

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f722-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F72X Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High-Endurance Flash Memory (bytes)	I/O's ⁽²⁾	8-bit ADC (ch)	CapSense (ch)	Timers (8/16-bit)	AUSART	SSP (I ² C/SPI)	ССР	Debug ⁽¹⁾	ХГР
PIC16(L)F707	(1)	8192	363	0	36	14	32	4/2	1	1	2		Y
PIC16(L)F720	(2)	2048	128	128	18	12	_	2/1	1	1	1	I	Y
PIC16(L)F721	(2)	4096	256	128	18	12	_	2/1	1	1	1	I	Y
PIC16(L)F722	(4)	2048	128	0	25	11	8	2/1	1	1	2	-	Y
PIC16(L)F722A	(3)	2048	128	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F723	(4)	4096	192	0	25	11	8	2/1	1	1	2	Ι	Y
PIC16(L)F723A	(3)	4096	192	0	25	11	8	2/1	1	1	2	-	Y
PIC16(L)F724	(4)	4096	192	0	36	14	16	2/1	1	1	2	I	Y
PIC16(L)F726	(4)	8192	368	0	25	11	8	2/1	1	1	2	Ι	Y
PIC16(L)F727	(4)	8192	368	0	36	14	16	2/1	1	1	2	I	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS41418 PIC16(L)F707 Data Sheet, 40/44-Pin Flash, 8-bit Microcontrollers
- 2: DS41430 PIC16(L)F720/721 Data Sheet, 20-Pin Flash, 8-bit Microcontrollers
- 3: DS41417 PIC16(L)F722A/723A Data Sheet, 28-Pin Flash, 8-bit Microcontrollers
- 4: DS41341 PIC16(L)F72X Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers

Name	Function	Input Type	Output Type	Description
RB4/AN11/CPS4	RB4	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	AN11	AN	_	A/D Channel 11 input.
	CPS4	AN	_	Capacitive sensing input 4.
RB5/AN13/CPS5/T1G	RB5	TTL	CMOS	General purpose I/O. Individually controlled inter-
			CIVIOS	rupt-on-change. Individually enabled pull-up.
	AN13	AN	—	A/D Channel 13 input.
	CPS5	AN	—	Capacitive sensing input 5.
	T1G	ST	—	Timer1 Gate input.
RB6/ICSPCLK/ICDCLK	RB6	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	ICSPCLK	ST	_	Serial Programming Clock.
	ICDCLK	ST	_	In-Circuit Debug Clock.
RB7/ICSPDAT/ICDDAT	RB7	TTL	CMOS	General purpose I/O. Individually controlled inter-
				rupt-on-change. Individually enabled pull-up.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	—	In-Circuit Data I/O.
RC0/T1OSO/T1CKI	RC0	ST	CMOS	General purpose I/O.
	T1OSO	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST	_	Timer1 clock input.
RC1/T1OSI/CCP2	RC1	ST	CMOS	General purpose I/O.
	T10SI	XTAL	XTAL	Timer1 oscillator connection.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RC2/CCP1	RC2	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
RC3/SCK/SCL	RC3	ST	CMOS	General purpose I/O.
	SCK	ST	CMOS	SPI clock.
	SCL	l ² C	OD	I ² C clock.
RC4/SDI/SDA	RC4	ST	CMOS	General purpose I/O.
	SDI	ST	_	SPI data input.
	SDA	l ² C	OD	I ² C data input/output.
RC5/SDO	RC5	ST	CMOS	General purpose I/O.
	SDO	_	CMOS	SPI data output.
RC6/TX/CK	RC6	ST	CMOS	General purpose I/O.
	ТХ	_	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
RC7/RX/DT	RC7	ST	CMOS	General purpose I/O.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
RD0/CPS8	RD0	ST	CMOS	General purpose I/O.
	CPS8	AN	_	Capacitive sensing input 8.
RD1/CPS9	RD1	ST	CMOS	General purpose I/O.
	CPS9	AN		Capacitive sensing input 9.
RD2/CPS10	RD2	ST	CMOS	General purpose I/O.

TABLE 1-1:	PIC16(L)F722/3/4/6/7 PINOUT DESCRIPTION (CONTINUED)
IABLE 1-1:	PIC16(L)F/22/3/4/6/7 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

XTAL = Crystal levels HV = High Voltage

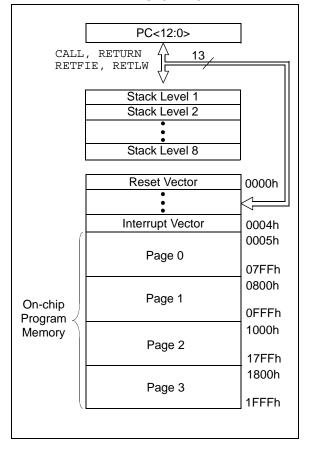

Name	Function	Input Type	Output Type	Description		
RD3/CPS11	RD3	ST	CMOS	General purpose I/O.		
	CPS11	AN	—	Capacitive sensing input 11.		
RD4/CPS12	RD4	ST	CMOS	General purpose I/O.		
	CPS12	AN	—	Capacitive sensing input 12.		
RD5/CPS13	RD5	ST	CMOS	General purpose I/O.		
	CPS13	AN	—	Capacitive sensing input 13.		
RD6/CPS14	RD6	ST	CMOS	General purpose I/O.		
	CPS14	AN	_	Capacitive sensing input 14.		
RD7/CPS15	RD7	ST	CMOS	General purpose I/O.		
	CPS15	AN	_	Capacitive sensing input 15.		
RE0/AN5	RE0	ST	CMOS	General purpose I/O.		
	AN5	AN	—	A/D Channel 5 input.		
RE1/AN6	RE1	ST	CMOS	General purpose I/O.		
	AN6	AN	—	A/D Channel 6 input.		
RE2/AN7	RE2	ST	CMOS	General purpose I/O.		
	AN7	AN	_	A/D Channel 7 input.		
RE3/MCLR/Vpp	RE3	TTL	—	General purpose input.		
	MCLR	ST	_	Master Clear with internal pull-up.		
	Vpp	ΗV	—	Programming voltage.		
VDD	Vdd	Power	—	Positive supply.		
Vss	Vss	Power	_	Ground reference.		
Legend: AN = Analog input or TTL = TTL compatible HV = High Voltage	input ST		nitt Trigger	ble input or output OD = Open Drain input with CMOS levels I^2C = Schmitt Trigger input with I^2C		

TABLE 1-1: PIC16(L)F722/3/4/6/7 PINOUT DESCRIPTION (CONTINUED)

Note: The PIC16F722/3/4/6/7 devices have an internal low dropout voltage regulator. An external capacitor must be connected to one of the available VCAP pins to stabilize the regulator. For more information, see **Section 5.0 "Low Dropout (LDO) Voltage Regulator**". The PIC16LF722/3/4/6/7 devices do not have the voltage regulator and therefore no external capacitor is required.

FIGURE 2-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F726/LF726 AND PIC16F727/LF727

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). Bits RP0 and RP1 are bank select bits.

<u>RP1</u>	<u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected
1	1	\rightarrow	Bank 3 is selected

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 bits in the PIC16F722/LF722, 192 x 8 bits in the PIC16F723/LF723 and PIC16F724/LF724, and 368 x 8 bits in the PIC16F726/LF726 and PIC16F727/LF727. Each register is accessed either directly or indirectly through the File Select Register (FSR), (Refer to **Section 2.5** "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (refer to Table 2-1). These registers are static RAM.

The Special Function Registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-5:	PIC16F723/LF723 AND PIC16F724/LF724 SPECIAL FUNCTION REGISTERS

Indirect addr. ^(*)	00h	Indirect addr. ^(*)	80h	Indirect addr. ^(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	ANSELA	185h
PORTB	06h	TRISB	86h		106h	ANSELB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h	CPSCON0	108h	ANSELD ⁽¹⁾	188h
PORTE	09h	TRISE	89h	CPSCON1	109h	ANSELE ⁽¹⁾	189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh	Reserved	18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh	Reserved	18Eh
TMR1H	0Fh	T1GCON	8Fh	PMADRH	10Fh	Reserved	18Fh
T1CON	10h	OSCCON	90h		110h		190h
TMR2	11h	OSCTUNE	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD/SSPMSK	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h	-	116h		196h
CCP1CON	17h		97h	-	117h		197h
RCSTA	18h	TXSTA	98h	-	118h		198h
TXREG	19h	SPBRG	99h		119h		199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch	APFCON	9Ch		11Ch		19Ch
CCP2CON	1Dh	FVRCON	9Dh		11Dh		19Dh
ADRES	1Eh		9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h	General	A0h	General Purpose Register	120h		1A0h
General Purpose		Purpose Register 80 Bytes		16 Bytes	12Fh 130h		
Register			EFh		16Fh		1EFh
96 Bytes		Accesses 70h-7Fh	F0h	Accesses 70h-7Fh	170h	Accesses 70h-7Fh	1F0h
	7Fh	701-7111	FFh	/ /////////////////////////////////////	17Fh	701-7111	1FFh
Bank 0],	Bank 1	l	Bank 2]	Bank 3	J
nd: = Unimple	emented	data memory locatio	ns rea	d as '0'			

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 0											
00h ⁽²⁾	INDF	Addressing	this location	gister)	xxxx xxxx	29,37					
01h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	105,37
02h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	ant Byte					0000 0000	28,37
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	25,37
04h ⁽²⁾	FSR	Indirect Dat	a Memory Ad	dress Point	er					xxxx xxxx	29,37
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	51,37
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	60,37
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	70,37
08h ⁽³⁾	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	77,37
09h	PORTE	—	_	_	_	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	81,37
0Ah ^(1, 2)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the F	Program Cou	nter	0 0000	28,37
0Bh (2)	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	44,37
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	47,37
0Dh	PIR2	—	_	_	_	_	_	_	CCP2IF	0	48,37
0Eh	TMR1L	Holding Reg	lolding Register for the Least Significant Byte of the 16-bit TMR1 Register								
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	cant Byte of th	ne 16-bit TMR	R1 Register			XXXX XXXX	113,37
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	117,37
11h	TMR2	Timer2 Mod	ule Register							0000 0000	120,37
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	121,37
13h	SSPBUF	Synchronou	s Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	161,37
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	178,37
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	SB)					xxxx xxxx	130,37
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					xxxx xxxx	130,37
17h	CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	129,37
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	148,37
19h	TXREG	USART Tra	nsmit Data R	egister	•		•		•	0000 0000	147,37
1Ah	RCREG	USART Red	eive Data R	egister						0000 0000	145,37
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register 2 (LSB)					xxxx xxxx	130,37
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register 2 (MSB)					xxxx xxxx	130,37
1Dh	CCP2CON	_	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	129,37
1Eh	ADRES	A/D Result	Register						•	xxxx xxxx	100,37
1Fh	ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	99,37

TABLE 2-1: PIC16(L)F722/3/4/6/7 SPECIAL FUNCTION REGISTER SUMMARY

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter. These registers can be addressed from any bank. These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'. Accessible only when SSPM<3:0> = 1001. Accessible only when SSPM<3:0> \neq 1001. This bit is always '1' as RE3 is input-only. Note 1:

2:

3:

4:

5:

6:

2.2.2.2 OPTION register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull-ups on PORTB

Note:	To achieve a 1:1 prescaler assignment for								
	Timer0, assign the prescaler to the WDT								
	by setting the PSA bit of the								
	OPTION_REG register to '1'. Refer to								
	Section 11.1.3 "Software								
	Programmable Prescaler".								

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual bits in the WPUB register					
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin					
bit 5	T0CS: Timer0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)					
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin					
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module					
bit 2-0	PS<2:0>: Prescaler Rate Select bits					
	Bit Value Timer0 Rate WDT Rate					
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32					

1:128

1:256

1:64

1 : 128

110

111

Register	Address	Power-on Reset/ Brown-out Reset ⁽¹⁾	MCLR Reset/ WDT Reset	Wake-up from Sleep through Interrupt/Time out
PCON	8Eh	dd		uu
T1GCON	8Fh	0000 0x00	uuuu uxuu	uuuu uxuu
OSCCON	90h	10 qq	10 qq	uu qq
OSCTUNE	91h	00 0000	uu uuuu	uu uuuu
PR2	92h	1111 1111	1111 1111	uuuu uuuu
SSPADD	93h	0000 0000	0000 0000	uuuu uuuu
SSPMSK	93h	1111 1111	1111 1111	uuuu uuuu
SSPSTAT	94h	0000 0000	0000 0000	uuuu uuuu
WPUB	95h	1111 1111	1111 1111	uuuu uuuu
IOCB	96h	0000 0000	0000 0000	uuuu uuuu
TXSTA	98h	0000 -010	0000 -010	uuuu -uuu
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu
APFCON	9Ch	00	00	uu
FVRCON	9Dh	q00000	d00000	uuuuuu
ADCON1	9Fh	-00000	-00000	-uuuuu
CPSCON0	108h	0 0000	0 0000	u uuuu
CPSCON1	109h	0000	0000	uuuu
PMDATL	10Ch	XXXX XXXX	XXXX XXXX	uuuu uuuu
PMADRL	10Dh	xxxx xxxx	xxxx xxxx	սսսս սսսս
PMDATH	10Eh	xx xxxx	xx xxxx	uu uuuu
PMADRH	10Fh	x xxxx	x xxxx	u uuuu
ANSELA	185h	11 1111	11 1111	uu uuuu
ANSELB	186h	11 1111	11 1111	uu uuuu
ANSELD ⁽⁶⁾	188h	1111 1111	1111 1111	uuuu uuuu
ANSELE	189h	111	111	uuu
PMCON1	18Ch	10	10	uu

TABLE 3-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 3-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: PIC16F724/727/PIC16LF724/727 only.

Note

6.2.1 ANSELA REGISTER

The ANSELA register (Register 6-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

REGISTER 6-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	
bit 7 bit 0								
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSA<5:0>**: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

7.4 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 7-1) displays the status and allows frequency selection of the internal oscillator (INTOSC) system clock. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Status Locked bits (ICSL)
- Status Stable bits (ICSS)

REGISTER 7-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	U-0	R/W-1	R/W-0	R-q	R-q	U-0	U-0
	— — IRCF1 IRCF0		ICSL	ICSS	_	—	
bit 7							bit 0
Legend:							

R = Readable bit W = Writable bit		U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
q = Value depends on condition						

bit 7-6	Unimplemented: Read as '0'
bit 5-4	IRCF<1:0>: Internal Oscillator Frequency Select bits
	<u>When PLLEN = 1 (16 MHz INTOSC)</u>
	11 = 16 MHz
	10 = 8 MHz (POR value)
	01 = 4 MHz
	00 = 2 MHz
	<u>When PLLEN = 0 (500 kHz INTOSC)</u>
	11 = 500 kHz
	10 = 250 kHz (POR value) 01 = 125 kHz
	01 = 125 kHz 00 = 62.5 kHz
bit 3	ICSL: Internal Clock Oscillator Status Locked bit (2% Stable)
	1 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) is in lock
	0 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet locked
bit 2	ICSS: Internal Clock Oscillator Status Stable bit (0.5% Stable)
	1 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) has stabilized to its maximum accuracy
	0 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet reached its maximum accuracy
bit 1-0	Unimplemented: Read as '0'
	-

13.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 13-1 for a block diagram of Timer2.

13.1 Timer2 Operation

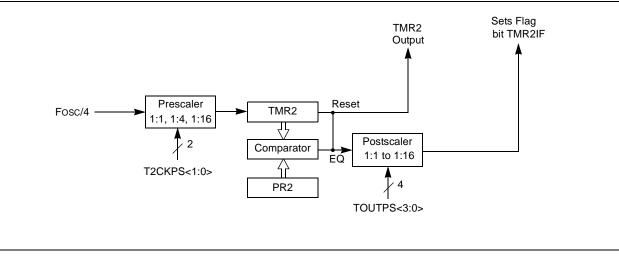
The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented.

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM


The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R/W-0
CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7 CPSON: Capacitive Sensing Module Enable bit 1 = Capacitive sensing module is operating 0 = Capacitive sensing module is shut off and consumes no operating current							
bit 6-4	Unimplement	ted: Read as ')'				
bit 3-2	00 = Oscillato 01 = Oscillato 10 = Oscillato	or is in low rang or is in medium	e. Charge/dis range. Charg	scharge curren je/discharge cu	ts t is nominally 0. urrent is nomina nt is nominally 1	lly 1.2 μΑ.	
bit 1	1 = Oscillator	pacitive Sensin is sourcing cu is sinking curr	rrent (Current	t flowing out the	• •		
bit 0							

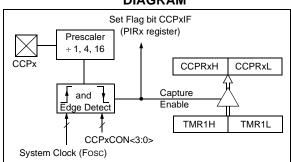
REGISTER 14-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

15.1 Capture Mode

In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 register when an event occurs on pin CCPx. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value (refer to Figure 15-1).


15.1.1 CCPx PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode or when Timer1 is clocked at Fosc, the capture operation may not work.

15.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in operating mode.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Capture Mode. In order for Capture Mode to recognize the trigger event on the CCPx pin, Timer1 must be clocked from the Instruction Clock (Fosc/4) or from an external clock source.

15.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

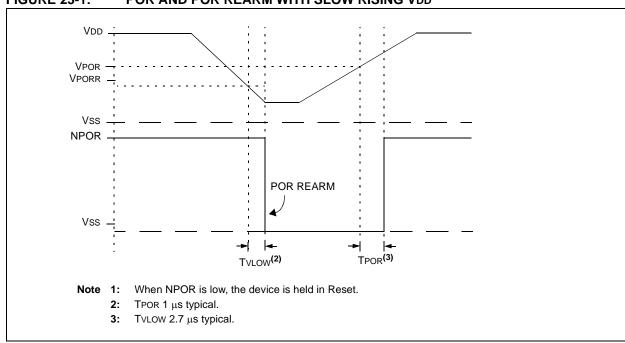
Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler (refer to Example 15-1).

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL	CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

15.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.


If Timer1 is clocked by FOSC/4, then Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

If Timer1 is clocked by an external clock source, then Capture mode will operate as defined in **Section 15.1** "**Capture Mode**".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_		CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL	Capture/Com	npare/PWM R	egister X Lov	v Byte					xxxx xxxx	uuuu uuuu
CCPRxH	Capture/Com	npare/PWM R	egister X Hig	h Byte					xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	-	—	-	—	—	—	CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	-	—	-	—	—	—	CCP2IF	0	0
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	00x0 0x00
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	uuuu uuuu
TMR1H	Holding Regi	ster for the M	ost Significar	nt Byte of the	16-bit TMR1 F	Register			xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

PIC16(L)F722/3/4/6/7

FIGURE 23-1: POR AND POR REARM WITH SLOW RISING VDD

23.5 **Thermal Considerations**

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Тур.	Units	Conditions			
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package			
			80	°C/W	28-pin SOIC package			
			90	°C/W	28-pin SSOP package			
			27.5	°C/W	28-pin UQFN 4x4mm package			
			27.5	°C/W	28-pin QFN 6x6mm package			
			47.2	°C/W	40-pin PDIP package			
			46	°C/W	44-pin TQFP package			
			24.4	°C/W	44-pin QFN 8x8mm package			
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package			
			24	°C/W	28-pin SOIC package			
			24	°C/W	28-pin SSOP package			
			24	°C/W	28-pin UQFN 4x4mm package			
			24	°C/W	28-pin QFN 6x6mm package			
			24.7	°C/W	40-pin PDIP package			
			14.5	°C/W	44-pin TQFP package			
			20	°C/W	44-pin QFN 8x8mm package			
TH03	TJMAX	Maximum Junction Temperature	150	°C				
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾			
TH06	Pi/o	I/O Power Dissipation		W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾			

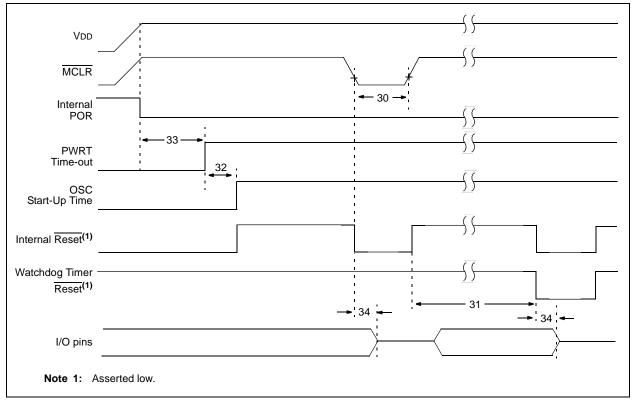
Note 1: IDD is current to run the chip alone without driving any load on the output pins.

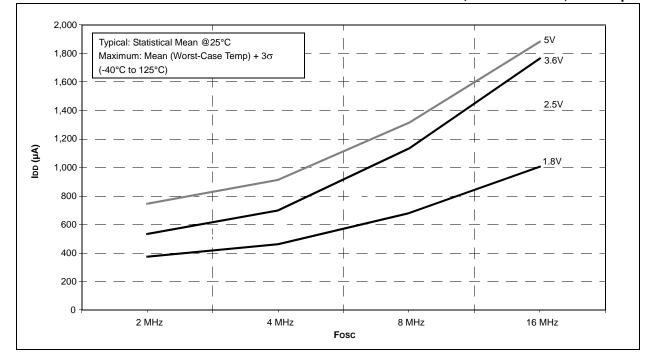
2: TA = Ambient Temperature

3: T_J = Junction Temperature

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_		70	ns	VDD = 3.3-5.0V		
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-5.0V		
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns			
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns		_	ns			
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V		
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	VDD = 3.3-5.0V		
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns			
OS18	TioR	Port output rise time ⁽²⁾		40 15	72 32	ns	VDD = 2.0V VDD = 3.3-5.0V		
OS19	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 3.3-5.0V		
OS20*	Tinp	INT pin input high or low time	25	—	—	ns			
OS21*	Trbp	PORTB interrupt-on-change new input level time	Тсү	—	—	ns			

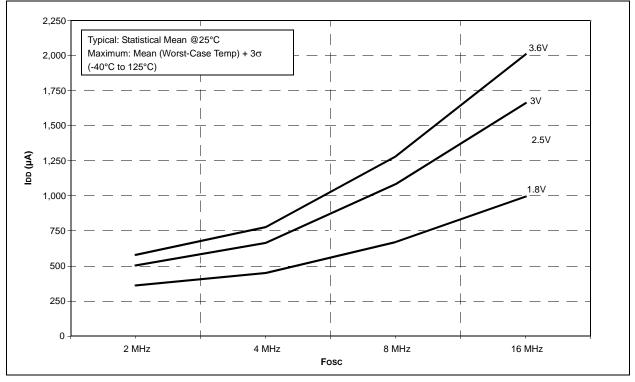
TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS

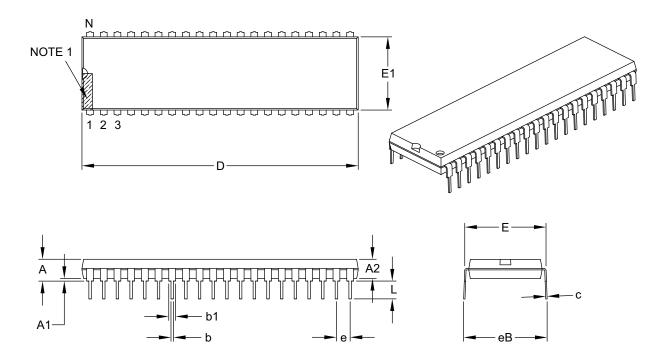

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.


FIGURE 23-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


FIGURE 24-21: PIC16F722/3/4/6/7 MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP =1µF

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES				
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	40			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	_	_	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support