

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256К х 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f732zet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Full compatibility throughout the family

The STM32F732xx devices are fully pin-to-pin, compatible with the STM32F7x5xx, STM32F7x6xx, STM32F7x7xx devices.

The STM32F732xx devices are fully pin-to-pin, compatible with the STM32F4xxxx devices, allowing the user to try different peripherals, and reaching higher performances (higher frequency) for a greater degree of freedom during the development cycle.

Figure 1 and *Figure 2* give compatible board designs between the STM32F732xx and STM32F4xx families.

Figure 1. Compatible board design for LQFP100 package

3.16 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

3.16.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR mode used in Run/sleep modes or in Stop modes
 - In Run/Sleep modes

The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). A different voltage scaling is provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode:

MR operates in normal mode (default mode of MR in stop mode)

MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.

The V_{CAP_1} and V_{CAP_2} pins must be connected to 2*2.2 μ F, ESR < 2 Ω (or 1*4.7 μ F, ESR between 0.1 Ω and 0.2 Ω if only the V_{CAP_1} pin is provided (on LQFP64 package)).

All the packages have the regulator ON feature.

Figure 15. STM32F732xx LQFP100 pinout

1. The above figure shows the package top view.

Figure 18. STM32F733xx LQFP144 pinout

1. The above figure shows the package top view.

Figure 23. STM32F733xx UFBGA176 ballout (with OTG PHY HS)

1. The above figure shows the package top view.

72/227

-						Table	10. S	ГМ32	-732x	x and	STM32F733xx	pin a	and b	all d	lefinition (continued)			
-		071			Pin N	lumbe	r	00570	_									
		STN	/I32F7	32xx			STM	32F73	3xx	1			ē					
	LQFP64	LQFP100	LQFP144	UFBGA176	LQFP176	WLCSP100	UFBGA176	UFBGA144	LQFP144	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	Pin type I/O structur		Alternate functions	Additional functions		
	35	53	75	R14	94	-	-	-	-	-	PB14	I/O	FT	-	TIM1_CH2N, TIM8_CH2N, SPI2_MISO, USART3_RTS, TIM12_CH1, SDMMC2_D0, OTG_HS_DM, EVENTOUT	-		
	-	-	-	-	-	J1	R14	L11	77	96	PB14	I/O	FT	-	OTG_HS_DM	-		
	36	54	76	R15	95	-	-	-	-	-	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, SDMMC2_D1, OTG_HS_DP, EVENTOUT	-		
	-	-	-	-	-	H1	R15	L12	78	97	PB15	I/O	FT	-	OTG_HS_DP	-		
Ì	-	55	77	P15	96	-	P15	L9	79	98	PD8	I/O	FT	-	USART3_TX, FMC_D13, EVENTOUT	-		
Ì	-	56	78	P14	97	-	P14	K9	80	99	PD9	I/O	FT	-	USART3_RX, FMC_D14, EVENTOUT	-		
Ī	-	57	79	N15	98	-	N15	J9	81	100	PD10	I/O	FT	-	USART3_CK, FMC_D15, EVENTOUT	-		

Pinouts and pin description

DS11854 Rev 4

STM32F732xx STM32F733xx

Q
4
1
2
5
N

DS11854 Rev 4

Pinouts and pin description

STM32F732xx STM32F733xx

5

DS11854 Rev 4

95/227

Table 12. STM32F732xx and STM3	2F733xx alternate function mapping (continued)
--------------------------------	--

-												0.	,			
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF15
	Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/1 1/LPTIM1	I2C1/2/3/U SART1	SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/5	SPI2/I2S2/ SPI3/I2S3/ SPI3/I2S3/ SAI1/ UART4	SPI2/I2S2/S PI3/I2S3/US ART1/2/3/UA RT5	SAI2/USART 6/UART4/5/7/ 8/OTG1_FS	CAN1/TIM1 2/13/14/QU ADSPI/ FMC/ OTG2_HS	SAI2/QUAD SPI/SDMM C2/OTG2_ HS/OTG1_ FS	SDMMC2	UART7/F MC/SDM MC1/ OTG2_FS	SYS
		PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A10	EVEN TOUT
		PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	EVEN TOUT
		PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	EVEN TOUT
		PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	EVEN TOUT
		PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/ FMC_BA0	EVEN TOUT
	Port G	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/ FMC_BA1	EVEN TOUT
		PG6	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
		PG7	-	-	-	-	-	-	-	-	USART6_CK	-	-	-	FMC_INT	EVEN TOUT
		PG8	-	-	-	-	-	-	-	-	USART6_RT S	-	-	-	FMC_SDC LK	EVEN TOUT
		PG9	-	-	-	-	-	-	-	-	USART6_RX	QUADSPI_ BK2_IO2	SAI2_FS_B	SDMMC2 _D0	FMC_NE2 /FMC_NC E	EVEN TOUT
		PG10	-	-	-	-	-	-	-	-	-	-	SAI2_SD_B	SDMMC2 _D1	FMC_NE3	EVEN TOUT

Pinouts and pin description

6.1.6 Power supply scheme

Figure 26. STM32F732xx power supply scheme

1. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.

2. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.

3. $V_{DDA}=V_{DD}$ and $V_{SSA}=V_{SS}$.

- 2. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
- 3. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.
- 4. $V_{DDA}=V_{DD}$ and $V_{SSA}=V_{SS}$.
- **Caution:** Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

6.1.7 Current consumption measurement

Figure 28. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 13: Voltage characteristics*, *Table 14: Current characteristics*, and *Table 15: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. The device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V _{DDA} , V _{DD,} V _{BAT} , V _{DDUSB} and V _{DDSDMMC}) $^{(1)}$	- 0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} – 0.3	V _{DD} +4.0	
V	Input voltage on TTa pins	V _{SS} – 0.3	4.0	V
V IN	Input voltage on any other pin	V _{SS} – 0.3	4.0	
	Input voltage on BOOT pin	V_{SS}	9.0	

Table 13.	Voltage	characteristics
-----------	---------	-----------------

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	– 65 to +150	°C
TJ	Maximum junction temperature	125	C

Table 15. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾			Тур	Мах	Unit
fhclk		Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regu ON, over-drive OFF	lator	0	-	144	
		Power Scale 2 (VOS[1:0] bits in	Over- drive OFF	0	-	168	
	Internal AHB clock frequency	Regulator ON	Over- drive ON	U	-	180	
		Power Scale 1 (VOS[1:0] bits in	Over- drive OFF	0	-	180	MHz
		Regulator ON	Over- drive ON	U	-	216 ⁽²⁾	
f	Internal APR1 clock frequency	Over-drive OFF	0	-	45	-	
f _{PCLK1} I	Internal AFBT clock frequency	Over-drive ON	0	-	54		
f	Internal ADR2 clock frequency	Over-drive OFF			-	90	
'PCLK2		Over-drive ON	0	-	108		
V _{DD}	Standard operating voltage	-		1.7 ⁽³⁾	-	3.6	
V(4)(5)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as V	(6)	1.7 ⁽³⁾	-	2.4	
V DDA	Analog operating voltage (ADC limited to 2.4 M samples)			2.4	-	3.6	V
	USB supply voltage (supply	USB not used		1.7	3.3	3.6	
V _{DDUSB}	voltage for PA11,PA12, PB14 and PB15 pins)	USB used		3.0	-	3.6	
V _{BAT}	Backup operating voltage	-		1.65	-	3.6	
V _{DDSDMMC}	SDMMC2 supply voltage (supply voltage for PG[12:9] and PD6 pins)	It can be different from V _D	D	1.7	-	3.6	

Table 16. General operating conditions

Figure 32. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in medium high drive mode)

Figure 33. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in high drive mode)

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	26	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω, C _L =5 pF@25 MHz	-	450	-	
'DD		V _{DD} =3.3 V, ESR= 30 Ω, C _L =10 pF@25 MHz	-	530	-	μΑ
ACC _{HSE} ⁽²⁾	HSE accuracy	-	- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	1	mA/V
t _{SU(HSE} ⁽³⁾	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 40.	HSE 4-26	MHz	oscillator	characteristics(1)
		141112	oscillator	una acteristics.	

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is based on characterization results. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

6.3.13 USB OTG HS PHY PLLs characteristics (on STM32F733xx devices)

The parameters given in Table 48 are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 16*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL1_IN}	PLL1 input clock	-	12, 12.5, 16, 24, 25			
f _{PLL1_OUT}	PLL1 output clock ⁽²⁾	-	-	60	-	MHz
f _{VCO_OUT}	PLL1 VCO output	-	600	-	720	
t _{LOCK}	PLL1 lock time ⁽²⁾	-	-	-	22	μs
I _{DD(PLL1)}	PLL1 digital power consumption	-	-	-	1.8	m۸
I _{DDA(PLL1)}	PLL1 analog power consumption	_	-	-	2.75	ША

Table 48. USB OTG HS PLL1 characteristics⁽¹⁾

1. Guaranteed by design.

2. Based on test during characterization.

Table 49. USB OTG HS PLL2 characteristics ⁽¹⁾									
Symbol	Parameter Conditions		Min	Тур	Мах	Unit			
f _{PLL2_IN}	PLL2 input clock	-	-	60	-				
f _{PLL2_OUT}	PLL2 output clock ⁽²⁾	-	-	480	-	MHz			
f _{VCO_OUT}	PLL2 VCO output	-	-	480	-				
t _{LOCK}	PLL2 lock time ⁽²⁾	-	-	-	91	μs			
I _{DD(PLL2)}	PLL2 digital power consumption	-	-	-	2.1	m۸			

_

_

_

(1)

1. Guaranteed by design.

IDDA(PLL2)

2. Based on test during characterization.

6.3.14 USB OTG HS PHY regulator characteristics (on STM32F733xx devices)

PLL2 analog power consumption

The parameters given in Table 50 are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 16*.

Symbol Parameter		Conditions	Min	Тур	Max	Unit		
V _{DD12OTGHS}	1.2 V internal voltage on $V_{DD12OTGHS}$	-	1.18	1.2	1.24	V		
CEXT	External capacitor on V _{DD12OTGHS}	-	1.1	2.2	3.3	μF		
IDDPHYHSREG	Regulator power consumption	-	100	120	125	μA		

Table 50, USB OTG HS PHY regulator characteristics⁽¹⁾

1. Based on test during characterization.

1.5

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾ I _{IO} = +8 mA 2.7 V ≤V _{DD} ≤3.6 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	CMOS port ⁽²⁾ $I_{IO} = -8 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} - 0.4	-	V
V _{OH} ⁽³⁾	Output high level voltage for PC14	CMOS port ⁽²⁾ $I_{IO} = -2 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} – 0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾ I _{IO} =+8mA 2.7 V ≤V _{DD} ≤3.6 V	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	TTL port ⁽²⁾ I _{IO} =-8mA 2.7 V ≤V _{DD} ≤3.6 V	2.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA 2.7 V ≤V _{DD} ≤3.6 V	-	1.3 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	I _{IO} = -20 mA 2.7 V ≤V _{DD} ≤3.6 V	V _{DD} -1.3 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA 1.8 V ≤V _{DD} ≤3.6 V	-	0.4 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	I _{IO} = -6 mA 1.8 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA 1.7 V ≤V _{DD} ≤3.6V	-	0.4 ⁽⁵⁾	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	I _{IO} = -4 mA 1.7 V ≤V _{DD} ≤3.6V	V _{DD} -0.4 ⁽⁵⁾	-	V
V _{OH} ⁽³⁾	Output high level voltage for PC14	I _{IO} = -1 mA 1.7 V ≤V _{DD} ≤3.6V	V _{DD} -0.4 ⁽⁵⁾	-	

Table 62. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 14*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 14 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

- 4. Based on characterization data.
- 5. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 44* and *Table 63*, respectively.

Symbol	Parameter	Min	Тур	Max	Unit	Comments
. (4)	DAC DC V _{REF} current	-	170	240		With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
'VREF+`´	mode (Standby mode)	_	50	75	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC V _{DDA} current	i	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
INL ⁽⁴⁾	Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
		-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error (difference between measured value at Code (0x800) and the ideal value = V _{REF+} /2)	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾		-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
		-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
tsettling ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ

Figure 54. I²S slave timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 55. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.689	-	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ссс	-	-	0.080	-	-	0.0031	

Table 117. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

7.4 LQFP176 24 x 24 mm low-profile quad flat package information

Figure 87. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 118. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat packagemechanical data

Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	-	1.450	0.0531	-	0.0060	
b	0.170	-	0.270	0.0067	-	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	23.900	-	24.100	0.9409	-	0.9488	

UFBGA176+25 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

