID, SDx_DATAx    | in SDR50 (Ref        | erence to CLK)       |      |  |  |  |
| SD6                                                                    | uSDHC Input Setup Time                                                               | t <sub>ISU</sub> | 2.4                  | —                    | ns   |  |  |  |
| SD7                                                                    | uSDHC Input Hold Time                                                                | t <sub>IH</sub>  | 1.4                  | —                    | ns   |  |  |  |
|                                                                        | uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) <sup>1</sup> |                  |                      |                      |      |  |  |  |
| SD8                                                                    | Card Output Data Window                                                              | t <sub>ODW</sub> | 0.5*t <sub>CLK</sub> | —                    | ns   |  |  |  |

#### Table 65. SDR50/SDR104 interface timing specification

<sup>1</sup>Data window in SDR100 mode is variable.

| ID | Characteristic <sup>1</sup>                                         | Min. | Max. | Unit               |
|----|---------------------------------------------------------------------|------|------|--------------------|
| M1 | ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to<br>ENET_RX_CLK setup | 5    | —    | ns                 |
| M2 | ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,<br>ENET_RX_ER hold  | 5    | —    | ns                 |
| MЗ | ENET_RX_CLK pulse width high                                        | 35%  | 65%  | ENET_RX_CLK period |
| M4 | ENET_RX_CLK pulse width low                                         | 35%  | 65%  | ENET_RX_CLK period |

### Table 66. MII receive signal timing

<sup>1</sup> ENET\_RX\_EN, ENET\_RX\_CLK, and ENET0\_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

# 4.10.3.1.2 MII transmit signal timing (ENET\_TX\_DATA3,2,1,0, ENET\_TX\_EN, ENET\_TX\_ER, and ENET\_TX\_CLK)

The transmitter functions correctly up to an ENET\_TX\_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET\_TX\_CLK frequency.

Figure 52 shows MII transmit signal timings. Table 67 describes the timing parameters (M5–M8) shown in the figure.

![](_page_16_Figure_7.jpeg)

Figure 52. MII transmit signal timing diagram

| Table 67 | . MII | transmit | signal | timing |
|----------|-------|----------|--------|--------|
|----------|-------|----------|--------|--------|

| ID | Characteristic <sup>1</sup>                                           | Min. | Max. | Unit               |
|----|-----------------------------------------------------------------------|------|------|--------------------|
| M5 | ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,<br>ENET_TX_ER invalid | 5    | —    | ns                 |
| M6 | ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,<br>ENET_TX_ER valid   | —    | 20   | ns                 |
| M7 | ENET_TX_CLK pulse width high                                          | 35%  | 65%  | ENET_TX_CLK period |
| M8 | ENET_TX_CLK pulse width low                                           | 35%  | 65%  | ENET_TX_CLK period |

<sup>1</sup> ENET\_TX\_EN, ENET\_TX\_CLK, and ENET0\_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

| ID  | Characteristic                                                           | Min. | Max. | Unit            |
|-----|--------------------------------------------------------------------------|------|------|-----------------|
| M16 | ENET_CLK pulse width high                                                | 35%  | 65%  | ENET_CLK period |
| M17 | ENET_CLK pulse width low                                                 | 35%  | 65%  | ENET_CLK period |
| M18 | ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid                         | 4    | _    | ns              |
| M19 | ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid                           | _    | 15   | ns              |
| M20 | ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup | 4    | _    | ns              |
| M21 | ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold              | 2    | _    | ns              |

#### Table 70. RMII signal timing

### 4.10.3.3 Signal switching specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

| Symbol                          | Description                              | Min. | Max. | Unit |
|---------------------------------|------------------------------------------|------|------|------|
| T <sub>cyc</sub> <sup>2</sup>   | Clock cycle duration                     | 7.2  | 8.8  | ns   |
| T <sub>skewT</sub> <sup>3</sup> | Data to clock output skew at transmitter | -500 | 500  | ps   |
| T <sub>skewR</sub> <sup>3</sup> | Data to clock input skew at receiver     | 1    | 2.6  | ns   |
| Duty_G <sup>4</sup>             | Duty cycle for Gigabit                   | 45   | 55   | %    |
| Duty_T <sup>4</sup>             | Duty cycle for 10/100T                   | 40   | 60   | %    |
| Tr/Tf                           | Rise/fall time (20-80%)                  | _    | 0.75 | ns   |

Table 71. RGMII signal switching specifications<sup>1</sup>

<sup>1</sup> The timings assume the following configuration: DDR\_SEL = (11)b

DSE (drive-strength) = (111)b

 $^2~$  For 10 Mbps and 100 Mbps,  $T_{cvc}$  will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.

- <sup>3</sup> For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified.
- <sup>4</sup> Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

# 4.10.16 USB PHY parameters

This section describes the USB-OTG PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port):

- USB ENGINEERING CHANGE NOTICE
  - Title: 5V Short Circuit Withstand Requirement Change
  - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
  - Title: Pull-up/Pull-down resistors
  - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
  - Title: Suspend Current Limit Changes
  - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
  - Title: USB 2.0 Phase Locked SOFs
  - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
  - Revision 2.0, version 1.1a, July 27, 2010
- Battery Charging Specification (available from USB-IF)
  - Revision 1.2, December 7, 2010

# 4.10.16.1 USB\_OTG\*\_REXT reference resistor connection

The bias generation and impedance calibration process for the USB OTG PHYs requires connection of reference resistors 200  $\Omega$  1% precision on each of USB\_OTG1\_REXT and USB\_OTG2\_REXT pads to ground.

# 4.10.16.2 USB\_OTG\_CHD\_B USB battery charger detection external pullup resistor connection

The usage and external resistor connection for the USB\_OTG\_CHD\_B pin are described in Table 3, Table 7, and Section 4.7.3, "USB battery charger detection driver impedance."

### Package information and contact assignments

| Table 99. | i.MX 7Du | al 12 x 12 m | nm functiona | l contact | assignments | (continued) |
|-----------|----------|--------------|--------------|-----------|-------------|-------------|
|-----------|----------|--------------|--------------|-----------|-------------|-------------|

| Ball | Ball Name         | Power Group      | Ball type <sup>1</sup> Default Default<br>Mode <sup>1</sup> Function <sup>1</sup> |      | Default<br>Function <sup>1</sup> | PD/PU   |
|------|-------------------|------------------|-----------------------------------------------------------------------------------|------|----------------------------------|---------|
| AD13 | ONOFF             | VDD_SNVS_IN      |                                                                                   |      | ONOFF                            |         |
| AG13 | PCIE_REFCLKIN_N   | PCIE_VPH         |                                                                                   |      | PCIE_REFCLKIN_N                  |         |
| AH13 | PCIE_REFCLKIN_P   | PCIE_VPH         |                                                                                   |      | PCIE_REFCLKIN_P                  |         |
| AG11 | PCIE_REFCLKOUT_N  | PCIE_VPH         |                                                                                   |      | PCIE_REFCLKOUT_N                 |         |
| AH11 | PCIE_REFCLKOUT_P  | PCIE_VPH         |                                                                                   |      | PCIE_REFCLKOUT_P                 |         |
| Y16  | PCIE_REXT         | PCIE_VPH         |                                                                                   |      | PCIE_REXT                        |         |
| AG16 | PCIE_RX_N         | PCIE_VPH_RX      |                                                                                   |      | PCIE_RX_N                        |         |
| AH16 | PCIE_RX_P         | PCIE_VPH_RX      |                                                                                   |      | PCIE_RX_P                        |         |
| AG14 | PCIE_TX_N         | PCIE_VPH_TX      |                                                                                   |      | PCIE_TX_N                        |         |
| AG15 | PCIE_TX_P         | PCIE_VPH_TX      |                                                                                   |      | PCIE_TX_P                        |         |
| AD11 | CCM_PMIC_STBY_REQ | VDD_SNVS_IN      | GPIO                                                                              |      | CCM_PMIC_STBY_REQ                |         |
| Y03  | POR_B             | NVCC_GPIO1       | GPIO                                                                              | ALT0 | POR_B                            | 100K PU |
| AG09 | RTC_XTALI         | VDD_SNVS_1P8_CAP |                                                                                   |      | RTC_XTALI                        |         |
| AH09 | RTC_XTALO         | VDD_SNVS_1P8_CAP |                                                                                   |      | RTC_XTALO                        |         |
| D03  | SAI1_MCLK         | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[18]                     | 100K PD |
| G04  | SAI1_RXC          | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[17]                     | 100K PD |
| F03  | SAI1_RXD          | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[12]                     | 100K PD |
| C04  | SAI1_RXFS         | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[16]                     | 100K PD |
| F04  | SAI1_TXC          | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[13]                     | 100K PD |
| G05  | SAI1_TXD          | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[15]                     | 100K PD |
| F05  | SAI1_TXFS         | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[14]                     | 100K PD |
| E06  | SAI2_RXD          | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[21]                     | 100K PD |
| D04  | SAI2_TXC          | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[20]                     | 100K PD |
| D06  | SAI2_TXD          | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[22]                     | 100K PD |
| F06  | SAI2_TXFS         | NVCC_SAI         | GPIO                                                                              | ALT5 | GPIO6_IO[19]                     | 100K PD |
| A05  | SD1_CD_B          | NVCC_SD1         | GPIO                                                                              | ALT5 | GPIO5_IO[0]                      | 100K PD |
| B03  | SD1_CLK           | NVCC_SD1         | GPIO                                                                              | ALT5 | GPIO5_IO[3]                      | 100K PD |
| A02  | SD1_CMD           | NVCC_SD1         | GPIO                                                                              | ALT5 | GPIO5_IO[4]                      | 100K PD |
| B04  | SD1_DATA0         | NVCC_SD1         | GPIO                                                                              | ALT5 | GPIO5_IO[5]                      | 100K PD |
| A04  | SD1_DATA1         | NVCC_SD1         | GPIO                                                                              | ALT5 | GPIO5_IO[6]                      | 100K PD |
| B02  | SD1_DATA2         | NVCC_SD1         | GPIO                                                                              | ALT5 | GPIO5_IO[7]                      | 100K PD |
| B01  | SD1_DATA3         | NVCC_SD1         | GPIO                                                                              | ALT5 | GPIO5_IO[8]                      | 100K PD |

#### Package information and contact assignments

| Ball | Ball Name        | Power Group      | Ball<br>type <sup>1</sup> | Default<br>Mode <sup>1</sup> | Default<br>Function <sup>1</sup> | PD/PU   |
|------|------------------|------------------|---------------------------|------------------------------|----------------------------------|---------|
| A14  | MIPI_CSI_D1_N    | MIPI_VDDA_1P8    |                           |                              | MIPI_CSI_D1_N                    |         |
| B14  | MIPI_CSI_D1_P    | MIPI_VDDA_1P8    |                           |                              | MIPI_CSI_D1_P                    |         |
| A19  | MIPI_DSI_CLK_N   | MIPI_VDDA_1P8    |                           |                              | MIPI_DSI_CLK_N                   |         |
| B19  | MIPI_DSI_CLK_P   | MIPI_VDDA_1P8    |                           |                              | MIPI_DSI_CLK_P                   |         |
| A20  | MIPI_DSI_D0_N    | MIPI_VDDA_1P8    |                           |                              | MIPI_DSI_D0_N                    |         |
| B20  | MIPI_DSI_D0_P    | MIPI_VDDA_1P8    |                           |                              | MIPI_DSI_D0_P                    |         |
| A18  | MIPI_DSI_D1_N    | MIPI_VDDA_1P8    |                           |                              | MIPI_DSI_D1_N                    |         |
| B18  | MIPI_DSI_D1_P    | MIPI_VDDA_1P8    |                           |                              | MIPI_DSI_D1_P                    |         |
| J13  | MIPI_VDDA_1P8    | MIPI_VDDA_1P8    |                           |                              | MIPI_VDDA_1P8                    |         |
| J15  | MIPI_VDDD_1P0    | MIPI_VDDD_1P0    |                           |                              | MIPI_VDDD_1P0                    |         |
| J17  | MIPI_VDDD_1P0    | MIPI_VDDD_1P0    |                           |                              | MIPI_VDDD_1P0                    |         |
| AC08 | ONOFF            | VDD_SNVS_IN      |                           |                              | ONOFF                            |         |
| AE10 | PCIE_REFCLKIN_N  | PCIE_VPH         |                           |                              | PCIE_REFCLKIN_N                  |         |
| AD10 | PCIE_REFCLKIN_P  | PCIE_VPH         |                           |                              | PCIE_REFCLKIN_P                  |         |
| AC10 | PCIE_REFCLKOUT_N | PCIE_VPH         |                           |                              | PCIE_REFCLKOUT_N                 |         |
| AB10 | PCIE_REFCLKOUT_P | PCIE_VPH         |                           |                              | PCIE_REFCLKOUT_P                 |         |
| AA13 | PCIE_REXT        | PCIE_VPH         |                           |                              | PCIE_REXT                        |         |
| AE11 | PCIE_RX_N        | PCIE_VPH_RX      |                           |                              | PCIE_RX_N                        |         |
| AD11 | PCIE_RX_P        | PCIE_VPH_RX      |                           |                              | PCIE_RX_P                        |         |
| AC11 | PCIE_TX_N        | PCIE_VPH_TX      |                           |                              | PCIE_TX_N                        |         |
| AB11 | PCIE_TX_P        | PCIE_VPH_TX      |                           |                              | PCIE_TX_P                        |         |
| AA10 | PCIE_VP          | PCIE_VP          |                           |                              | PCIE_VP                          |         |
| AA12 | PCIE_VP_RX       | PCIE_VP_RX       |                           |                              | PCIE_VP_RX                       |         |
| AA11 | PCIE_VP_TX       | PCIE_VP_TX       |                           |                              | PCIE_VP_TX                       |         |
| Y10  | PCIE_VPH         | PCIE_VPH         |                           |                              | PCIE_VPH                         |         |
| Y12  | PCIE_VPH_RX      | PCIE_VPH_RX      |                           |                              | PCIE_VPH_RX                      |         |
| Y11  | PCIE_VPH_TX      | PCIE_VPH_TX      |                           |                              | PCIE_VPH_TX                      |         |
| R06  | POR_B            | NVCC_GPIO1       | GPIO                      | ALT0                         | POR_B                            | 100K PU |
| AE06 | RTC_XTALI        | VDD_SNVS_1P8_CAP |                           |                              | RTC_XTALI                        |         |
| AD06 | RTC_XTALO        | VDD_SNVS_1P8_CAP |                           |                              | RTC_XTALO                        |         |
| E10  | SAI1_MCLK        | NVCC_SAI         | GPIO                      | ALT5                         | GPIO6_IO[18]                     | 100K PD |
| D12  | SAI1_RXC         | NVCC_SAI         | GPIO                      | ALT5                         | GPIO6_IO[17]                     | 100K PD |
|      |                  |                  |                           |                              |                                  |         |

### Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)