E·XFL

NXP USA Inc. - MK10DX64VLK7 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 31x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-FQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10dx64vlk7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Max.	Unit
I _{DD}	Digital supply current	—	185	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	5.5	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	—	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	— V		
I _{ICDIO}	Digital pin negative DC injection current — single pin				1
	• V _{IN} < V _{SS} -0.3V	-5	_	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current —				3
	single pin			mA	
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 	-5	_		
	• V _{IN} > V _{DD} +0.3V (Positive current injection)	—	+5		
I _{ICcont}	Contiguous pin DC injection current —regional limit,				
	positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Positive current injection	—	+25		
V _{RAM}	V _{DD} voltage required to retain RAM	1.2		V	
V _{RFVBAT}	V_{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	_	V	

- 1. All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD} . If V_{IN} greater than V_{DIO_MIN} (= V_{SS} -0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN} - V_{IN})/II_{IC}.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is greater than V_{AIO_MIN} (= V_{SS} -0.3V) and V_{IN} is less than V_{AIO_MAX} (= V_{DD} +0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN} - V_{IN})/II_{IC}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN} - V_{IN})/II_{IC}I. The positive injection current limiting resistor is calculated as R=(V_{IN} - V_{AIO_MAX})/II_{IC}I. Select the larger of these two calculated resistances.

5.2.3	Voltage and current operating behaviors
	Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$	V _{DD} – 0.5	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$	—	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	-	1	μA	1
l _{IN}	Input leakage current (per pin) at 25°C	_	0.025	μA	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	2
R _{PD}	Internal pulldown resistors	20	50	kΩ	3

1. Measured at VDD=3.6V

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- FlexBus clock = 36 MHz
- Flash clock = 24 MHz

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	—	300	μs	1
	• VLLS1 → RUN	_	112	μs	
	VLLS2 → RUN	_	74	μs	
	VLLS3 → RUN	_	73	μs	
	• LLS → RUN	_	5.9	μs	
	• VLPS → RUN	_	5.8	μs	
	• STOP \rightarrow RUN	_	4.2	μs	

Table 5. Power mode transition operating behaviors

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	_	21.5	25	mA	
	• @ 3.0V	_	21.5	30	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3, 4
	• @ 1.8V	_	31	34	mA	
	• @ 3.0V					
	• @ 25°C	_	31	34	mA	
	• @ 125°C	_	32	39	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	12.5	_	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	7.2	_	mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	_	0.996	_	mA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	_	1.46	_	mA	7

Table continues on the next page ...

K10 Sub-Family Data Sheet, Rev. 3, 11/2012.

Figure 3. VLPR mode supply current vs. core frequency

5.2.6 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.7 Capacitance attributes

Table 7. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins		7	pF

K10 Sub-Family Data Sheet, Rev. 3, 11/2012.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	—	ns	3
	External reset pulse width (digital glitch filter disabled)	100	—	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	

Table 9. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75pF load
- 5. 15pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 10. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	۵°C

rempheral operating requirements and behaviors

Symbol	Description	Min.	Max.	Unit
J7	TCLK low to boundary scan output data valid	—	25	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1.4	—	ns
J11	TCLK low to TDO data valid	—	22.1	ns
J12	TCLK low to TDO high-Z	_	22.1	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 13. JTAG full voltage range electricals (continued)

Figure 6. Test clock input timing

Figure 7. Boundary scan (JTAG) timing

K10 Sub-Family Data Sheet, Rev. 3, 11/2012.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	—	200	_	μA	
	• 8 MHz (RANGE=01)	—	300	_	μA	
	• 16 MHz	—	950	_	μA	
	• 24 MHz	—	1.2	_	mA	
	• 32 MHz	—	1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
	• 4 MHz	—	400	_	μA	
	• 8 MHz (RANGE=01)	—	500	_	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	—	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_			MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	-
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)		200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_		kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		—	0	_	kΩ	

6.3.2.1 Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications

Table continues on the next page...

rempheral operating requirements and behaviors

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz Oscillator Electrical Characteristics

This section describes the module electrical characteristics.

6.3.3.1 32 kHz oscillator DC electrical specifications Table 17. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	_	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	_	0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.3.2 32kHz oscillator frequency specifications Table 18. 32kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	_	1000	_	ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700	_	V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT} .

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes	
t _{vfykey}	Verify Backdoor Access Key execution time	—	_	30	μs	1	
	Swap Control execution time						
t _{swapx01}	 control code 0x01 	_	200	—	μs		
t _{swapx02}	control code 0x02	_	70	150	μs		
t _{swapx04}	 control code 0x04 	_	70	150	μs		
t _{swapx08}	control code 0x08	_	—	30	μs		
	Program Partition for EEPROM execution time						
t _{pgmpart32k}	• 32 KB FlexNVM	_	70	—	ms		
	Set FlexRAM Function execution time:						
t _{setramff}	Control Code 0xFF	_	50	—	μs		
t _{setram8k}	8 KB EEPROM backup	_	0.3	0.5	ms		
t _{setram32k}	32 KB EEPROM backup	_	0.7	1.0	ms		
	Byte-write to FlexRAM	for EEPROM	l operation				
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	_	175	260	μs	3	
	Byte-write to FlexRAM execution time:						
t _{eewr8b8k}	8 KB EEPROM backup	_	340	1700	μs		
t _{eewr8b16k}	16 KB EEPROM backup	_	385	1800	μs		
t _{eewr8b32k}	32 KB EEPROM backup	_	475	2000	μs		
	Word-write to FlexRAM	for EEPRON	A operation		1		
t _{eewr16bers}	Word-write to erased FlexRAM location execution time	_	175	260	μs		
	Word-write to FlexRAM execution time:						
t _{eewr16b8k}	8 KB EEPROM backup	_	340	1700	μs		
t _{eewr16b16k}	16 KB EEPROM backup	_	385	1800	μs		
t _{eewr16b32k}	32 KB EEPROM backup	_	475	2000	μs		
	Longword-write to FlexRAM for EEPROM operation						
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time		360	540	μs		
	Longword-write to FlexRAM execution time:						
t _{eewr32b8k}	8 KB EEPROM backup	_	545	1950	μs		
t _{eewr32b16k}	16 KB EEPROM backup	—	630	2050	μs		
t _{eewr32b32k}	32 KB EEPROM backup	—	810	2250	μs		

Table 20. Flash command timing specifications (continued)

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

2. Specification is valid for all FB_AD[31:0] and $\overline{FB_TA}$.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid		13.5	ns	1
FB3	Address, data, and control output hold	0	_	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5		ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Peripheral operating requirements and behaviors

Figure 13. FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
G	Gain ⁴	PGAG=0	0.95	1	1.05		$R_{AS} < 100\Omega$
		PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes	_	_	4	kHz	
	bandwidth	 < 16-bit modes 	_	_	40	kHz	
PSRR	Power supply rejection ratio	Gain=1		-84		dB	V _{DDA} = 3V ±100mV, f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	—	-84	—	dB	V _{CM} =
	rejection ratio	• Gain=64	_	-85	_	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage		_	0.2	_	mV	Output offset = V _{OFS} *(Gain+1)
T _{GSW}	Gain switching settling time		_	_	10	μs	5
dG/dT	Gain drift over full	• Gain=1	—	6	10	ppm/°C	
	temperature range	• Gain=64	_	31	42	ppm/°C	
dG/dV _{DDA}	Gain drift over	• Gain=1	-	0.07	0.21	%/V	V _{DDA} from 1.71
	supply voltage	• Gain=64	—	0.14	0.31	%/V	10 3.6 V
EL	Input leakage error	All modes		$I_{ln} \times R_{AS}$		mV	l _{in} = leakage current
							(refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input		$\left(\frac{\min(v)}{v}\right)$	(x,V _{DDA} –V _x) Gain	<u>-0.2)×4</u>)	V	6
	signai swing		where V	$K = V_{REFPG}$	_A × 0.583		
SNR	Signal-to-noise	Gain=1	80	90		dB	16-bit
	ratio	• Gain=64	52	66	_	dB	differential mode,
							Average=32
IHD	I otal harmonic distortion	• Gain=1	85	100	—	dB	16-bit differential
		• Gain=64	49	95		dB	mode, Average=32, f _{in} =100Hz

Table 29. 16-bit ADC with PGA characteristics (continued)

Table continues on the next page...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
SFDR	Spurious free	Gain=1	85	105	—	dB	16-bit
	dynamic range	• Gain=64	53	88	_	dB	differential mode.
							Average=32,
							f _{in} =100Hz
ENOB	Effective number	• Gain=1, Average=4	11.6	13.4		bits	16-bit
	OF DITS	Gain=64, Average=4	7.2	9.6	_	bits	mode.f _{in} =100Hz
		• Gain=1, Average=32	12.8	14.5	_	bits	
		Gain=2, Average=32	11.0	14.3	_	bits	
		• Gain=4, Average=32	7.9	13.8	_	bits	
		Gain=8, Average=32	7.3	13.1	_	bits	
		Gain=16, Average=32	6.8	12.5	_	bits	
		• Gain=32, Average=32	6.8	11.5	_	bits	
		• Gain=64, Average=32	7.5	10.6	_	bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 29. 16-bit ADC with PGA characteristics (continued)

1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.

- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 30. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)		—	20	μA
V _{AIN}	Analog input voltage	$V_{SS} - 0.3$	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	 CR0[HYSTCTR] = 00 	—	5	—	mV
	 CR0[HYSTCTR] = 01 	_	10	—	mV
	 CR0[HYSTCTR] = 10 	_	20	_	mV
	 CR0[HYSTCTR] = 11 		30		mV

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	
V _{out}	Voltage reference output — user trim	1.193	—	1.197	V	
V _{step}	Voltage reference trim step	—	0.5	—	mV	
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	—	_	80	mV	
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{lp}	Low-power buffer current	—	—	360	uA	1
I _{hp}	High-power buffer current	_	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	—	200	_		
T _{stup}	Buffer startup time	—	—	100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2		mV	1

Table 34. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 35. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 36. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid		10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven		14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		14	ns

Table 38. Slave mode DSPI timing (limited voltage range)

Figure 22. DSPI classic SPI timing — slave mode

6.8.3 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}		ns	

Table 39. Master mode DSPI timing (full voltage range)

Table continues on the next page...

6.8.4 I²C switching specifications

See General switching specifications.

6.8.5 UART switching specifications

See General switching specifications.

6.8.6 I2S/SAI Switching Specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

6.8.6.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Table 42. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	5.8	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	5.8	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 26. I2S/SAI timing — slave modes

6.8.6.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 43. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period

Table continues on the next page...

K10 Sub-Family Data Sheet, Rev. 3, 11/2012.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{ELE}	 Electrode oscillator current source base current 2 µA setting (EXTCHRG = 0) 	_	2	3	μA	2, 7
	 32 µA setting (EXTCHRG = 15) 	—	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	9
Pres100	Electrode capacitance measurement precision	—	8.3333	38400	fF/count	10
MaxSens	Maximum sensitivity	0.008	1.46	_	fF/count	11
Res	Resolution	—	_	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode		55		μA	
I _{TSI_LP}	Low power mode current adder		1.3	2.5	μÂ	13

Table 45. TSI electrical specifications (continued)

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

 $I_{ext} = 6 \ \mu A \ (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 \ \mu A \ (REFCHRG = 7), C_{ref} = 1.0 \ pF$

The minimum value is calculated with the following configuration:

 $I_{ext} = 2 \ \mu A$ (EXTCHRG = 0), PS = 128, NSCN = 32, $I_{ref} = 32 \ \mu A$ (REFCHRG = 15), $C_{ref} = 0.5 \ pF$

The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number:

80 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
73	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_RTS_b		FB_ALE/ FB_CS1_b/ FB_TS_b			
74	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_CTS_b		FB_CS0_b			
75	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX		FB_AD4			
76	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX		FB_AD3			
77	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UART0_RTS_b	FTM0_CH4	FB_AD2	EWM_IN		
78	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_CTS_ b/ UART0_COL_b	FTM0_CH5	FB_AD1	EWM_OUT_b		
79	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
80	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		

8.2 K10 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.