E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc853tvr100a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register/Configuration	Field	Value (binary)
PCPAR (Port C pin assignment register)	PCPAR[8:11] PCDIR[14]	0
PCDIR (Port C data direction register)	PCDIR[8:11] PCDIR[14]	1

Table 0. Manualory nesel configuration of Mr CossT (continued)	Table 6. Mandatory	y Reset Configuration of MPC853T	(continued)
--	--------------------	----------------------------------	-------------

10 Layout Practices

Each V_{DD} pin on the MPC853T should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1-µF bypass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized, and additional appropriate decoupling capacitors should be used if required. Capacitor leads and associated printed circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board employing two inner layers as V_{DD} and GND planes should be used.

All output pins on the MPC853T have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads, as well as parasitic capacitances caused by the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{DD} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to Section 14.4.3, "Clock Synthesizer Power (V_{DDSYN} , V_{SSSYN} , V_{SSSYN} , V_{SSSYN})" in the *MPC866 PowerQUICC Family User's Manual*.

11 Bus Signal Timing

The maximum bus speed supported by the MPC853T is 66 MHz. Table 7 shows the frequency ranges for standard part frequencies in 1:1 bus mode.

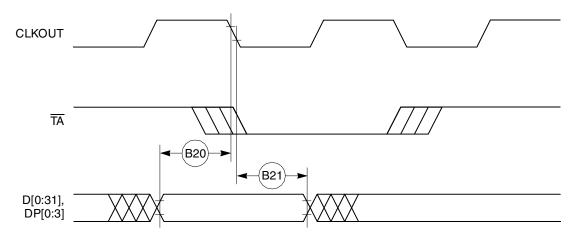
Part Frequency	50	MHz	66	MHz
	Min	Мах	Min	Мах
Core Frequency	40	50	40	66.67
Bus Frequency	40	50	40	66.67

Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Table 8 shows the frequency ranges for standard part frequencies in 2:1 bus mode.

		33 MHz		40 MHz		50 MHz		66 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B7b	CLKOUT to \overline{BR} , \overline{BG} , FRZ, VFLS(0:1), VF(0:2) IWP(0:2), LWP(0:1), \overline{STS} output hold (MIN = 0.25 × B1)	7.60		6.30	—	5.00	—	3.80	—	ns
B8	CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST, D(0:31), DP(0:3) valid (MAX = 0.25 × B1 + 6.3)	_	13.80	_	12.50	_	11.30	_	10.00	ns
B8a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, $\overline{\text{BDIP}}$, PTR valid (MAX = 0.25 × B1 + 6.3)	_	13.80	_	12.50	_	11.30	_	10.00	ns
B8b	CLKOUT to \overline{BR} , \overline{BG} , VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), \overline{STS} valid ³ (MAX = 0.25 × B1 + 6.3)	_	13.80	_	12.50	_	11.30	_	10.00	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, PTR High-Z (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion (MAX = 0.25 × B1 + 6.0)	7.60	13.60	6.30	12.30	5.00	11.00	3.80	9.80	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 × B1 + 9.30 ²)	2.50	9.30	2.50	9.30	2.50	9.30	2.50	9.80	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation (MAX = 0.25 × B1 + 4.8)	7.60	12.30	6.30	11.00	5.00	9.80	3.80	8.50	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 × B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B13	CLKOUT to \overline{TS} , \overline{BB} High-Z (MIN = 0.25 × B1)	7.60	21.60	6.30	20.30	5.00	19.00	3.80	14.00	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = $0.00 \times B1 + 2.5$)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to $\overline{\text{TEA}}$ assertion (MAX = 0.00 × B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 × B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	$\overline{\text{TA}}$, $\overline{\text{BI}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 6.00)	6.00		6.00	—	6.00	—	6.00	—	ns
B16a	TEA, $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 4.5)	4.50	_	4.50	—	4.50	_	4.50	_	ns
B16b	$\overline{\text{BB}}$, $\overline{\text{BG}}$, $\overline{\text{BR}}$, valid to CLKOUT (setup time) ³ (4MIN = 0.00 × B1 + 0.00)	4.00	—	4.00	_	4.00	_	4.00	—	ns

Table 9. Bus Operation Timings (continued)


Bus Signal Timing

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = 0.00 × B1 + 1.00 ⁴)	1.00		1.00		1.00		2.00		ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	_	2.00	—	2.00	_	2.00	—	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) 5 (MIN = 0.00 × B1 + 6.00)	6.00	—	6.00	_	6.00	—	6.00	—	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) 5 (MIN = 0.00 × B1 + 1.00 6)	1.00	_	1.00	_	1.00		2.00		ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 7 (MIN = 0.00 × B1 + 4.00)	4.00	_	4.00		4.00		4.00		ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) 7 (MIN = 0.00 × B1 + 2.00)	2.00	_	2.00		2.00		2.00		ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 × B1 + 8.00)	_	8.00	_	8.00	_	8.00	_	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	16.00	7.00	14.10	5.20	12.30	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 × B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30	_	3.00		1.80		ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11 TRLX = 0 (MIN = 0.50 × B1 - 2.00)	13.20	—	10.50	—	8.00	—	5.60	—	ns
B25	CLKOUT rising edge to \overline{OE} , WE(0:3)/BS_B[0:3] asserted (MAX = 0.00 × B1 + 9.00)		9.00		9.00		9.00		9.00	ns

Table 9. Bus Operation Timings (continued)

Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

Figure 9. Input Data Timing When Controlled by the UPM in the Memory Controller and DLT3 = 1

Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM factors.

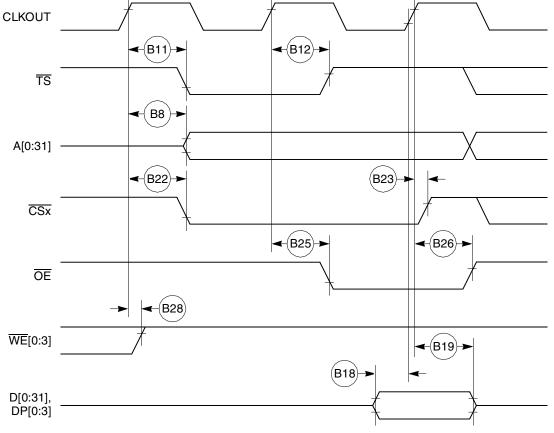


Figure 10. External Bus Read Timing (GPCM Controlled—ACS = 00)

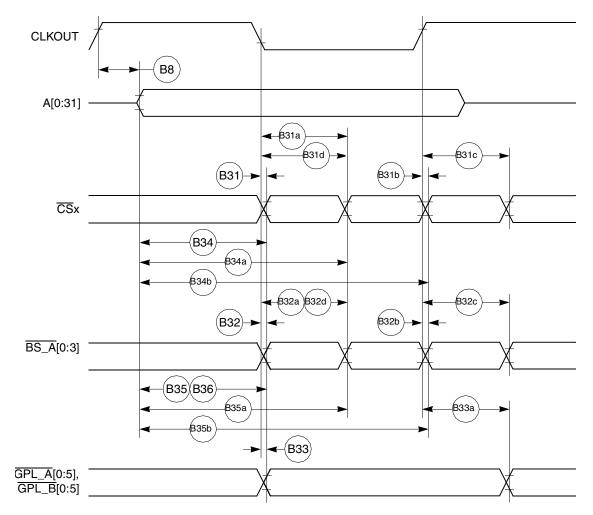


Figure 17 provides the timing for the external bus controlled by the UPM.

Figure 17. External Bus Timing (UPM-Controlled Signals)

Bus Signal Timing

Figure 18 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

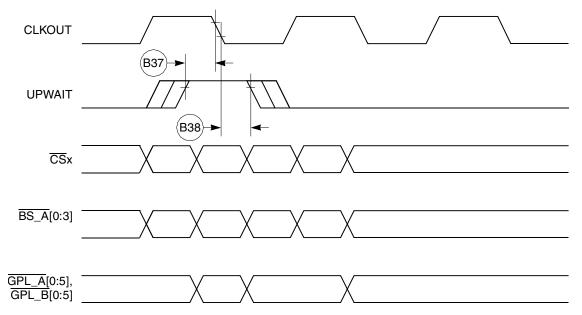


Figure 18. Asynchronous UPWAIT Asserted Detection in UPM-Handled Cycles Timing

Figure 19 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

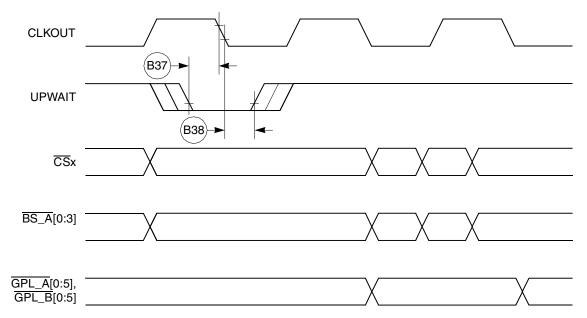


Figure 19. Asynchronous UPWAIT Negated Detection in UPM-Handled Cycles Timing

Bus Signal Timing

Table 12 shows the PCMCIA port timing for the MPC853T.

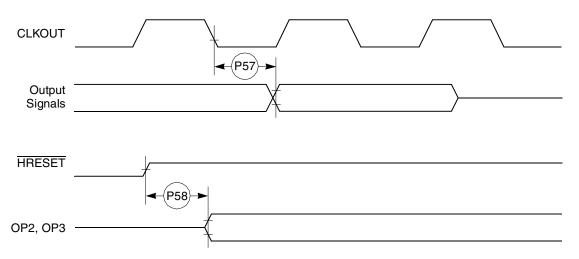

Num	um Characteristic		33 MHz		40 MHz		50 MHz		66 MHz	
Num	Unaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
J95	CLKOUT to OPx valid (MAX = $0.00 \times B1 + 19.00$)	—	19.00	—	19.00	_	19.00	_	19.00	ns
J96	$\overline{\text{HRESET}}$ negated to OPx drive ¹ (MIN = 0.75 × B1 + 3.00)	25.70	—	21.70	—	18.00	-	14.40		ns
J97	J97 IP_Xx valid to CLKOUT rising edge (MIN = 0.00 × B1 + 5.00)		—	5.00	—	5.00		5.00		ns
J98	CLKOUT rising edge to IP_Xx invalid (MIN = $0.00 \times B1 + 1.00$)	1.00	_	1.00	_	1.00	_	1.00		ns

Table 12. PCMCIA Port Timing

OP2 and OP3 only.

1

Figure 28 provides the PCMCIA output port timing for the MPC853T.

Figure 28. PCMCIA Output Port Timing

Figure 29 provides the PCMCIA in put port timing for the MPC853T.

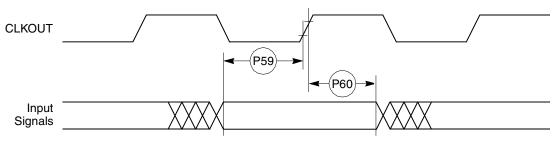


Figure 29. PCMCIA Input Port Timing

Figure 32 shows the reset timing for the data bus configuration.

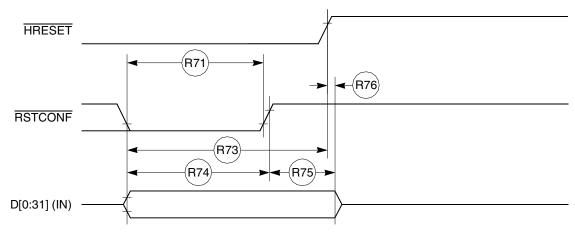


Figure 32. Reset Timing—Configuration from Data Bus

Figure 33 provides the reset timing for the data bus weak drive during configuration.

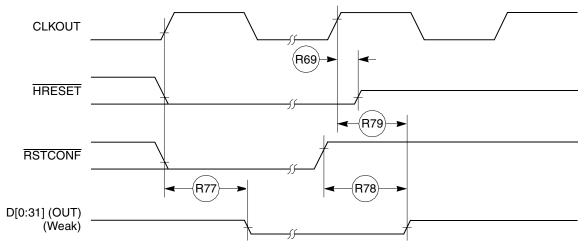


Figure 33. Reset Timing—Data Bus Weak Drive During Configuration

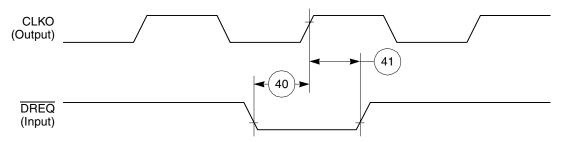

13.2 IDMA Controller AC Electrical Specifications

Table 17 provides the IDMA controller timings as shown in Figure 40 to Figure 43.

Table 17. IDMA Controller Timing

Num	Characteristic	All Fred	Unit	
Num		Min	Мах	Onic
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high ¹	3	_	ns
42	SDACK assertion delay from clock high	—	12	ns
43	SDACK negation delay from clock low	—	12	ns
44	SDACK negation delay from TA low	—	20	ns
45	SDACK negation delay from clock high	—	15	ns
46	TA assertion to falling edge of the clock setup time (applies to external TA)	7	_	ns

Applies to high-to-low mode (EDM=1)

Figure 40. IDMA External Requests Timing Diagram

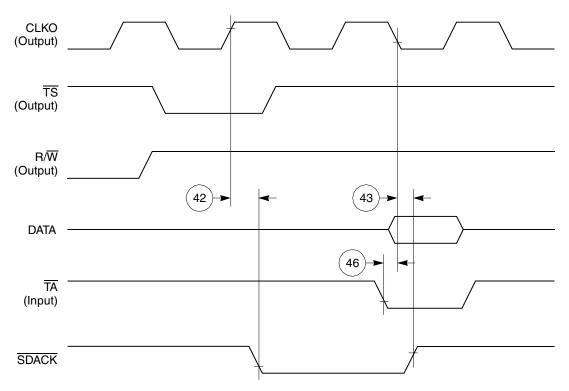


Figure 41. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

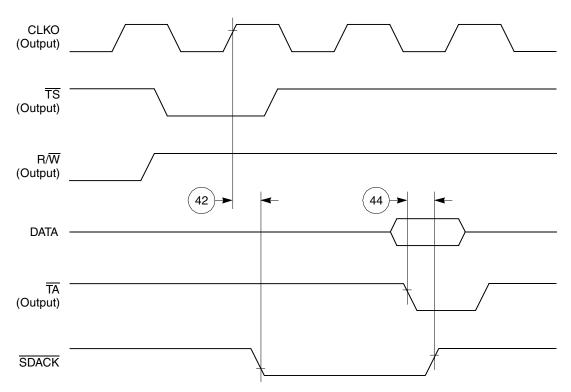


Figure 42. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

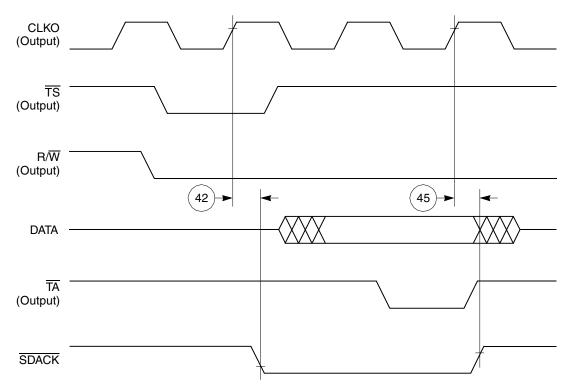


Figure 43. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

13.3 Baud-Rate Generator AC Electrical Specifications

Table 18 provides the baud-rate generator timings as shown in Figure 44.

Table 18. Baud Rate Generator Timing

Num	Characteristic	All Freq	Unit	
Num	Gharacteristic		Мах	Onit
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	_	ns

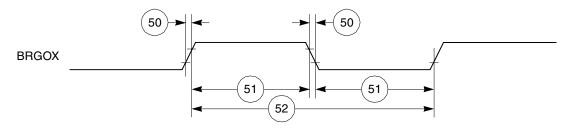
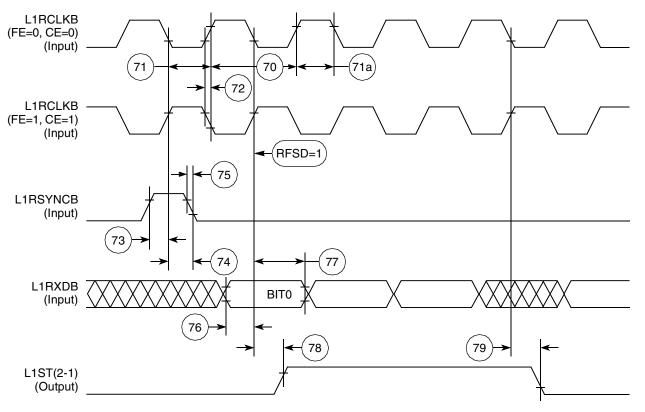
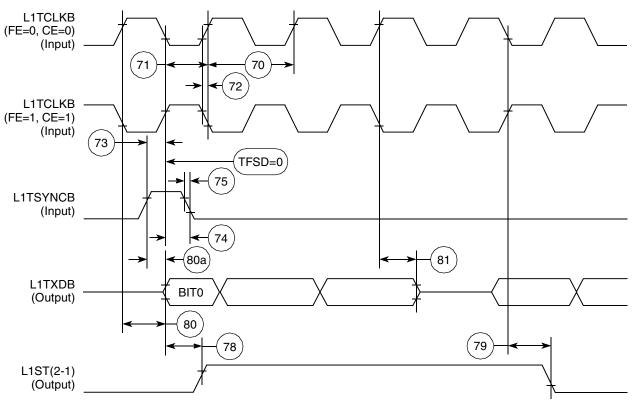
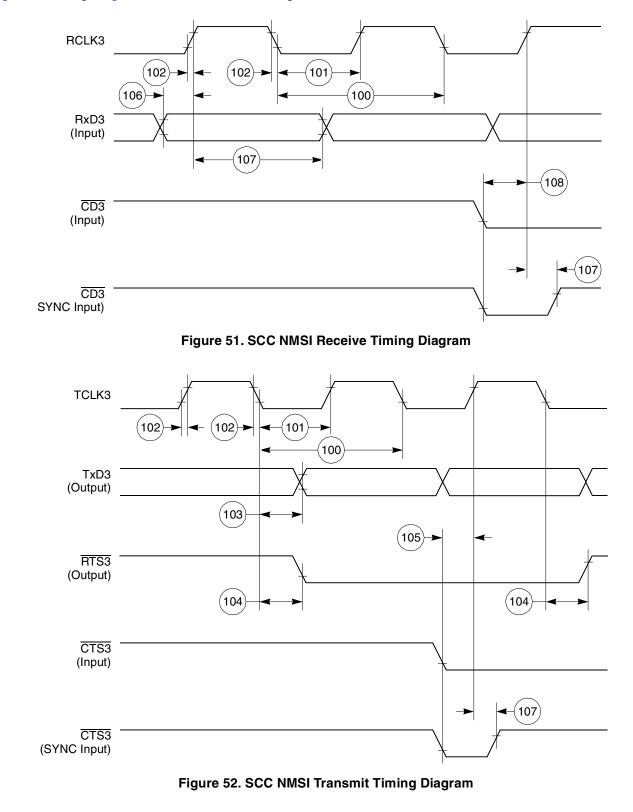



Figure 44. Baud Rate Generator Timing Diagram

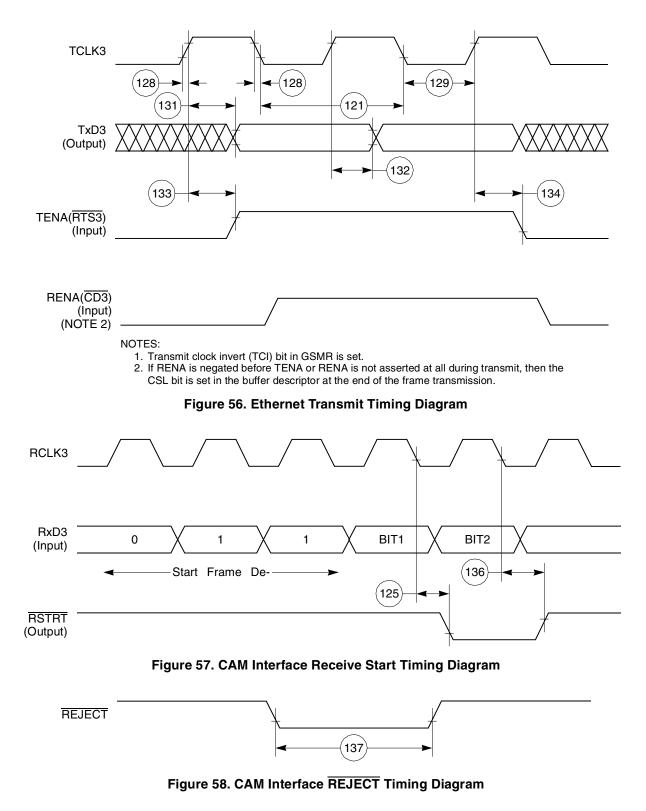
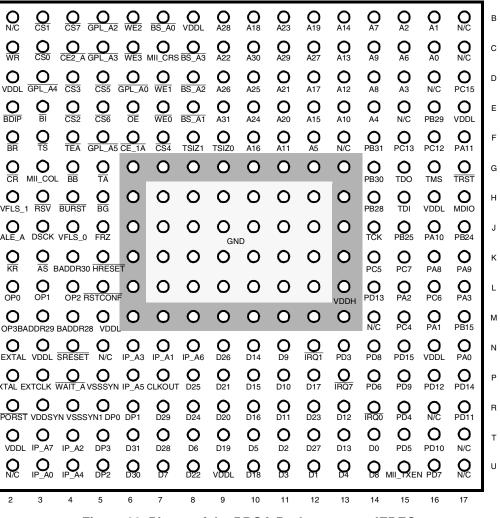


Figure 51 through Figure 53 show the NMSI timings.

CPM Electrical Characteristics



Name	Pin Number	Туре
BURST	G3	Bidirectional Three-state (3.3V only)
BDIP GPL_B5	D1	Output
TS	E2	Bidirectional Active Pull-up (3.3V only)
TA	F4	Bidirectional Active Pull-up (3.3V only)
TEA	E3	Open-drain
BI	D2	Bidirectional Active Pull-up (3.3V only)
IRQ2 RSV	G2	Bidirectional Three-state (3.3V only)
IRQ4 KR RETRY SPKROUT	J1	Bidirectional Three-state (3.3V only)
CR IRQ3	F1	Input (3.3V only)
D[0:31]	R13, T11, R10, T10, T12, R9, R7, T6, T13, M10, N10, P10, P12, R12, M9, N9, P9, N11, T9, R8, P8, N8, T7, P11, P7, N7, M8, R11, R6, P6, T5, R5	Bidirectional Three-state (3.3V only)
DP0 IRQ3	P4	Bidirectional Three-state (3.3V only)
DP1 IRQ4	P5	Bidirectional Three-state (3.3V only)
DP2 IRQ5	T4	Bidirectional Three-state (3.3V only)
DP3 IRQ6	R4	Bidirectional Three-state (3.3V only)
BR	E1	Bidirectional (3.3V only)
BG	G4	Bidirectional (3.3V only)
BB	F3	Bidirectional Active Pull-up (3.3V only)
FRZ IRQ6	H4	Bidirectional (3.3V only)
IRQ0	P13	Input (3.3V only)
IRQ1	M11	Input (3.3V only)
M_TX_CLK IRQ7	N12	Input (3.3V only)

Table 31. Pin Assignments - JEDEC Standard (continued)

NOTE: This is the top view of the device.

Figure 68. Pinout of the PBGA Package—non-JEDEC

Table 32 contains a list of the MPC853T input and output signals and shows multiplexing and pin assignments.

Table 32.	Pin	Assignments-	-Non-JEDEC
-----------	-----	--------------	------------

Name	Pin Number	Туре
A[0:31]	C16, B16, B15, D15, E14, F12, C15, B14, D14, C14, E13, F11, D13, C13, B13, E12, F10, D12, B10, B12, E11, D11, C9, B11, E10, D10, D9, C12, B9, C11, C10, E9	Bidirectional Three-state (3.3 V only)
TSIZ0 REG	F9	Bidirectional Three-state (3.3 V only)
TSIZ1	F8	Bidirectional Three-state (3.3 V only)
RD/WR	C2	Bidirectional Three-state (3.3 V only)

Mechanical Data and Ordering Information

Name	Pin Number Type		
GND	H7, H8, H9, H10, H11, H12, J7, J8, J9, J10, J11, J12, K7, K8, K9, K10, K11, K12, L7, L8, L9, L10, L11, L12	Power	
V _{DDL}	B8, D2, E17, H16, M5, N3, T2, N16, U9	Power	
V _{DDH}	G6, G7, G8, G9, G10, G11, G12, G13, H6, H13, J6, J13, K6, K13, L6, L13, M6, M7, M8, M9, M10, M11, M12, M13	Power	
N/C	B2, B17, C17, D16, E15, F13, M14, N5, R16, T17, U2, U17	No-connect	

Table 32. Pin Assignments—Non-JEDEC (continued)

16 References

Semiconductor Equipment and Materials International 805 East Middlefield Rd Mountain View, CA 94043	(415) 964-5111
MIL-SPEC and EIA/JESD (JEDEC) specifications (Available from Global Engineering Documents)	800-854-7179 or 303-397-7956
JEDEC Specifications	http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

17 Document Revision History

Table 33 lists significant changes between revisions of this hardware specification.

Revision Number	Date	Changes
0	10/2003	Initial release.
0.1	12/2003	Added overbars to signals CR (pin G2) and WAIT_A (pin P4) on Figure 62 on page 63.
1.0	12/2004	 Added sentence to Spec B1A about EXTCLK and CLKOUT being in Alignment for Integer Values Added a footnote to Spec 41 specifying that EDM = 1 Broke the Section 15.1, "Pin Assignments" into 2 smaller sections for the JEDEC and non-JEDEC pinouts.

Table 33. Document Revision History

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK