Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | F ² MC-16FX | | Core Size | 16-Bit | | Speed | 56MHz | | Connectivity | CANbus, EBI/EMI, I ² C, LINbus, SCI, UART/USART | | Peripherals | DMA, LVD, LVR, POR, PWM, WDT | | Number of I/O | 82 | | Program Memory Size | 544KB (544K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 24K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 24x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LQFP | | Supplier Device Package | 100-LQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb96f348rsapmcr-gse2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # 2. Block Diagram Figure 1. Block diagram of MB96(F)34x AD00 ... AD15 CKOT0, CKOT1 A16 ... A23 ALE RDX CKOTX0, CKOTX1 X0, X1 WR(L)X, WRHX X0A, X1A [1] HRÒ HAKX RDY ECLK LBX, UBX CS0 ... CS5 **RSTX** NMI, NMI R MD0...MD2 Memory Patch Unit Flash Memory B or Data Flash A [2] External Bus 16FX Interrupt Flash Clock & Interface CPU Controller Memory A Mode Controller 16FX Core Bus (CLKB) Voltage DMA Peripheral Peripheral Watchdog RAM **Boot ROM** Regulator Controller Bus Bridge Bus Bridge Bus 2 (CLKP2) SDA0, SDA1 I2C 2 ch. SCL0, SCL1 CAN TX0, TX1 [3] Peripheral Interface AVŠŠ AVRH AVRL/AVRH2^[5] AN0 ... ANG RX0. RX1 [3] 2 ch 10-bit ADC 24 ch. (CLKP1) ADTG, ADTG_R Bus 1 TIN0 ... TIN3 -16-bit Reload SIN0...SIN3, SIN2 R, SIN7 R...SIN9 R SOT0...SOT3, SOT2 R, SOT7 R...SOT9 R SCK0...SCK3, SCK2 R, SCK7 R...SCK9 R Timer **USART** TOT0 ... TOT3 ◄ Peripheral 7 ch. FRCK0 I/O Timer 0 IN0 ... IN3 OUT0 ... OUT3 ICU 0/1/2/3 ALARM0^[4] Alarm OCU 0/1/2/3 Comparator ALARM1 [4] 2 ch. FRCK1 -IN4 ... IN7 -OUT4 ... OUT7 -I/O Timer 1 ICU 4/5/6/7 16-bit PPG TTG0 ... TTG15 OCU 4/5/6/7 16 ch. PPG0 ... PPG15 RLT6 INT0 ... INT15 INT0_R ... INT2_R-External Real Time INT4_R, INT5_R-WOT Interrupt Clock INT7_R ... INT15_R INT3 R1-[1]: X0A, X1A only available on MB96(F)34xyWy [2]: Flash B only available on MB96F34xCyy, MB96F34xHyy or MB96F34xTyy Data Flash A only available on MB96F34xDyy or MB96F34xFyy [3]: CAN interfaces are not available on MB96(F)34xAyy or MB96(F)34xCyy CAN1 is not available on MB96F345Dyy or MB96F345Fyy [4]: Alarm comparator is not available on MB96F345Dyy or MB96F345Fyy [5]: A/D converter reference voltage switch is not available on MB96F345Dyy or MB96F345Fyy **Table 1: Pin Function description** | Pin name | Feature | Description | | | | |-----------------|--------------|---|--|--|--| | RDY | External bus | External bus interface external wait state request input | | | | | RSTX | Core | Reset input | | | | | RXn | CAN | CAN interface n RX input | | | | | SCKn | USART | USART n serial clock input/output | | | | | SCKn_R | USART | Relocated USART n serial clock input/output | | | | | SCLn | I2C | I ² C interface n clock I/O input/output | | | | | SDAn | I2C | I ² C interface n serial data I/O input/output | | | | | SINn | USART | USART n serial data input | | | | | SINn_R | USART | Relocated USART n serial data input | | | | | SOTn | USART | USART n serial data output | | | | | SOTn_R | USART | Relocated USART n serial data output | | | | | TINn | Reload Timer | Reload Timer n event input | | | | | TOTn | Reload Timer | Reload Timer n output | | | | | TTGn | PPG | Programmable Pulse Generator n trigger input | | | | | TXn | CAN | CAN interface n TX output | | | | | UBX | External bus | External Bus Interface Upper Byte select strobe output | | | | | V _{CC} | Supply | Power supply | | | | | V _{SS} | Supply | Power supply | | | | | WOT | RTC | Real Timer clock output | | | | | WRHX | External bus | External bus High byte write strobe output | | | | | WRLX/WRX | External bus | External bus Low byte / Word write strobe output | | | | | X0 | Clock | Oscillator input | | | | | X0A | Clock | Subclock Oscillator input (only for devices with suffix "W") | | | | | X1 | Clock | Oscillator output | | | | | X1A | Clock | Subclock Oscillator output (only for devices with suffix "W") | | | | # 5. Pin Circuit Type Table 2: Pin circuit types | FPT-10 | 00P-M20 | FPT-10 | 00P-M22 | |----------|--------------------------------|-----------|--------------------------------| | Pin no. | Circuit
type ^[1] | Pin no. | Circuit
type ^[1] | | 1-10 | Н | 1-12 | Н | | 11,12 | B ^[2] | 13, 14 | B ^[2] | | 11,12 | H ^[3] | 13, 14 | H ^[3] | | 13,14 | Supply | 15,16 | Supply | | 15 | F | 17 | F | | 16,17 | Н | 18,19 | Н | | 18-21 | N | 20-23 | N | | 22-29 | I | 24-31 | I | | 30 | Supply | 32 | Supply | | 31-32 | G | 33-34 | G | | 33 | Supply | 35 | Supply | | 34 to 41 | I | 36 to 43 | I | | 42 | Supply | 44 | Supply | | 43 to 48 | I | 45 to 50 | I | | 49 to 51 | С | 51 to 53 | С | | 52 | E | 54 | Е | | 53 to 54 | I | 55 to 56 | I | | 55 to 62 | Н | 57 to 64 | Н | | 63, 64 | Supply | 65, 66 | Supply | | 65 to 87 | Н | 67 to 89 | Н | | 88,89 | Supply | 90, 91 | Supply | | 90, 91 | Α | 92, 93 | A | | 92-100 | Н | 94 to 100 | Н | ^{[1]:} Please refer to " I/O Circuit Type" for details on the I/O circuit types [2]: Devices with suffix "W" ^{[3]:} Devices without suffix "W" | Туре | Circuit | Remarks | |------|--|---| | F | | ■ Power supply input protection circuit | | G | ANE AVR | A/D converter ref+ (AVRH/AVRH2) power supply input pin with protection circuit Flash devices do not have a protection circuit against VCC for pins AVRH/AVRH2 Devices without AVRH reference switch do not have an analog switch for the AVRL pin | | H | Standby control for input shutdown TTL input | ■ CMOS level output (programmable I_{OL} = 5mA, I_{OH} = -5mA and I_{OL} = 2mA, I_{OH} = -2mA) ■ 2 different CMOS hysteresis inputs with input shutdown function * ■ Automotive input with input shutdown function * ■ TTL input with input shutdown function * ■ Programmable pull-up resistor: 50kΩ approx. *MB96F345Dyy or MB96F345Fyy: Only Automotive input and CMOS hysteresis input (0.7/0.3) are supported | | Туре | Circuit | Remarks | |------|--|--| | Ĺ | Pull-up control | ■ CMOS level output (programmable I_{OL} = 5mA, I_{OH} = -5mA and I_{OL} = 2mA, I_{OH} = -2mA) ■ 2 different CMOS hysteresis inputs with input shutdown function * | | | Standby control for input shutdown TTL input Analog input | ■ Automotive input with input shutdown function ■ TTL input with input shutdown function * ■ Programmable pull-up resistor: 50kΩ approx. ■ Analog input *MB96F345Dyy or MB96F345Fyy: Only Automotive input and CMOS hysteresis input (0.7/0.3) are supported | | N | Standby control for input shutdown TTL input | ■ CMOS level output (I_{OL} = 3mA, I_{OH} = -3mA) ■ 2 different CMOS hysteresis inputs with input shutdown function * ■ Automotive input with input shutdown function * ■ TTL input with input shutdown function * ■ Programmable pull-up resistor: 50kΩ approx. *MB96F345Dyy or MB96F345Fyy: Only Automotive input and CMOS hysteresis input (0.7/0.3) are supported | # 8. User ROM Memory Map For Flash Devices | | | MB96F345D
MB96F345F | | |--|--|--|--------------| | Alternative mode CPU address | Flash memory mode address | Flash size 160kByte
+64KByte Data Flash | | | FF:FFFF _H
FF:0000 _H | 3F:FFFF _H
3F:0000 _H | S39 - 64K | | | FE:FFFF _H | 3E:FFFF _H | S38 - 64K | Flash A | | FE:0000 _H | 3E:0000 _H | 330 - 04K | | | FD:FFFF _H | 3D:FFFF _H | | <u> </u> | | FD:0000 _H | 3D:0000 _H | | | | FC:FFFF _H | 3C:FFFF _H | | | | FC:0000 _H
FB:FFFF _H | 3C:0000 _H
3B:FFFF _H | { | | | FB:0000 _H | 3B:0000 _H | | | | FA:FFFF _H | 3A:FFFF _H | <u> </u> | | | FA:0000 _H | 3A:0000 _H | | | | F9:FFFF _H | 39:FFFF _H | - i | | | F9:0000 _H | 39:0000 _H | | | | F8:FFFF _H | 38:FFFF _H | _i | | | F8:0000 _H | 38:0000 _H | | | | F7:FFFF _H | 37:FFFF _H | | | | F7:0000 _H | 37:0000 _H | ! | | | F6:FFFF _H | 36:FFFF _H | External bus | | | F6:0000 _H
F5:FFFF _H | 36:0000 _H
35:FFFF _H | 4 | | | F5:0000 _H | 35:0000 _H | | | | F4:FFFF _H | 34:FFFF _H | <u> </u> | | | F4:0000 _H | 34:0000 _H | | | | F3:FFFF _H | 33:FFFF _H | -i | | | F3:0000 _H | 33:0000 _H | | | | F2:FFFF _H | 32:FFFF _H | <u> </u> | | | F2:0000 _H | 32:0000 _H | | | | F1:FFFF _H | 31:FFFF _H | | | | F1:0000 _H | 31:0000 _H | | | | F0:FFFF _H | 30:FFFF _H | | | | F0:0000 _H | 30:0000 _H | ! | | | E0:FFFF _H
E0:0000 _H | | | | | DF:FFFF _H | | | | | DF:8000 _H | | Reserved | | | DF:7FFF _H | 1F:7FFF _H | SA3 - 8K | | | DF:6000 _H | 1F:6000 _H | 3A3 - 6K | | | DF:5FFF _H | 1F:5FFF _H | SA2 - 8K | | | DF:4000 _H | 1F:4000 _H | 6/ 12 | Flash A | | DF:3FFF _H | 1F:3FFF _H | SA1 - 8K | Tidon / C | | DF:2000 _H | 1F:2000 _H
1F:1FFF _H | | | | DF:1FFF _H
DF:0000 _H | 1F:0000 _H | SA0 - 8K ^[1] | | | DE:FFFF _H | П .0000Н | | | | DE:0000 _H | | Reserved | | | | | | | | 0E:FFFF _H | (0E:FFFF _H) | SDA0-256 ^[2] | Data Flash A | | 0E:FF00 _H | (0E:FF00 _H) | | | | 0E:FEFF _H
0E:0000 _H | | Reserved | | | 0D:FFFF _H | (0F:FFFF _H) | 00.4.4.014 | _ | | 0D:C000 _H | (0F:C000 _H) | SDA4-16K | | | 0D:BFFF _H | (0F:BFFF _H) | SDA2 16K | | | 0D:8000 _H | (0F:8000 _H) | SDA3-16K | Data Flash A | | 0D:7FFF _H | (0F:7FFF _H) | SDA2-16K | Data Hashi A | | 0D:4000 _H | (0F:4000 _H) | 0D/ (Z=101) | | | 0D:3FFF _H | (0F:3FFF _H) | SDA1-16K | | | 0D:0000 _H | (0F:0000 _H) | | | | 0C:FFFF _H
0C:0000 _H | | Reserved | | | оо.ооон | | | | Table 4: I/O map MB96(F)34x | Address | Register | Abbreviation 8-bit access | Abbreviation
16-bit access | Access | |---------------------|---|---------------------------|-------------------------------|--------| | 000081 _H | PPG1 - Timer register | | | R | | 000082 _H | PPG1 - Period setting register | | PCSR1 | W | | 000083 _H | PPG1 - Period setting register | | | W | | 000084 _H | PPG1 - Duty cycle register | | PDUT1 | W | | 000085 _H | PPG1 - Duty cycle register | | | W | | 000086 _H | PPG1 - Control status register Low | PCNL1 | PCN1 | R/W | | 000087 _H | PPG1 - Control status register High | PCNH1 | | R/W | | 000088 _H | PPG2 - Timer register | | PTMR2 | R | | 000089 _H | PPG2 - Timer register | | | R | | 00008A _H | PPG2 - Period setting register | | PCSR2 | W | | 00008B _H | PPG2 - Period setting register | | | W | | 00008C _H | PPG2 - Duty cycle register | | PDUT2 | W | | 00008D _H | PPG2 - Duty cycle register | | | W | | 00008E _H | PPG2 - Control status register Low | PCNL2 | PCN2 | R/W | | 00008F _H | PPG2 - Control status register High | PCNH2 | | R/W | | 000090 _H | PPG3 - Timer register | | PTMR3 | R | | 000091 _H | PPG3 - Timer register | | | R | | 000092 _H | PPG3 - Period setting register | | PCSR3 | W | | 000093 _H | PPG3 - Period setting register | | | W | | 000094 _H | PPG3 - Duty cycle register | | PDUT3 | W | | 000095 _H | PPG3 - Duty cycle register | | | W | | 000096 _H | PPG3 - Control status register Low | PCNL3 | PCN3 | R/W | | 000097 _H | PPG3 - Control status register High | PCNH3 | | R/W | | 000098 _H | PPG7-PPG4 - General Control register 1 Low | GCN1L1 | GCN11 | R/W | | 000099 _H | PPG7-PPG4 - General Control register 1 High | GCN1H1 | | R/W | | 00009A _H | PPG7-PPG4 - General Control register 2 Low | GCN2L1 | GCN21 | R/W | | 00009B _H | PPG7-PPG4 - General Control register 2 High | GCN2H1 | | R/W | | 00009C _H | PPG4 - Timer register | | PTMR4 | R | | 00009D _H | PPG4 - Timer register | | | R | | 00009E _H | PPG4 - Period setting register | | PCSR4 | W | | 00009F _H | PPG4 - Period setting register | | | W | | 0000A0 _H | PPG4 - Duty cycle register | | PDUT4 | W | Table 4: I/O map MB96(F)34x | Address | Register | Abbreviation 8-bit access | Abbreviation
16-bit access | Access | |---------------------|--|---------------------------|-------------------------------|--------| | 0000A1 _H | PPG4 - Duty cycle register | | | W | | 0000A2 _H | PPG4 - Control status register Low | PCNL4 | PCN4 | R/W | | 0000A3 _H | PPG4 - Control status register High | PCNH4 | | R/W | | 0000A4 _H | PPG5 - Timer register | | PTMR5 | R | | 0000A5 _H | PPG5 - Timer register | | | R | | 0000A6 _H | PPG5 - Period setting register | | PCSR5 | W | | 0000A7 _H | PPG5 - Period setting register | | | W | | 0000A8 _H | PPG5 - Duty cycle register | | PDUT5 | W | | 0000A9 _H | PPG5 - Duty cycle register | | | W | | 0000AA _H | PPG5 - Control status register Low | PCNL5 | PCN5 | R/W | | 0000AB _H | PPG5 - Control status register High | PCNH5 | | R/W | | 0000AC _H | I2C0 - Bus Status Register | IBSR0 | | R | | 0000AD _H | I2C0 - Bus Control Register | IBCR0 | | R/W | | 0000AE _H | I2C0 - Ten bit Slave address Register Low | ITBAL0 | ITBA0 | R/W | | 0000AF _H | I2C0 - Ten bit Slave address Register High | ITBAH0 | | R/W | | 0000B0 _H | I2C0 - Ten bit Address mask Register Low | ITMKL0 | ITMK0 | R/W | | 0000B1 _H | I2C0 - Ten bit Address mask Register High | ITMKH0 | | R/W | | 0000B2 _H | I2C0 - Seven bit Slave address Register | ISBA0 | | R/W | | 0000B3 _H | I2C0 - Seven bit Address mask Register | ISMK0 | | R/W | | 0000B4 _H | I2C0 - Data Register | IDAR0 | | R/W | | 0000B5 _H | I2C0 - Clock Control Register | ICCR0 | | R/W | | 0000B6 _H | I2C1 - Bus Status Register | IBSR1 | | R | | 0000B7 _H | I2C1 - Bus Control Register | IBCR1 | | R/W | | 0000B8 _H | I2C1 - Ten bit Slave address Register Low | ITBAL1 | ITBA1 | R/W | | 0000B9 _H | I2C1 - Ten bit Slave address Register High | ITBAH1 | | R/W | | 0000BA _H | I2C1 - Ten bit Address mask Register Low | ITMKL1 | ITMK1 | R/W | | 0000BB _H | I2C1 - Ten bit Address mask Register High | ITMKH1 | | R/W | | 0000BC _H | I2C1 - Seven bit Slave address Register | ISBA1 | | R/W | | 0000BD _H | I2C1 - Seven bit Address mask Register | ISMK1 | | R/W | | 0000BE _H | I2C1 - Data Register | IDAR1 | | R/W | | 0000BF _H | I2C1 - Clock Control Register | ICCR1 | | R/W | | 0000C0 _H | USART0 - Serial Mode Register | SMR0 | | R/W | Table 4: I/O map MB96(F)34x | Address | Register | Abbreviation 8-bit access | Abbreviation 16-bit access | Access | |--|--|---------------------------|----------------------------|--------| | 000715 _H | CAN0 - IF1 Mask 1 Register High | IF1MSK1H0 | | R/W | | 000716 _H | CAN0 - IF1 Mask 2 Register Low | IF1MSK2L0 | IF1MSK20 | R/W | | 000717 _H | CAN0 - IF1 Mask 2 Register High | IF1MSK2H0 | | R/W | | 000718 _H | CAN0 - IF1 Arbitration 1 Register Low | IF1ARB1L0 | IF1ARB10 | R/W | | 000719 _H | CAN0 - IF1 Arbitration 1 Register High | IF1ARB1H0 | | R/W | | 00071A _H | CAN0 - IF1 Arbitration 2 Register Low | IF1ARB2L0 | IF1ARB20 | R/W | | 00071B _H | CAN0 - IF1 Arbitration 2 Register High | IF1ARB2H0 | | R/W | | 00071C _H | CAN0 - IF1 Message Control Register Low | IF1MCTRL0 | IF1MCTR0 | R/W | | 00071D _H | CAN0 - IF1 Message Control Register High | IF1MCTRH0 | | R/W | | 00071E _H | CAN0 - IF1 Data A1 Low | IF1DTA1L0 | IF1DTA10 | R/W | | 00071F _H | CAN0 - IF1 Data A1 High | IF1DTA1H0 | | R/W | | 000720 _H | CAN0 - IF1 Data A2 Low | IF1DTA2L0 | IF1DTA20 | R/W | | 000721 _H | CAN0 - IF1 Data A2 High | IF1DTA2H0 | | R/W | | 000722 _H | CAN0 - IF1 Data B1 Low | IF1DTB1L0 | IF1DTB10 | R/W | | 000723 _H | CAN0 - IF1 Data B1 High | IF1DTB1H0 | | R/W | | 000724 _H | CAN0 - IF1 Data B2 Low | IF1DTB2L0 | IF1DTB20 | R/W | | 000725 _H | CAN0 - IF1 Data B2 High | IF1DTB2H0 | | R/W | | 000726 _H -00073F _H | Reserved | | | - | | 000740 _H | CAN0 - IF2 Command request register Low | IF2CREQL0 | IF2CREQ0 | R/W | | 000741 _H | CAN0 - IF2 Command request register High | IF2CREQH0 | | R/W | | 000742 _H | CAN0 - IF2 Command Mask register Low | IF2CMSKL0 | IF2CMSK0 | R/W | | 000743 _H | CAN0 - IF2 Command Mask register High (reserved) | IF2CMSKH0 | | R | | 000744 _H | CAN0 - IF2 Mask 1 Register Low | IF2MSK1L0 | IF2MSK10 | R/W | | 000745 _H | CAN0 - IF2 Mask 1 Register High | IF2MSK1H0 | | R/W | | 000746 _H | CAN0 - IF2 Mask 2 Register Low | IF2MSK2L0 | IF2MSK20 | R/W | | 000747 _H | CAN0 - IF2 Mask 2 Register High | IF2MSK2H0 | | R/W | | 000748 _H | CAN0 - IF2 Arbitration 1 Register Low | IF2ARB1L0 | IF2ARB10 | R/W | | 000749 _H | CAN0 - IF2 Arbitration 1 Register High | IF2ARB1H0 | | R/W | | 00074A _H | CAN0 - IF2 Arbitration 2 Register Low | IF2ARB2L0 | IF2ARB20 | R/W | | 00074B _H | CAN0 - IF2 Arbitration 2 Register High | IF2ARB2H0 | | R/W | | 00074C _H | CAN0 - IF2 Message Control Register Low | IF2MCTRL0 | IF2MCTR0 | R/W | | 00074D _H | CAN0 - IF2 Message Control Register High | IF2MCTRH0 | | R/W | | | | | | | # 13. Handling Devices Special care is required for the following when handling the device: - Latch-up prevention - Unused pins handling - External clock usage - Unused sub clock signal - Notes on PLL clock mode operation - Power supply pins (V_{CC}/V_{SS}) - Crystal oscillator circuit - Turn on sequence of power supply to A/D converter and analog inputs - Pin handling when not using the A/D converter - Notes on energization - Stabilization of power supply voltage - Serial communication - Handling of Data Flash ## 13.1 Latch-up prevention CMOS IC chips may suffer latch-up under the following conditions: - A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin. - A voltage higher than the rated voltage is applied between V_{CC} pins and V_{SS} pins. - The AV_{CC} power supply is applied before the V_{CC} voltage. Latch-up may increase the power supply current dramatically, causing thermal damages to the device. For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage. # 13.2 Unused pins handling Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0). Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. They must therefore be pulled up or pulled down through resistors. To prevent latch-up, those resistors should be more than $2 \text{ k}\Omega$. Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above. # 13.3 External clock usage The permitted frequency range of an external clock depends on the oscillator type and configuration. See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows: Document Number: 002-04579 Rev. *A Page 55 of 109 #### 13.3.1 Single phase external clock ■ When using a single phase external clock, X0 pin must be driven and X1 pin left open. ## 13.3.2 Opposite phase external clock ■ When using an opposite phase external clock, X1 (X1A) must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. # 13.4 Unused sub clock signal If the pins X0A and X1A are not connected to an oscillator, a pull-down resistor must be connected on the X0A pin and the X1A pin must be left open. # 13.5 Notes on PLL clock mode operation If the PLL clock mode is selected and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed. # 13.6 Power supply pins (V_{CC}/v_{SS}) It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range. V_{CC} and V_{SS} must be connected to the device from the power supply with lowest possible impedance. As a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1 μ F between V_{CC} and V_{SS} as close as possible to V_{CC} and V_{SS} pins. # 13.7 Crystal oscillator and ceramic resonator circuit Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits. It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation. It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies. ### 13.8 Turn on sequence of power supply to A/D converter and analog inputs It is required to turn the A/D converter power supply (AV $_{CC}$, AVRH, AVRL) and analog inputs (ANn) on after turning the digital power supply (V $_{CC}$) on. It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, the voltage must not exceed AVRH or AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable). # 13.9 Pin handling when not using the A/D converter It is required to connect the unused pins of the A/D converter as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = AVRL = V_{SS}$. #### 13.10 Notes on Power-on To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2 V to 2.7 V. # 13.11 Stabilization of power supply voltage If the power supply voltage varies acutely even within the operation safety range of the Vcc power supply voltage, a malfunction may occur. The Vcc power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that Vcc ripple fluctuations (peak to peak value) in the commercial frequencies (50 to 60 Hz) fall within 10% of the standard Vcc power supply voltage and the transient fluctuation rate becomes $0.1 V/\mu s$ or less in instantaneous fluctuation for power supply switching. #### 13.12 Serial communication There is a possibility to receive wrong data due to noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs. # 13.13 Handling of Data Flash The Data Flash requires different and additional control signals for parallel programming. Please check with your programming equipment maker for support of this interface. Document Number: 002-04579 Rev. *A Page 57 of 109 | Parameter | Symbol | Rating | | Unit | Remarks | |---|------------------|--------|------|-------|--------------------------------------| | r ai ainetei | Syllibol | Min | Max | Oilit | Remarks | | Permitted Power dissipation (Mask ROM devices) ^[4] | P_D | - | 350 | mW | T _A =105°C | | Permitted Power dissipation (Mask ROM devices) | r D | - | 360 | mW | T _A =125°C ^[6] | | | | 0 | +70 | | MB96V300B | | Operating ambient temperature | T _A | -40 | +105 | °C | | | | | -40 | +125 | | [6] | | Storage temperature | T _{STG} | -55 | +150 | °C | | [1]: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} neither when the power is switched on. [2]: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should also not exceed the specified ratings. However if the maximum current to/from a input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/output voltages of standard ports depend on V_{CC} . [3]: - Applicable to all general purpose I/O pins (Pnn_m) - Use within recommended operating conditions. - Use at DC voltage (current) - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller. - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods. - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices. - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result. - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset (except devices with persistent low voltage reset in internal vector mode). #### Sample recommended circuits: (T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V) | D | Oh al | Condition (at T) | | | Value | | Domontro | |---------------------------------------|----------------------|---|--------|------|-------|------|--------------------| | Parameter | Symbol | Condition (at T _A) | | Тур | Max | Unit | Remarks | | | | | +25°C | 1.6 | 2 | A | Flock devices | | | | PLL Timer mode with CLKMC = 4MHz,
CLKPLL = 48MHz | +125°C | 2.1 | 5 | mA | Flash devices | | | I _{CCTPLL} | (CLKRC and CLKSC stopped. Core voltage at 1.9V) | +25°C | 1.6 | 2 | mA | MB96345/346 | | | | | +125°C | 2.1 | 4 | IIIA | WE90343/340 | | | | | +25°C | 0.35 | 0.5 | 4 | MD005040/5047/5040 | | | | | +125°C | 0.85 | 3.3 | mA | MB96F346/F347/F348 | | | | Main Timer mode with CLKMC = 4MHz,
SMCR:LPMSS = 0 | +25°C | 0.13 | 0.2 | A | MPOOFOAF | | | | (CLKPLL, CLKRC and CLKSC stopped. Voltage regulator in high power mode) | +125°C | 0.63 | 3 | mA | MB96F345 | | | | | +25°C | 0.35 | 0.5 | 4 | MD00045/040 | | | I _{CCTMAIN} | | +125°C | 0.85 | 2.3 | mA | MB96345/346 | | | | | +25°C | 0.1 | 0.15 | | | | Power supply | | Main Timer mode with CLKMC = 4MHz,
SMCR:LPMSS = 1 | +125°C | 0.6 | 2.9 | mA | Flash devices | | current in Timer modes ^[1] | | (CLKPLL, CLKRC and CLKSC stopped.
Voltage regulator in low power mode) | +25°C | 0.1 | 0.15 | | MP00045/040 | | | | | +125°C | 0.6 | 1.9 | | MB96345/346 | | | | | +25°C | 0.35 | 0.5 | | | | | | | +125°C | 0.85 | 3.3 | mA | MB96F346/F347/F348 | | | | RC Timer mode with CLKRC = 2MHz,
SMCR:LPMSS = 0 | +25°C | 0.13 | 0.2 | | | | | | (CLKMC, CLKPLL and CLKSC stopped. Voltage regulator in high power mode) | +125°C | 0.63 | 3 | mA | MB96F345 | | | | | +25°C | 0.35 | 0.5 | | | | | ICCTRCH | | +125°C | 0.85 | 2.3 | mA | MB96345/346 | | | | | +25°C | 0.1 | 0.15 | _ | | | | | RC Timer mode with CLKRC = 2MHz,
SMCR:LPMSS = 1 | +125°C | 0.6 | 2.9 | mA | Flash devices | | | | (CLKMC, CLKPLL and CLKSC stopped.
Voltage regulator in low power mode) | +25°C | 0.1 | 0.15 | | MP00045/040 | | | | | +125°C | 0.6 | 1.9 | mA | MB96345/346 | (T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V) | Parameter | Symbol Condition (at T₄) | | | Value | | | Remarks | | |---|--------------------------|--|---|-------|-----|------|---|--| | Farameter | Syllibol | mboi Condition (at 1 _A) | | Тур | Max | Unit | Remarks | | | Power supply current for active Clock modulator | Ісссьомо | Clock modulator enabled (CMCR:PDX = 1) | - | 3 | 4.5 | mA | Must be added to all current above | | | Flash
Write/Erase | I _{CCFLASH} | Current for one Flash module | - | 15 | 40 | mA | Must be added to all current above | | | current | I _{CCDFLASH} | Current for one Data Flash module | | 10 | 20 | mA | Must be added to all current above | | | Input capacitance | C _{IN} | - | - | 5 | 15 | pF | Other than C, AV_{CC} , AV_{SS} , $AVRH$, $AVRL$, V_{CC} , V_{SS} | | ^{[1]:} The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Document Number: 002-04579 Rev. *A Page 69 of 109 **14.4.8 Bus Timing (Read)** $(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ V_{SS} = 0.0 \ V, \ IO_{drive} = 5\text{mA}, \ C_L = 50\text{pF})$ | Davameter | Symbol | Pin | Conditions | Va | Heit | Damada | | |---|----------------------|-----------------------|------------------------------|---------------------------|----------------------------|--------|------------------------| | Parameter | | | | Min | Max | Unit | Remarks | | ALE pulse width | | | EACL:STS=0 and
EACL:ACE=0 | t _{CYC} /2 - 5 | - | ns | | | | t _{LHLL} | ALE | EACL:STS=1 | t _{CYC} – 5 | - | | | | | | | EACL:STS=0 and EACL:ACE=1 | 3t _{CYC} /2 - 5 | - | | | | | | | EACL:STS=0 and
EACL:ACE=0 | t _{CYC} – 15 | - | ns | | | | | | EACL:STS=1 and
EACL:ACE=0 | 3t _{CYC} /2 - 15 | - | | | | | t _{AVLL} | ALE, A[23:16], | EACL:STS=0 and EACL:ACE=1 | 2t _{CYC} - 15 | - | | | | Valid address $⇒$ ALE $↓$ time | | | EACL:STS=1 and
EACL:ACE=1 | 5t _{CYC} /2 - 15 | - | | | | valid address → ALE ↓ time | | ALE,AD[15:0] | EACL:STS=0 and EACL:ACE=0 | t _{CYC} /2 - 15 | - | ns | | | | t _{ADVLL} | | EACL:STS=1 and
EACL:ACE=0 | t _{CYC} - 15 | - | | | | | | | EACL:STS=0 and EACL:ACE=1 | 3t _{CYC} /2 – 15 | - | | | | | | | EACL:STS=1 and EACL:ACE=1 | 2t _{CYC} - 15 | - | | | | ALE $\downarrow \Rightarrow$ Address valid time | t _{LLAX} | ALE, AD[15:0] | EACL:STS=0 | t _{CYC} /2 - 15 | - | ns | | | | | | EACL:STS=1 | -15 | - | | | | Valid address ⇒ RDX ↓ time | t _{AVRL} | RDX, A[23:16] | EACL:ACE=0 | 3t _{CYC} /2 - 15 | - | ns | | | | | | EACL:ACE=1 | 5t _{CYC} /2 - 15 | - | 115 | | | | t _{ADVRL} F | RDX, AD[15:0] | EACL:ACE=0 | t _{CYC} - 15 | - | ns | | | | | | EACL:ACE=1 | 2t _{CYC} - 15 | - | 113 | | | Valid address ⇒ Valid data
input | t _{AVDV} | A[23:16],
AD[15:0] | EACL:ACE=0 | - | 3t _{CYC} – 55 | ns | w/o cycle
extension | | | | | EACL:ACE=1 | - | 4t _{CYC} – 55 | | | | | t _{ADVDV} | AD[15:0] | EACL:ACE=0 | - | 5t _{CYC} /2 – 55 | ns | w/o cycle | | | | | EACL:ACE=1 | - | 7t _{CYC} /2 – 55 | 113 | extension | | RDX pulse width | t _{RLRH} | RDX | - | 3 t _{CYC} /2 - 5 | - | ns | w/o cycle
extension | | $RDX \downarrow \Rightarrow Valid \ data \ input$ | t _{RLDV} | RDX, AD[15:0] | - | - | 3 t _{CYC} /2 – 50 | ns | w/o cycle
extension | | RDX ↑ ⇒ Data hold time | t _{RHDX} | RDX, AD[15:0] | - | 0 | - | ns | | | $Addressvalid\RightarrowDataholdtime$ | t _{AXDX} | A[23:16], AD[15:0] | - | 0 | - | ns | | # 14.4.11 Hold Timing $(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ V_{SS} = 0.0 \ V, \ IO_{drive} = 5mA, \ C_L = 50pF)$ | Parameter | Symbol | Pin | Condition | Value | | Units | Remarks | |---|-------------------|------|-----------|-----------------------|-----------------------|--------|---------| | Faranietei | | | | Min | Max | Ullits | Remains | | Pin floating \Rightarrow HAKX \downarrow time | t _{XHAL} | HAKX | _ | t _{CYC} - 20 | t _{CYC} + 20 | ns | | | $HAKX \uparrow time \ \Rightarrow Pin \ valid \ time$ | t _{HAHV} | HAKX | _ | t _{CYC} - 20 | t _{CYC} + 20 | ns | | (T_A = $$-40$$ °C to $+125$ °C, V_{CC} = 3.0 to 4.5V, V_{SS} = 0.0 V, IO_{drive} = 5mA, C_L = 50pF) | Parameter | Symbol | Pin | Condition | Value | | Units | Remarks | |---|-------------------|------|-----------|-----------------------|-----------------------|--------|---------| | Farameter | Syllibol | FIII | Condition | Min | Max | Ullits | Remarks | | Pin floating \Rightarrow HAKX \downarrow time | t _{XHAL} | HAKX | | t _{CYC} - 25 | t _{CYC} + 25 | ns | | | HAKX ↑ time ⇒ Pin valid time | t _{HAHV} | HAKX | - | t _{CYC} - 25 | t _{CYC} + 25 | ns | | # 16. Package Dimension MB96(F)34x LQFP 100P | 100-pin plastic LQFP | Lead pitch | 0.50 mm | |----------------------|--------------------------------|-----------------------| | | Package width × package length | 14.0 mm × 14.0 mm | | | Lead shape | Gullwing | | | Sealing method | Plastic mold | | | Mounting height | 1.70 mm Max | | | Weight | 0.65 g | | (FPT-100P-M20) | Code
(Reference) | P-LFQFP100-14×14-0.50 | #### 18.2 MCU without CAN Controller | Part number | Flash/ROM | Subclock | Package | |----------------------|-------------------|----------|----------------------| | MB96F346ASB PQC-GSE2 | | No | 100 pin Plastic QFP | | MB96F346AWB PQC-GSE2 | Floob A (200KB) | Yes | (FPT-100P-M22) | | MB96F346ASB PMC-GSE2 | Flash A (288KB) | No | 100 pin Plastic LQFP | | MB96F346AWB PMC-GSE2 | | Yes | (FPT-100P-M20) | | MB96F347ASB PQC-GSE2 | | No | 100 pin Plastic QFP | | MB96F347AWB PQC-GSE2 | EL LA (440KB) | Yes | (FPT-100P-M22) | | MB96F347ASB PMC-GSE2 | Flash A (416KB) | No | 100 pin Plastic LQFP | | MB96F347AWB PMC-GSE2 | | Yes | (FPT-100P-M20) | | MB96F348ASB PQC-GSE2 | | No | 100 pin Plastic QFP | | MB96F348AWB PQC-GSE2 | - Flash A (544KB) | Yes | (FPT-100P-M22) | | MB96F348ASB PMC-GSE2 | | No | 100 pin Plastic LQFP | | MB96F348AWB PMC-GSE2 | | Yes | (FPT-100P-M20) | | MB96F348CSC PQC-GSE2 | | No | 100 pin Plastic QFP | | MB96F348CWC PQC-GSE2 | Flash A (544KB) | Yes | (FPT-100P-M22) | | MB96F348CSC PMC-GSE2 | Flash B (32KB) | No | 100 pin Plastic LQFP | | MB96F348CWC PMC-GSE2 | | Yes | (FPT-100P-M20) | ^{[1]:} These devices are under development and specification is preliminary. These products under development may change its specification without notice. #### This datasheet is also valid for the following outdated devices: MB96F346YSA, MB96F346RSA, MB96F346YWA, MB96F346RWA, MB96F347YSA, MB96F347RSA, MB96F347YWA, MB96F347RWA, MB96F348YSA, MB96F348RSA, MB96F348YWA, MB96F348RWA, MB96F348TSB, MB96F348HSB, MB96F348TWB, MB96F348HWB, MB96F346ASA, MB96F346AWA, MB96F347ASA, MB96F347AWA, MB96F348ASA, MB96F348AWA, MB96F348CSB, MB96F348CWB | Revision | Date | Modification | |----------|------------|---| | 9 | 2009-01-09 | ■ Format adjusted to official Cypress datasheet standard (mainly style changes and official notes and disclaimer added) | | | | ■ Numbering of Electrical Characteristics subchapters automated | | | | ■ Note about devices under development modified | | | | ■ I/O map: Note added about reserved addresses | | | | ■ ICCSPLL for CLKS1=96MHz mode: increased by 1mA | | | | ■ Serial programming interface: Note about handshaking pins improved | | | | ■ specified AD converter channel offset to 4LSB | | | | ■ package code of MB96V300 corrected in ordering information | | | | ■ Added voltage condition to pull-up resistance spec | | | | ■ Lineup: Term "Data Flash" replaced by "independent 32KB Flash" | | | | ■ Ordering information: column "Independent 32KB Data Flash" replaced by new column "Flash/ROM", column "Remarks" removed | | | | ■ Official package dimension drawing with additional notes added | | | | ■ Empty pages removed | | | | Alarm comparator: Power supply current max values increased, comparison time reduced, mode
transition time and power-up stabilization time newly added | | | | ■ Handling devices: Notes added about Serial communication and about using ceramic resonators. | | | | ■ Feature list and AC Characteristics: 16MHz maximum frequency is valid for crystal oscillators. For resonators, maximum frequency depends on Q-factor | | | | ■ AC characteristics: PLL phase skew spec added, CLKVCO min=64MHz | | | | ■ VOL3 spec improved: spec valid for 3mA load for full Vcc range | | | | ■ MB96F345 added | | | | ■ Preliminary DC spec of MB96345/346 added | | | | ■ Permitted power dissipation of Flash devices in QFP package improved | | | | ■ C-Pin cap spec updated: 4.7uF-10uF capacitor with tolerance permitted | | | | ■ "Preliminary" watermark removed | | 10 | To be | ■ I/O map: IOABK0-5 added at address 000A00H-000A05H | | | released | ■ Ordering Information: Suffix "A" added to all MB96F345 device versions | | | | ■ AD converter I _{AIN} spec improved: 1uA valid up to 105deg, 1.2uA above 105deg |