Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | F ² MC-16FX | | Core Size | 16-Bit | | Speed | 56MHz | | Connectivity | CANbus, EBI/EMI, I ² C, LINbus, SCI, UART/USART | | Peripherals | DMA, LVD, LVR, POR, PWM, WDT | | Number of I/O | 80 | | Program Memory Size | 576KB (576K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 24K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 24x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LQFP | | Supplier Device Package | 100-LQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb96f348twbpmc-ge2 | # 1. Product Lineup | Features | | MB96V300B | MB96(F)34x | | | | |--|------------|--|---|--|--|--| | Product type | | Evaluation sample | Flash product: MB96F34x Mask ROM product: MB9634x | | | | | Product options | | | | | | | | YS | | | Low voltage reset persistently on / Single clock | | | | | RS | | | Low voltage reset can be disabled / Single clock | | | | | YW | | | Low voltage reset persistently on / Dual clock | | | | | RW | | | Low voltage reset can be disabled / Dual clock | | | | | TS | | | indep. 32KB Flash / Low voltage reset persistently on / Single clock | | | | | HS | | | indep. 32KB Flash / Low voltage reset can be disabled / Single clock | | | | | TW | | | indep. 32KB Flash / Low voltage reset persistently on / Dual clock | | | | | HW | | NA. | indep. 32KB Flash / Low voltage reset can be disabled / Dual clock | | | | | FS | | NA NA | 64KB Data Flash / Low voltage reset persistently on / Single clock | | | | | DS | | | 64KB Data Flash / Low voltage reset can be disabled / Single clock | | | | | FW | | | 64KB Data Flash / Low voltage reset persistently on / Dual clock | | | | | DW | | | 64KB Data Flash / Low voltage reset can be disabled / Dual clock | | | | | AS | | | No CAN / Low voltage reset can be disabled / Single clock devices | | | | | CS | | | No CAN / indep. 32KB Flash / Low voltage reset can be disabled / Single clock | | | | | AW | | | No CAN / Low voltage reset can be disabled / Dual clock | | | | | CW | | | No CAN / indep. 32KB Flash / Low voltage reset can be disabled / Dual clock | | | | | Flash/ROM | RAM | | | | | | | 160KB | 8KB | | MB96345Y ^[1] , MB96345R ^[1] | | | | | 224KB
[Flash A: 160KB, Data
Flash A: 64KB] | 8KB | | MB96F345F ^[1] , MB96F345D ^[1] | | | | | 288KB | 16KB | ROM/Flash memory emulation by external | MB96F346Y, MB96346Y ^[1] , MB96F346R, MB96346R ^[1] , MB96F346A | | | | | 416KB | 16KB | RAM, 92KB internal
RAM | MB96F347Y, MB96F347R, MB96F347A | | | | | 544KB | 544KB 24KB | | MB96F348Y, MB96F348R, MB96F348A | | | | | 576KB
[Flash A: 544KB, Flash
B: 32KB] 24KB | | | MB96F348T, MB96F348H, MB96F348C | | | | | Package | | BGA416 | FPT-100P-M20 FPT-100P-M22 | | | | | DMA | | 16 channels | 6 channels | | | | | USART | | 10 channels | 7 channels | | | | Document Number: 002-04579 Rev. *A # 5. Pin Circuit Type Table 2: Pin circuit types | FPT-10 | 00P-M20 | FPT-10 | 00P-M22 | |----------|--------------------------------|-----------|--------------------------------| | Pin no. | Circuit
type ^[1] | Pin no. | Circuit
type ^[1] | | 1-10 | Н | 1-12 | Н | | 11,12 | B ^[2] | 13, 14 | B ^[2] | | 11,12 | H ^[3] | 13, 14 | H ^[3] | | 13,14 | Supply | 15,16 | Supply | | 15 | F | 17 | F | | 16,17 | Н | 18,19 | Н | | 18-21 | N | 20-23 | N | | 22-29 | I | 24-31 | I | | 30 | Supply | 32 | Supply | | 31-32 | G | 33-34 | G | | 33 | Supply | 35 | Supply | | 34 to 41 | I | 36 to 43 | I | | 42 | Supply | 44 | Supply | | 43 to 48 | I | 45 to 50 | I | | 49 to 51 | С | 51 to 53 | С | | 52 | E | 54 | Е | | 53 to 54 | I | 55 to 56 | I | | 55 to 62 | Н | 57 to 64 | Н | | 63, 64 | Supply | 65, 66 | Supply | | 65 to 87 | Н | 67 to 89 | Н | | 88,89 | Supply | 90, 91 | Supply | | 90, 91 | А | 92, 93 | A | | 92-100 | Н | 94 to 100 | Н | ^{[1]:} Please refer to " I/O Circuit Type" for details on the I/O circuit types [2]: Devices with suffix "W" ^{[3]:} Devices without suffix "W" # 6. I/O Circuit Type | Туре | Circuit | Remarks | |------|--|---| | A | X1 R MRFBE R X0 FCI or osc disable | High-speed oscillation circuit: Programmable between oscillation mode (external crystal or resonator connected to X0/X1 pins) and Fast external Clock Input (FCI) mode (external clock connected to X0 pin) Programmable feedback resistor = approx. 2 * 0.5 MΩ. Feedback resistor is grounded in the center when the oscillator is disabled or in FCI mode | | В | X1A Xout SRFBE Osc disable | Low-speed oscillation circuit: ■ Programmable feedback resistor = approx. 2 * 5 MΩ. Feedback resistor is grounded in the center when the oscillator is disabled | | С | R
Hysteresis
inputs | ■ Mask ROM and EVA device:CMOS Hysteresis input pin ■ Flash device:CMOS input pin | | E | Pull-up Resistor Hysteresis inputs | ■ CMOS Hysteresis input pin ■ Pull-up resistor value: approx. 50 kΩ | | | | MB96F346Y
MB96F346R
MB96F346A | MB96F347Y
MB96F347R
MB96F347A | | |--|--|-------------------------------------|-------------------------------------|-----------| | Alternative mode CPU address | Flash memory mode address | Flash size
288kByte | Flash size
416kByte | | | FF:FFFF _H
FF:0000 _H | 3F:FFFF _H
3F:0000 _H | S39 - 64K | S39 - 64K | | | FE:FFFF _H
FE:0000 _H | 3E:FFFF _H
3E:0000 _H | S38 - 64K | S38 - 64K | | | FD:FFFF _H
FD:0000 _H | 3D:FFFF _H
3D:0000 _H | S37 - 64K | S37 - 64K | Flash A | | FC:FFFF _H
FC:0000 _H | 3C:FFFF _H
3C:0000 _H | S36 - 64K | S36 - 64K | 1 10311 7 | | FB:FFFF _H
FB:0000 _H | 3B:FFFF _H
3B:0000 _H | | S35 - 64K | | | FA:FFFF _H
FA:0000 _H | 3A:FFFF _H
3A:0000 _H | | S34 - 64K | | | F9:FFFF _H
F9:0000 _H
F8:FFFF _H | 39:FFF _H
39:0000 _H
38:FFF _H | | | | | F8:0000 _H
F7:FFFF _H
F7:0000 _H | 38:0000 _H
37:FFFF _H
37:0000 _H | - | | | | F6:FFFF _H
F6:0000 _H | 36:FFFF _H
36:0000 _H | | | | | F5:FFFF _H
F5:0000 _H | 35:FFFF _H
35:0000 _H | External bus | | | | F4:FFFF _H
F4:0000 _H | 34:FFFF _H
34:0000 _H | j j | External bus | | | F3:FFFF _H
F3:0000 _H | 33:FFFF _H
33:0000 _H | | | | | F2:FFFF _H
F2:0000 _H | 32:FFFF _H
32:0000 _H | | | | | F1:FFFF _H
F1:0000 _H | 31:FFFF _H
31:0000 _H |] | | | | F0:FFFF _H
F0:0000 _H | 30:FFFF _H
30:0000 _H | | | | | E0:FFFF _H
E0:0000 _H
DF:FFFF _H | | _ | _ | | | DF:FFFF _H DF:8000 _H DF:7FFF _H | 1F:7FFF _H | Reserved | Reserved | | | DF:7FFF _H DF:6000 _H DF:5FFF _H | 1F:7FFF _H
1F:6000 _H
1F:5FFF _H | SA3 - 8K | SA3 - 8K | | | DF:4000 _H DF:3FFF _H | 1F:4000 _H
1F:3FFF _H | SA2 - 8K | SA2 - 8K | Flash A | | DF:3FFF _H DF:2000 _H DF:1FFF _H | 1F:2000 _H | SA1 - 8K | SA1 - 8K | | | DF:0000 _H | 1F:1FFF _H
1F:0000 _H | SA0 - 8K ^[1] | SA0 - 8K ^[1] | | | DE:FFFF _H
DE:0000 _H | | Reserved | Reserved | | Table 4: I/O map MB96(F)34x | Address | Register | Abbreviation 8-bit access | Abbreviation
16-bit access | Access | |---------------------|---|---------------------------|-------------------------------|--------| | 000081 _H | PPG1 - Timer register | | | R | | 000082 _H | PPG1 - Period setting register | | PCSR1 | W | | 000083 _H | PPG1 - Period setting register | | | W | | 000084 _H | PPG1 - Duty cycle register | | PDUT1 | W | | 000085 _H | PPG1 - Duty cycle register | | | W | | 000086 _H | PPG1 - Control status register Low | PCNL1 | PCN1 | R/W | | 000087 _H | PPG1 - Control status register High | PCNH1 | | R/W | | 000088 _H | PPG2 - Timer register | | PTMR2 | R | | 000089 _H | PPG2 - Timer register | | | R | | 00008A _H | PPG2 - Period setting register | | PCSR2 | W | | 00008B _H | PPG2 - Period setting register | | | W | | 00008C _H | PPG2 - Duty cycle register | | PDUT2 | W | | 00008D _H | PPG2 - Duty cycle register | | | W | | 00008E _H | PPG2 - Control status register Low | PCNL2 | PCN2 | R/W | | 00008F _H | PPG2 - Control status register High | PCNH2 | | R/W | | 000090 _H | PPG3 - Timer register | | PTMR3 | R | | 000091 _H | PPG3 - Timer register | | | R | | 000092 _H | PPG3 - Period setting register | | PCSR3 | W | | 000093 _H | PPG3 - Period setting register | | | W | | 000094 _H | PPG3 - Duty cycle register | | PDUT3 | W | | 000095 _H | PPG3 - Duty cycle register | | | W | | 000096 _H | PPG3 - Control status register Low | PCNL3 | PCN3 | R/W | | 000097 _H | PPG3 - Control status register High | PCNH3 | | R/W | | 000098 _H | PPG7-PPG4 - General Control register 1 Low | GCN1L1 | GCN11 | R/W | | 000099 _H | PPG7-PPG4 - General Control register 1 High | GCN1H1 | | R/W | | 00009A _H | PPG7-PPG4 - General Control register 2 Low | GCN2L1 | GCN21 | R/W | | 00009B _H | PPG7-PPG4 - General Control register 2 High | GCN2H1 | | R/W | | 00009C _H | PPG4 - Timer register | | PTMR4 | R | | 00009D _H | PPG4 - Timer register | | | R | | 00009E _H | PPG4 - Period setting register | | PCSR4 | W | | 00009F _H | PPG4 - Period setting register | | | W | | 0000A0 _H | PPG4 - Duty cycle register | | PDUT4 | W | Table 4: I/O map MB96(F)34x | Address | Register | Abbreviation 8-bit access | Abbreviation 16-bit access | Access | |---------------------|--|---------------------------|----------------------------|--------| | 0003B9 _H | Memory Patch function - Patch address 0 middle | PFAM0 | | R/W | | 0003BA _H | Memory Patch function - Patch address 0 high | PFAH0 | | R/W | | 0003BB _H | Memory Patch function - Patch address 1 low | PFAL1 | | R/W | | 0003BC _H | Memory Patch function - Patch address 1 middle | PFAM1 | | R/W | | 0003BD _H | Memory Patch function - Patch address 1 high | PFAH1 | | R/W | | 0003BE _H | Memory Patch function - Patch address 2 low | PFAL2 | | R/W | | 0003BF _H | Memory Patch function - Patch address 2 middle | PFAM2 | | R/W | | 0003C0 _H | Memory Patch function - Patch address 2 high | PFAH2 | | R/W | | 0003C1 _H | Memory Patch function - Patch address 3 low | PFAL3 | | R/W | | 0003C2 _H | Memory Patch function - Patch address 3 middle | PFAM3 | | R/W | | 0003C3 _H | Memory Patch function - Patch address 3 high | PFAH3 | | R/W | | 0003C4 _H | Memory Patch function - Patch address 4 low | PFAL4 | | R/W | | 0003C5 _H | Memory Patch function - Patch address 4 middle | PFAM4 | | R/W | | 0003C6 _H | Memory Patch function - Patch address 4 high | PFAH4 | | R/W | | 0003C7 _H | Memory Patch function - Patch address 5 low | PFAL5 | | R/W | | 0003C8 _H | Memory Patch function - Patch address 5 middle | PFAM5 | | R/W | | 0003C9 _H | Memory Patch function - Patch address 5 high | PFAH5 | | R/W | | 0003CA _H | Memory Patch function - Patch address 6 low | PFAL6 | | R/W | | 0003CB _H | Memory Patch function - Patch address 6 middle | PFAM6 | | R/W | | 0003CC _H | Memory Patch function - Patch address 6 high | PFAH6 | | R/W | | 0003CD _H | Memory Patch function - Patch address 7 low | PFAL7 | | R/W | | 0003CE _H | Memory Patch function - Patch address 7 middle | PFAM7 | | R/W | | 0003CF _H | Memory Patch function - Patch address 7 high | PFAH7 | | R/W | | 0003D0 _H | Memory Patch function - Patch data 0 Low | PFDL0 | PFD0 | R/W | | 0003D1 _H | Memory Patch function - Patch data 0 High | PFDH0 | | R/W | | 0003D2 _H | Memory Patch function - Patch data 1 Low | PFDL1 | PFD1 | R/W | | 0003D3 _H | Memory Patch function - Patch data 1 High | PFDH1 | | R/W | | 0003D4 _H | Memory Patch function - Patch data 2 Low | PFDL2 | PFD2 | R/W | | 0003D5 _H | Memory Patch function - Patch data 2 High | PFDH2 | | R/W | | 0003D6 _H | Memory Patch function - Patch data 3 Low | PFD3 | R/W | | | 0003D7 _H | Memory Patch function - Patch data 3 High | PFDH3 | | R/W | | 0003D8 _H | Memory Patch function - Patch data 4 Low | PFDL4 | PFD4 | R/W | Table 4: I/O map MB96(F)34x | | | 8-bit access | 16-bit access | Access | |--|---|--------------|---------------|--------| | 00043B _H -000443 _H | Reserved | | | - | | 000444 _H | I/O Port P00 - Port Input Enable Register | PIER00 | | R/W | | 000445 _H | I/O Port P01 - Port Input Enable Register | PIER01 | | R/W | | 000446 _H | I/O Port P02 - Port Input Enable Register | PIER02 | | R/W | | 000447 _H | I/O Port P03 - Port Input Enable Register | PIER03 | | R/W | | 000448 _H | I/O Port P04 - Port Input Enable Register | PIER04 | | R/W | | 000449 _H | I/O Port P05 - Port Input Enable Register | PIER05 | | R/W | | 00044A _H | I/O Port P06 - Port Input Enable Register | PIER06 | | R/W | | 00044B _H | I/O Port P07 - Port Input Enable Register | PIER07 | | R/W | | 00044C _H | I/O Port P08 - Port Input Enable Register | PIER08 | | R/W | | 00044D _H | I/O Port P09 - Port Input Enable Register | PIER09 | | R/W | | 00044E _H | I/O Port P10 - Port Input Enable Register | PIER10 | | R/W | | 00044F _H -000457 _H | Reserved | | | - | | 000458 _H | I/O Port P00 - Port Input Level Register | PILR00 | | R/W | | 000459 _H | I/O Port P01 - Port Input Level Register | PILR01 | | R/W | | 00045A _H | I/O Port P02 - Port Input Level Register | PILR02 | | R/W | | 00045B _H | I/O Port P03 - Port Input Level Register | PILR03 | | R/W | | 00045C _H | I/O Port P04 - Port Input Level Register | PILR04 | | R/W | | 00045D _H | I/O Port P05 - Port Input Level Register | PILR05 | | R/W | | 00045E _H | I/O Port P06 - Port Input Level Register | PILR06 | | R/W | | 00045F _H | I/O Port P07 - Port Input Level Register | PILR07 | | R/W | | 000460 _H | I/O Port P08 - Port Input Level Register | PILR08 | | R/W | | 000461 _H | I/O Port P09 - Port Input Level Register | PILR09 | | R/W | | 000462 _H | I/O Port P10 - Port Input Level Register | PILR10 | | R/W | | 000463 _H -00046B _H | Reserved | | | - | | 00046C _H | I/O Port P00 - Extended Port Input Level Register | EPILR00 | | R/W | | 00046D _H | I/O Port P01 - Extended Port Input Level Register | EPILR01 | | R/W | | 00046E _H | I/O Port P02 - Extended Port Input Level Register | EPILR02 | | R/W | | 00046F _H | I/O Port P03 - Extended Port Input Level Register | EPILR03 | | R/W | | 000470 _H | I/O Port P04 - Extended Port Input Level Register | EPILR04 | | R/W | | 000471 _H | I/O Port P05 - Extended Port Input Level Register | EPILR05 | | R/W | | 000472 _H | I/O Port P06 - Extended Port Input Level Register | EPILR06 | | R/W | Table 4: I/O map MB96(F)34x | Address | Register | Abbreviation
8-bit access | Abbreviation 16-bit access | Access | |--|---|------------------------------|----------------------------|--------| | 0005AD _H | PPG14 - Timer register | | | R | | 0005AE _H | PPG14 - Period setting register | | PCSR14 | W | | 0005AF _H | PPG14 - Period setting register | | | W | | 0005B0 _H | PPG14 - Duty cycle register | | PDUT14 | W | | 0005B1 _H | PPG14 - Duty cycle register | | | W | | 0005B2 _H | PPG14 - Control status register Low | PCNL14 | PCN14 | R/W | | 0005B3 _H | PPG14 - Control status register High | PCNH14 | | R/W | | 0005B4 _H | PPG15 - Timer register | | PTMR15 | R | | 0005B5 _H | PPG15 - Timer register | | | R | | 0005B6 _H | PPG15 - Period setting register | | PCSR15 | W | | 0005B7 _H | PPG15 - Period setting register | | | W | | 0005B8 _H | PPG15 - Duty cycle register | | PDUT15 | W | | 0005B9 _H | PPG15 - Duty cycle register | | | W | | 0005BA _H | PPG15 - Control status register Low | PCNL15 | PCN15 | R/W | | 0005BB _H | PPG15 - Control status register High | PCNH15 | | R/W | | 0005BC _H -00065F _H | Reserved | | | - | | 000660 _H | Peripheral Resource Relocation Register 10 | PRRR10 | | R/W | | 000661 _H | Peripheral Resource Relocation Register 11 | PRRR11 | | R/W | | 000662 _H | Peripheral Resource Relocation Register 12 | PRRR12 | | R/W | | 000663 _H | Peripheral Resource Relocation Register 13 | PRRR13 | | W | | 000664 _H -0006DF _H | Reserved | | | - | | 0006E0 _H | External Bus - Area configuration register 0 Low | EACL0 | EAC0 | R/W | | 0006E1 _H | External Bus - Area configuration register 0 High | EACH0 | | R/W | | 0006E2 _H | External Bus - Area configuration register 1 Low | EACL1 | EAC1 | R/W | | 0006E3 _H | External Bus - Area configuration register 1 High | EACH1 | | R/W | | 0006E4 _H | External Bus - Area configuration register 2 Low | EACL2 | EAC2 | R/W | | 0006E5 _H | External Bus - Area configuration register 2 High | EACH2 | | R/W | | 0006E6 _H | External Bus - Area configuration register 3 Low | EACL3 | EAC3 | R/W | | 0006E7 _H | External Bus - Area configuration register 3 High | EACH3 | | R/W | | 0006E8 _H | External Bus - Area configuration register 4 Low | EACL4 | EAC4 | R/W | | 0006E9 _H | External Bus - Area configuration register 4 High | EACH4 | | R/W | | 0006EA _H | External Bus - Area configuration register 5 Low | EACL5 | EAC5 | R/W | Table 4: I/O map MB96(F)34x | Address | Register | Abbreviation 8-bit access | Abbreviation 16-bit access | Access | | |--|--|---------------------------|----------------------------|--------|--| | 000715 _H | CAN0 - IF1 Mask 1 Register High | IF1MSK1H0 | | R/W | | | 000716 _H | CAN0 - IF1 Mask 2 Register Low | IF1MSK2L0 | IF1MSK20 | R/W | | | 000717 _H | CAN0 - IF1 Mask 2 Register High | IF1MSK2H0 | | R/W | | | 000718 _H | CAN0 - IF1 Arbitration 1 Register Low | IF1ARB1L0 | IF1ARB10 | R/W | | | 000719 _H | CAN0 - IF1 Arbitration 1 Register High | IF1ARB1H0 | | R/W | | | 00071A _H | CAN0 - IF1 Arbitration 2 Register Low | IF1ARB2L0 | IF1ARB20 | R/W | | | 00071B _H | CAN0 - IF1 Arbitration 2 Register High | IF1ARB2H0 | | R/W | | | 00071C _H | CAN0 - IF1 Message Control Register Low | IF1MCTRL0 | IF1MCTR0 | R/W | | | 00071D _H | CAN0 - IF1 Message Control Register High | IF1MCTRH0 | | R/W | | | 00071E _H | CAN0 - IF1 Data A1 Low | IF1DTA1L0 | IF1DTA10 | R/W | | | 00071F _H | CAN0 - IF1 Data A1 High | IF1DTA1H0 | | R/W | | | 000720 _H | CAN0 - IF1 Data A2 Low | IF1DTA2L0 | IF1DTA20 | R/W | | | 000721 _H | CAN0 - IF1 Data A2 High | IF1DTA2H0 | | R/W | | | 000722 _H | CAN0 - IF1 Data B1 Low | IF1DTB1L0 | IF1DTB10 | R/W | | | 000723 _H | CAN0 - IF1 Data B1 High | IF1DTB1H0 | | R/W | | | 000724 _H | CAN0 - IF1 Data B2 Low | IF1DTB2L0 | IF1DTB20 | R/W | | | 000725 _H | CAN0 - IF1 Data B2 High | IF1DTB2H0 | | R/W | | | 000726 _H -00073F _H | Reserved | | | - | | | 000740 _H | CAN0 - IF2 Command request register Low | IF2CREQL0 | IF2CREQ0 | R/W | | | 000741 _H | CAN0 - IF2 Command request register High | IF2CREQH0 | | R/W | | | 000742 _H | CAN0 - IF2 Command Mask register Low | IF2CMSKL0 | IF2CMSK0 | R/W | | | 000743 _H | CAN0 - IF2 Command Mask register High (reserved) | IF2CMSKH0 | | R | | | 000744 _H | CAN0 - IF2 Mask 1 Register Low | IF2MSK1L0 | IF2MSK10 | R/W | | | 000745 _H | CAN0 - IF2 Mask 1 Register High | IF2MSK1H0 | | R/W | | | 000746 _H | CAN0 - IF2 Mask 2 Register Low | IF2MSK2L0 | IF2MSK20 | R/W | | | 000747 _H | CAN0 - IF2 Mask 2 Register High | IF2MSK2H0 | | R/W | | | 000748 _H | CAN0 - IF2 Arbitration 1 Register Low | IF2ARB1L0 | IF2ARB10 | R/W | | | 000749 _H | CAN0 - IF2 Arbitration 1 Register High | IF2ARB1H0 | | R/W | | | 00074A _H | CAN0 - IF2 Arbitration 2 Register Low | IF2ARB2L0 | IF2ARB20 | R/W | | | 00074B _H | CAN0 - IF2 Arbitration 2 Register High | IF2ARB2H0 | | R/W | | | 00074C _H | CAN0 - IF2 Message Control Register Low | IF2MCTRL0 | IF2MCTR0 | R/W | | | 00074D _H | CAN0 - IF2 Message Control Register High | IF2MCTRH0 | | R/W | | | | | | | | | Document Number: 002-04579 Rev. *A ### 13. Handling Devices Special care is required for the following when handling the device: - Latch-up prevention - Unused pins handling - External clock usage - Unused sub clock signal - Notes on PLL clock mode operation - Power supply pins (V_{CC}/V_{SS}) - Crystal oscillator circuit - Turn on sequence of power supply to A/D converter and analog inputs - Pin handling when not using the A/D converter - Notes on energization - Stabilization of power supply voltage - Serial communication - Handling of Data Flash #### 13.1 Latch-up prevention CMOS IC chips may suffer latch-up under the following conditions: - A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin. - A voltage higher than the rated voltage is applied between V_{CC} pins and V_{SS} pins. - The AV_{CC} power supply is applied before the V_{CC} voltage. Latch-up may increase the power supply current dramatically, causing thermal damages to the device. For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage. ## 13.2 Unused pins handling Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0). Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. They must therefore be pulled up or pulled down through resistors. To prevent latch-up, those resistors should be more than $2 \text{ k}\Omega$. Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above. ## 13.3 External clock usage The permitted frequency range of an external clock depends on the oscillator type and configuration. See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows: Document Number: 002-04579 Rev. *A Page 55 of 109 | Parameter | Symbol | Rating | | Unit | Remarks | |---|------------------|--------|------|-------|--------------------------------------| | r ai ainetei | Syllibol | Min | Max | Oilit | Remarks | | Permitted Power dissipation (Mask ROM devices) ^[4] | P_D | - | 350 | mW | T _A =105°C | | Permitted Power dissipation (Mask ROM devices) ¹⁻³ | FD | - | 360 | mW | T _A =125°C ^[6] | | | T _A | 0 | +70 | | MB96V300B | | Operating ambient temperature | | -40 | +105 | °C | | | | | -40 | +125 | | [6] | | Storage temperature | T _{STG} | -55 | +150 | °C | | [1]: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} neither when the power is switched on. [2]: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should also not exceed the specified ratings. However if the maximum current to/from a input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/output voltages of standard ports depend on V_{CC} . [3]: - Applicable to all general purpose I/O pins (Pnn_m) - Use within recommended operating conditions. - Use at DC voltage (current) - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller. - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods. - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices. - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result. - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset (except devices with persistent low voltage reset in internal vector mode). #### Sample recommended circuits: #### 14.4 **AC Characteristics** 14.4.1 Source Clock timing (T_A = -40°C to 125°C, V_{CC} = AV $_{CC}$ = 3.0V to 5.5V, V_{SS} = AV $_{SS}$ = 0V) | Douguestan | Comple ed | Dim | | Value | | I I m i 4 | Remarks | |-------------------------|-------------------------------------|----------|-----|--------|-----|-----------|---| | Parameter | Symbol | Pin | Min | Тур | Max | Unit | Remarks | | | | | 3 | - | 16 | MHz | When using a crystal oscillator, PLL off | | Clock frequency | $f_{\mathbb{C}}$ | X0, X1 | 0 | - | 16 | MHz | When using an opposite phase external clock, PLL off | | | | | 3.5 | - | 16 | MHz | When using a crystal oscillator or opposite phase external clock, PLL on | | Clask fraguancy | f | X0 | 0 | - | 56 | MHz | When using a single phase external clock in "Fast Clock Input mode" (not available in MB96F34xY/R/AxA), PLL off | | Clock frequency | f _{FCI} | χ0 | 3.5 | - | 56 | MHz | When using a single phase external clock in "Fast Clock Input mode" (not available in MB96F34xY/R/AxA), PLL on | | | f _{CL} | X0A, X1A | 32 | 32.768 | 100 | kHz | When using an oscillation circuit | | Clock frequency | | | 0 | - | 100 | kHz | When using an opposite phase external clock | | | | X0A | 0 | - | 50 | kHz | When using a single phase external clock | | Clock frequency | f _{CR} | | 50 | 100 | 200 | kHz | When using slow frequency of RC oscillator | | Clock frequency | 'CR | - | 1 | 2 | 4 | MHz | When using fast frequency of RC oscillator | | PLL Clock frequency | f _{CLKVCO} | - | 64 | - | 200 | MHz | Permitted VCO output frequency of PLL (CLKVCO) | | PLL Phase Jitter | T _{PSKEW} | - | - | - | ± 5 | ns | For CLKMC (PLL input clock) ≥ 4MHz | | Input clock pulse width | P _{WH} , P _{WL} | X0,X1 | 8 | - | - | ns | Duty ratio is about 30% to 70% | | Input clock pulse width | P _{WHL} , P _{WLL} | X0A,X1A | 5 | - | - | μS | | ## 14.4.4 Power On Reset timing $(T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}, V_{CC} = \text{AV}_{CC} = 3.0\text{V to } 5.5\text{V}, V_{SS} = \text{AV}_{SS} = 0\text{V})$ | Parameter | Symbol | Pin | | Value | | Unit | Remarks | |--------------------|------------------|-----|------|-------|-----|------|---------| | Parameter | Symbol | | Min | Тур | Max | | | | Power on rise time | t _R | Vcc | 0.05 | - | 30 | ms | | | Power off time | t _{OFF} | Vcc | 1 | - | - | ms | | #### 14.4.12 USART timing **WARNING**: The values given below are for an I/O driving strength $IO_{drive} = 5mA$. If IO_{drive} is 2mA, all the maximum output timing described in the different tables must then be increased by 10ns. $(T_A = -40^{\circ}C \text{ to } 125^{\circ}C, V_{CC} = 3.0V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, IO_{drive} = 5mA, C_L = 50pF)$ | Parameter | Symbol Pin | | Condition | V _{CC} = AV _{CC} = | 4.5V to 5.5V | $V_{CC} = AV_{CC} =$ | Unit | | |------------------------------|--------------------|---------------|------------------------------|--|---------------------------|--|---------------------------|-------| | raiailletei | Syllibol | FIII | Condition | Min | Max | Min | Max | Oilit | | Serial clock cycle time | t _{SCYCI} | SCKn | | 4 t _{CLKP1} | - | 4 t _{CLKP1} | - | ns | | SCK ↓→ SOT delay time | t _{SLOVI} | SCKn,
SOTn | | -20 | +20 | -30 | +30 | ns | | SOT → SCK ↑ delay time | t _{OVSHI} | SCKn,
SOTn | Internal Shift
Clock Mode | N*t _{CLKP1} - 20 ^[1] | - | N*t _{CLKP1} - 30 ^[1] | - | ns | | Valid SIN → SCK ↑ | t _{IVSHI} | SCKn,
SINn | - Olosik ilious | t _{CLKP1} + 45 | - | t _{CLKP1} + 55 | - | ns | | SCK ↑→ Valid SIN hold time | t _{SHIXI} | SCKn,
SINn | | 0 | - | 0 | - | ns | | Serial clock "L" pulse width | t _{SLSHE} | SCKn | | t _{CLKP1} + 10 | - | t _{CLKP1} + 10 | - | ns | | Serial clock "H" pulse width | t _{SHSLE} | SCKn | | t _{CLKP1} + 10 | - | t _{CLKP1} + 10 | - | ns | | SCK ↓→ SOT delay time | t _{SLOVE} | SCKn,
SOTn | | - | 2 t _{CLKP1} + 45 | - | 2 t _{CLKP1} + 55 | ns | | Valid SIN → SCK ↑ | t _{IVSHE} | SCKn,
SINn | External Shift
Clock Mode | t _{CLKP1} /2 + 10 | - | t _{CLKP1} /2 + 10 | - | ns | | SCK ↑→ Valid SIN hold time | t _{SHIXE} | SCKn,
SINn | | t _{CLKP1} + 10 | - | t _{CLKP1} + 10 | - | ns | | SCK fall time | t _{FE} | SCKn | | - | 20 | - | 20 | ns | | SCK rise time | t _{RE} | SCKn | | - | 20 | - | 20 | ns | #### Notes: - AC characteristic in CLK synchronized mode. - C_L is the load capacity value of pins when testing. - Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96300 Super series HARDWARE MANUAL". - \blacksquare t_{CLKP1} is the cycle time of the peripheral clock 1 (CLKP1), Unit : ns - [1]: Parameter N depends on t_{SCYCI} and can be calculated as follows: - if t_{SCYCI} = 2*k*t_{CLKP1}, then N = k, where k is an integer > 2 - if $t_{SCYCI} = (2*k+1)*t_{CLKP1}$, then N = k+1, where k is an integer > 1 #### Examples: | t _{scyci} | N | |-----------------------|---| | 4*t _{CLKP1} | 2 | | 5*t _{CLKP1,} | 3 | | 7*t _{CLKP1,} | 4 | | | | Document Number: 002-04579 Rev. *A Page 85 of 109 ## 14.4.13 I²C Timing $(T_A = -40^{\circ}C \text{ to } 125^{\circ}C, V_{CC} = AV_{CC} = 3.0V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V)$ | Parameter | Symbol | Condition | Standar | d-mode | Fast-mode ^[4] | | Unit | |--|--------------------|---|---------|---------------------|--------------------------|--------------------|-------| | i didilietei | Cymbol | Condition | Min | Max | Min | Max | Oilit | | SCL clock frequency | f _{SCL} | | 0 | 100 | 0 | 400 | kHz | | Hold time (repeated) START condition SDA↓→SCL¬ | t _{HDSTA} | | 4.0 | - | 0.6 | - | μS | | "L" width of the SCL clock | t _{LOW} | | 4.7 | - | 1.3 | - | μS | | "H" width of the SCL clock | t _{HIGH} | | 4.0 | - | 0.6 | - | μS | | Set-up time for a repeated START condition SCL↓→SDA↑ | t _{SUSTA} | $R = 1.7 \text{ k}\Omega,$
$C = 50 \text{ pF}^{[1]}$ | 4.7 | - | 0.6 | - | μS | | Data hold timeSCL↑→SDA↑↓ | t _{HDDAT} | | 0 | 3.45 ^[2] | 0 | 0.9 ^[3] | μS | | Data set-up timeSDA↑↓→SCL↑ | t _{SUDAT} | | 250 | - | 100 | - | ns | | Set-up time for STOP conditionSCL↑→SDA↑ | t _{SUSTO} | | 4.0 | - | 0.6 | - | μS | | Bus free time between a STOP and START condition | t _{BUS} | | 4.7 | - | 1.3 | - | μS | ^{[1]:} R,C: Pull-up resistor and load capacitor of the SCL and SDA lines. [2]: The maximum t_{HDDAT} have only to be met if the device does not stretch the "L" width (t_{LOW}) of the SCL signal. [3] : A Fast-mode I^2C -bus device can be used in a Standard-mode I^2C -bus system, but the requirement $t_{SUDAT} \ge 250$ ns must then be met. [4]: For use at over 100 kHz, set the peripheral clock 1 to at least 6 MHz. Document Number: 002-04579 Rev. *A Page 87 of 109 ## **Low Voltage Detector Characteristics** $(T_A = -40 \, ^{\circ}\text{C to} + 125 \, ^{\circ}\text{C}, \, V_{cc} = \text{AV}_{cc} = 3.0\text{V} - 5.5\text{V}, \, V_{ss} = \text{AV}_{ss} = 0\text{V})$ | Parameter | Symbol | Value ^[1] | | Value ^[2] | | Unit | Remarks | | |--------------------|----------------------|----------------------|------|----------------------|----------|-------|---|--| | i didilietei | Cymbol | Min | Max | Min | Max | Oiiit | Nemarks | | | Stabilization time | T _{LVDSTAB} | - | 75 | - | 110 | μS | After power-up or change of detection level | | | Level 0 | V _{DL0} | 2.7 | 2.9 | 2.65 | 2.95 | V | CILCR:LVL[3:0]="0000" | | | Level 1 | V _{DL1} | 2.9 | 3.1 | 2.85 | 3.2 | V | CILCR:LVL[3:0]="0001" | | | Level 2 | V _{DL2} | 3.1 | 3.3 | 3.05 | 3.4 | V | CILCR:LVL[3:0]="0010" | | | Level 3 | V_{DL3} | 3.5 | 3.75 | 3.45 | 3.85 | V | CILCR:LVL[3:0]="0011" | | | Level 4 | V_{DL4} | 3.6 | 3.85 | 3.55 | 3.95 | V | CILCR:LVL[3:0]="0100" | | | Level 5 | V_{DL5} | 3.7 | 3.95 | 3.65 | 4.1 | V | CILCR:LVL[3:0]="0101" | | | Level 6 | V _{DL6} | 3.8 | 4.05 | 3.75 | 4.2 | V | CILCR:LVL[3:0]="0110" | | | Level 7 | V _{DL7} | 3.9 | 4.15 | 3.85 | 4.3 | V | CILCR:LVL[3:0]="0111" | | | Level 8 | V _{DL8} | 4.0 | 4.25 | 3.95 | 4.4 | V | CILCR:LVL[3:0]="1000" | | | Level 9 | V_{DL9} | 4.1 | 4.35 | 4.05 | 4.5 | V | CILCR:LVL[3:0]="1001" | | | Level 10 | V _{DL10} | not i | used | not | used | | | | | Level 11 | V _{DL11} | not i | used | not | not used | | | | | Level 12 | V _{DL12} | not i | used | not used | | | | | | Level 13 | V _{DL13} | not i | used | not used | | | | | | Level 14 | V _{DL14} | not i | used | not used | | | | | | Level 15 | V _{DL15} | not (| used | not used | | | | | [1]: valid for all devices except devices listed under "[2]" [2]: valid for: MB96F345 CILCR:LVL[3:0] are the low voltage detector level select bits of the CILCR register. Levels 10 to 15 are not used in this device. For correct detection, the slope of the voltage level must satisfy $\left| \frac{dV}{dt} \right| \le 0.004 \frac{V}{\mu s}$. Faster variations are regarded as noise and may not be detected. The functional operation of the MCU is guaranteed down to the minimum low voltage detection level of Vcc = 2.7V. The electrical characteristics however are only valid in the specified range (usually down to 3.0V). Document Number: 002-04579 Rev. *A Page 94 of 109 ## 14.7.1 Low Voltage Detector Operation In the following figure, the occurrence of a low voltage condition is illustrated. For a detailed description of the reset and startup behavior, please refer to the corresponding hardware manual chapter. Table 6: Used settings | Mode | Selected Source
Clock | Clock/Regulator Settings | |------------|--------------------------|--| | Run mode | PLL | CLKS1 = CLKS2 = CLKB = CLKP1 = 56 MHz CLKP2 = 28 MHz Regulator in High Power Mode Core Voltage = 1.9 V | | | Main osc. | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4 MHz Regulator in High Power Mode Core Voltage = 1.8 V | | | RC clock fast | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2 MHz Regulator in High Power Mode Core Voltage = 1.8 V | | | RC clock slow | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100 kHz Regulator in High Power Mode Core Voltage = 1.8 V | | | Sub osc. | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32 kHz Regulator in Low Power Mode A Core Voltage = 1.8 V | | Sleep mode | PLL | CLKS1 = CLKS2 = CLKP1 = 56 MHz CLKP2 = 28 MHz (CLKB is stopped in this mode) Regulator in High Power Mode Core Voltage = 1.9 V | | | Main osc. | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4 MHz (CLKB is stopped in this mode) Regulator in High Power Mode Core Voltage = 1.8 V | | | RC clock fast | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2 MHz (CLKB is stopped in this mode) Regulator in High Power Mode Core Voltage = 1.8 V | | | RC clock slow | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100 kHz (CLKB is stopped in this mode) Regulator in High Power Mode Core Voltage = 1.8 V | | | Sub osc. | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32 kHz (CLKB is stopped in this mode) Regulator in Low Power Mode A Core Voltage = 1.8 V | Table 6: Used settings | Mode | Selected Source
Clock | Clock/Regulator Settings | |------------|--------------------------|--| | Timer mode | PLL | CLKMC = 4 MHz, CLKPLL = 56 MHz
(System clocks are stopped in this mode)
Regulator in High Power Mode, Core Voltage = 1.9 V | | | Main osc. | CLKMC = 4 MHz (System clocks are stopped in this mode) Regulator in High Power Mode, Core Voltage = 1.8 V | | | RC clock fast | CLKRC = 2 MHz (System clocks are stopped in this mode) Regulator in High Power Mode, Core Voltage = 1.8 V | | | RC clock slow | CLKRC = 100 kHz (System clocks are stopped in this mode) Regulator in High Power Mode, Core Voltage = 1.8 V | | | Sub osc. | CLKSC = 100 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode A, Core Voltage = 1.8 V | | Stop mode | stopped | (All clocks are stopped in this mode) Regulator in Low Power Mode B, Core Voltage = 1.8 V | #### Sales, Solutions, and Legal Information #### Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb Wireless/RF cypress.com/wireless PSoC® Solutions cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP **Cypress Developer Community** Community | Forums | Blogs | Video | Training **Technical Support** cypress.com/support ARM and Cortex are the trademarks of ARM Limited in the EU and other countries © Cypress Semiconductor Corporation 2009-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.