




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

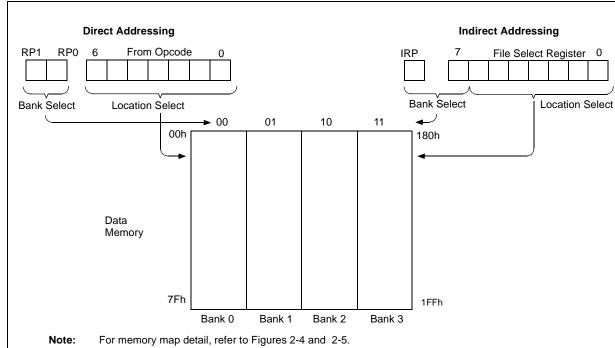
#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 20MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 25                                                                       |
| Program Memory Size        | 3.5KB (2K x 14)                                                          |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 128 x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                              |
| Data Converters            | A/D 11x8b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 28-VQFN Exposed Pad                                                      |
| Supplier Device Package    | 28-QFN (6x6)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f722-i-ml |
|                            |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-8.

A simple program to clear RAM location 020h-02Fh using indirect addressing is shown in Example 2-2.

#### EXAMPLE 2-2: INDIRECT ADDRESSING

|      | MOVLW<br>MOVWF<br>BANKISEL | 020h<br>FSR<br>020h | ;initialize pointer<br>;to RAM       |
|------|----------------------------|---------------------|--------------------------------------|
| NEXT | CLRF<br>INCF               | INDF<br>FSR         | ;clear INDF register<br>;inc pointer |
|      | BTFSS                      | FSR,4               | ;all done?                           |
|      | GOTO                       | NEXT                | ;no clear next                       |
| CONT | INUE                       |                     | ;yes continue                        |
|      |                            |                     |                                      |



# FIGURE 2-8: DIRECT/INDIRECT ADDRESSING

| IADLL | TABLE 3-1. STATUS BITS AND THEIR SIGNIFICANCE |    |    |                                                         |  |  |  |  |  |
|-------|-----------------------------------------------|----|----|---------------------------------------------------------|--|--|--|--|--|
| POR   | BOR                                           | то | PD | Condition                                               |  |  |  |  |  |
| 0     | x                                             | 1  | 1  | Power-on Reset or LDO Reset                             |  |  |  |  |  |
| 0     | x                                             | 0  | x  | legal, TO is set on POR                                 |  |  |  |  |  |
| 0     | x                                             | x  | 0  | Illegal, PD is set on POR                               |  |  |  |  |  |
| 1     | 0                                             | 1  | 1  | Brown-out Reset                                         |  |  |  |  |  |
| 1     | 1                                             | 0  | 1  | WDT Reset                                               |  |  |  |  |  |
| 1     | 1                                             | 0  | 0  | WDT Wake-up                                             |  |  |  |  |  |
| 1     | 1                                             | u  | u  | MCLR Reset during normal operation                      |  |  |  |  |  |
| 1     | 1                                             | 1  | 0  | MCLR Reset during Sleep or interrupt wake-up from Sleep |  |  |  |  |  |

# TABLE 3-1: STATUS BITS AND THEIR SIGNIFICANCE

# TABLE 3-2: RESET CONDITION FOR SPECIAL REGISTERS<sup>(2)</sup>

| Condition                          | Program<br>Counter    | STATUS<br>Register | PCON<br>Register |
|------------------------------------|-----------------------|--------------------|------------------|
| Power-on Reset                     | 0000h                 | 0001 1xxx          | 0x               |
| MCLR Reset during normal operation | 0000h                 | 000u uuuu          | uu               |
| MCLR Reset during Sleep            | 0000h                 | 0001 Ouuu          | uu               |
| WDT Reset                          | 0000h                 | 0000 luuu          | uu               |
| WDT Wake-up                        | PC + 1                | uuu0 Ouuu          | uu               |
| Brown-out Reset                    | 0000h                 | 0001 luuu          | u0               |
| Interrupt Wake-up from Sleep       | PC + 1 <sup>(1)</sup> | uuul Ouuu          | uu               |

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

**Note 1:** When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

**2:** If a Status bit is not implemented, that bit will be read as '0'.

# REGISTER 6-5: PORTB: PORTB REGISTER

| R/W-x                              | R/W-x                                                                | R/W-x | R/W-x                                   | R/W-x    | R/W-x | R/W-x | R/W-x |
|------------------------------------|----------------------------------------------------------------------|-------|-----------------------------------------|----------|-------|-------|-------|
| RB7                                | RB6                                                                  | RB5   | RB4                                     | RB3      | RB2   | RB1   | RB0   |
| bit 7                              |                                                                      |       |                                         |          |       |       | bit 0 |
|                                    |                                                                      |       |                                         |          |       |       |       |
| Legend:                            |                                                                      |       |                                         |          |       |       |       |
| R = Readable                       | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |       |                                         | l as '0' |       |       |       |
| -n = Value at POR '1' = Bit is set |                                                                      |       | '0' = Bit is cleared x = Bit is unknown |          |       |       |       |

bit 7-0 **RB<7:0>**: PORTB I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

# REGISTER 6-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

### 9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

- **Note 1:** The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
  - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INT-CON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 9.1.5** "Interrupts" for more information.

# 9.2 ADC Operation

# 9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 9.2.6 "A/D Conversion Procedure".

# 9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRES register with new conversion result

# 9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRES register will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

| Note: | A device Reset forces all registers to their |  |  |  |  |  |  |  |
|-------|----------------------------------------------|--|--|--|--|--|--|--|
|       | Reset state. Thus, the ADC module is         |  |  |  |  |  |  |  |
|       | turned off and any pending conversion is     |  |  |  |  |  |  |  |
|       | terminated.                                  |  |  |  |  |  |  |  |

# 9.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

# 9.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCP module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 15.0 "Capture/Compare/PWM (CCP) Module" for more information.

| FIGURE 12-5:           | TIMER1 GATE SINGLE-PULSE MODE                                                                  |
|------------------------|------------------------------------------------------------------------------------------------|
|                        |                                                                                                |
| TMR1GE                 |                                                                                                |
| T1GPOL                 |                                                                                                |
| T1GSPM                 |                                                                                                |
| T1GG <u>O/</u><br>DONE | <ul> <li>Cleared by hardware on falling edge of T1GVAL</li> <li>Counting enabled on</li> </ul> |
| T1G_IN                 | rising edge of T1G                                                                             |
| Т1СКІ                  |                                                                                                |
| T1GVAL                 |                                                                                                |
| TIMER1                 | N N + 1 N + 2                                                                                  |
| TMR1GIF                | <ul> <li>Cleared by software</li> <li>Set by hardware on falling edge of T1GVAL</li> </ul>     |

| U-0             | R/W-0                        | R/W-0                 | R/W-0          | R/W-0             | R/W-0           | R/W-0           | R/W-0   |  |  |  |  |  |
|-----------------|------------------------------|-----------------------|----------------|-------------------|-----------------|-----------------|---------|--|--|--|--|--|
|                 | TOUTPS3                      | TOUTPS2               | TOUTPS1        | TOUTPS0           | TMR2ON          | T2CKPS1         | T2CKPS0 |  |  |  |  |  |
| bit 7           |                              |                       |                |                   |                 |                 | bit 0   |  |  |  |  |  |
|                 |                              |                       |                |                   |                 |                 |         |  |  |  |  |  |
| Legend:         |                              |                       |                |                   |                 |                 |         |  |  |  |  |  |
| R = Readable    | bit                          | W = Writable          | bit            | U = Unimplen      | nented bit, rea | d as '0'        |         |  |  |  |  |  |
| -n = Value at P | POR                          | '1' = Bit is set      |                | '0' = Bit is clea | ared            | x = Bit is unkr | nown    |  |  |  |  |  |
| bit 7           | Unimplemen                   | ted: Read as '        | 0'             |                   |                 |                 |         |  |  |  |  |  |
| bit 6-3         | TOUTPS<3:0                   | >: Timer2 Out         | out Postscaler | Select bits       |                 |                 |         |  |  |  |  |  |
|                 | 0000 = 1:1 P                 | -                     |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 0001 = 1:2 P                 | ostscaler             |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 0010 = 1:3 P                 | ostscaler             |                |                   |                 |                 |         |  |  |  |  |  |
|                 |                              | 0011 = 1:4 Postscaler |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 0100 = 1:5 Postscaler        |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 0101 = 1:6 Postscaler        |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 0110 = 1:7 P<br>0111 = 1:8 P |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1000 = 1.9 P                 |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1000 = 1.31                  |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1010 = 1:11                  |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1011 = <b>1:12</b>           | Postscaler            |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1100 = 1:13 Postscaler       |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1101 = 1:14 Postscaler       |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1110 = 1:15 Postscaler       |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1111 = 1:16                  |                       |                |                   |                 |                 |         |  |  |  |  |  |
| bit 2           | TMR2ON: Timer2 On bit        |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1 = Timer2 is                |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 0 = Timer2 is                | s off                 |                |                   |                 |                 |         |  |  |  |  |  |
| bit 1-0         | T2CKPS<1:0                   | >: Timer2 Cloc        | k Prescale Sel | ect bits          |                 |                 |         |  |  |  |  |  |
|                 | 00 = Prescale                |                       |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 01 = Prescale                | -                     |                |                   |                 |                 |         |  |  |  |  |  |
|                 | 1x = Prescale                | er is 16              |                |                   |                 |                 |         |  |  |  |  |  |
| TABLE 13-1:     | SUMMAR                       |                       | FRS ASSO       |                   | H TIMER2        |                 |         |  |  |  |  |  |

# REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

| IADEE  |                                              |         |         |         |         |        |         |         |                      |                                 |  |
|--------|----------------------------------------------|---------|---------|---------|---------|--------|---------|---------|----------------------|---------------------------------|--|
| Name   | Bit 7                                        | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1   | Bit 0   | Value on<br>POR, BOR | Value on<br>all other<br>Resets |  |
| INTCON | GIE                                          | PEIE    | T0IE    | INTE    | RBIE    | T0IF   | INTF    | RBIF    | 0000 000x            | 0000 000x                       |  |
| PIE1   | TMR1GIE                                      | ADIE    | RCIE    | TXIE    | SSPIE   | CCP1IE | TMR2IE  | TMR1IE  | 0000 0000            | 0000 0000                       |  |
| PIR1   | TMR1GIF                                      | ADIF    | RCIF    | TXIF    | SSPIF   | CCP1IF | TMR2IF  | TMR1IF  | 0000 0000            | 0000 0000                       |  |
| PR2    | Timer2 Module Period Register                |         |         |         |         |        |         |         | 1111 1111            | 1111 1111                       |  |
| TMR2   | Holding Register for the 8-bit TMR2 Register |         |         |         |         |        |         |         | 0000 0000            | 0000 0000                       |  |
| T2CON  | _                                            | TOUTPS3 | TOUTPS2 | TOUTPS1 | TOUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | -000 0000            | -000 0000                       |  |

x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module. Legend:

# 15.3.4 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 15-4.

## EQUATION 15-4: PWM RESOLUTION

Resolution = 
$$\frac{\log[4(PR2+1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

# TABLE 15-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

| PWM Frequency             | 1.22 kHz | 4.88 kHz | 19.53 kHz | 78.12 kHz | 156.3 kHz | 208.3 kHz |
|---------------------------|----------|----------|-----------|-----------|-----------|-----------|
| Timer Prescale (1, 4, 16) | 16       | 4        | 1         | 1         | 1         | 1         |
| PR2 Value                 | 0xFF     | 0xFF     | 0xFF      | 0x3F      | 0x1F      | 0x17      |
| Maximum Resolution (bits) | 10       | 10       | 10        | 8         | 7         | 6.6       |

# TABLE 15-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

| PWM Frequency             | 1.22 kHz | 4.90 kHz | 19.61 kHz | 76.92 kHz | 153.85 kHz | 200.0 kHz |
|---------------------------|----------|----------|-----------|-----------|------------|-----------|
| Timer Prescale (1, 4, 16) | 16       | 4        | 1         | 1         | 1          | 1         |
| PR2 Value                 | 0x65     | 0x65     | 0x65      | 0x19      | 0x0C       | 0x09      |
| Maximum Resolution (bits) | 8        | 8        | 8         | 6         | 5          | 5         |

# 15.3.5 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

#### 15.3.6 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 7.0** "**Oscillator Module**" for additional details.

#### 15.3.7 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

#### 15.3.8 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCPx) output driver(s) by setting the associated TRIS bit(s).
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.

- Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2:
  - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
  - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
  - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin:
  - Wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
  - Enable the PWM pin (CCPx) output driver(s) by clearing the associated TRIS bit(s).
  - **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

|        |                |            |                             |                |            | SYNC = 0,                   | BRGH =         | 0          |                             |                |                   |                             |  |
|--------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|-------------------|-----------------------------|--|
| BAUD   | Foso           | ; = 20.00  | 0 MHz                       | Fosc           | ; = 18.43  | 2 MHz                       | Fosc           | = 16.000   | 00 MHz                      | Fosc           | Fosc = 11.0592 MH |                             |  |
| RATE   | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error        | SPBRG<br>value<br>(decimal) |  |
| 300    |                | _          | _                           |                | _          | _                           |                | —          | —                           |                | _                 | _                           |  |
| 1200   | 1221           | 1.73       | 255                         | 1200           | 0.00       | 239                         | 1201           | 0.08       | 207                         | 1200           | 0.00              | 143                         |  |
| 2400   | 2404           | 0.16       | 129                         | 2400           | 0.00       | 119                         | 2403           | 0.16       | 103                         | 2400           | 0.00              | 71                          |  |
| 9600   | 9470           | -1.36      | 32                          | 9600           | 0.00       | 29                          | 9615           | 0.16       | 25                          | 9600           | 0.00              | 17                          |  |
| 10417  | 10417          | 0.00       | 29                          | 10286          | -1.26      | 27                          | 10416          | -0.01      | 23                          | 10165          | -2.42             | 16                          |  |
| 19.2k  | 19.53k         | 1.73       | 15                          | 19.20k         | 0.00       | 14                          | 19.23k         | 0.16       | 12                          | 19.20k         | 0.00              | 8                           |  |
| 57.6k  | _              | —          | _                           | 57.60k         | 0.00       | 7                           | —              | —          | _                           | 57.60k         | 0.00              | 2                           |  |
| 115.2k | —              | _          | —                           | _              | _          | —                           | _              | —          | —                           | _              | —                 | —                           |  |

### TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

|        |                |            |                             |                |            | SYNC = 0,                   | BRGH = 0       | D          |                             |                  |            |                             |
|--------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|------------------|------------|-----------------------------|
| BAUD   | Fos            | c = 8.000  | ) MHz                       | Fos            | c = 4.000  | ) MHz                       | Fosc           | : = 3.686  | 4 MHz                       | Fosc = 1.000 MHz |            |                             |
| RATE   | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | _              | _          | _                           | 300            | 0.16       | 207                         | 300            | 0.00       | 191                         | 300              | 0.16       | 51                          |
| 1200   | 1202           | 0.16       | 103                         | 1202           | 0.16       | 51                          | 1200           | 0.00       | 47                          | 1202             | 0.16       | 12                          |
| 2400   | 2404           | 0.16       | 51                          | 2404           | 0.16       | 25                          | 2400           | 0.00       | 23                          | —                | _          | _                           |
| 9600   | 9615           | 0.16       | 12                          | —              | _          | _                           | 9600           | 0.00       | 5                           | —                | _          | _                           |
| 10417  | 10417          | 0.00       | 11                          | 10417          | 0.00       | 5                           | —              | _          | _                           | —                | _          | _                           |
| 19.2k  | _              | _          | _                           | —              | _          | _                           | 19.20k         | 0.00       | 2                           | —                | _          | _                           |
| 57.6k  | —              | _          | —                           | —              | _          | —                           | 57.60k         | 0.00       | 0                           | —                | _          | —                           |
| 115.2k |                | —          | —                           |                | —          | —                           |                | _          | —                           |                  | _          | —                           |

|        |                |            |                             |                |            | SYNC = 0,                   | BRGH = 2       | L          |                             |                |                    |                             |  |
|--------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|--------------------|-----------------------------|--|
| BAUD   | Fosc           | : = 20.00  | 0 MHz                       | Fosc           | = 18.43    | 2 MHz                       | Fosc           | = 16.000   | 00 MHz                      | Fosc           | Fosc = 11.0592 MHz |                             |  |
| RATE   | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error         | SPBRG<br>value<br>(decimal) |  |
| 300    | —              |            | _                           |                | _          | _                           | _              | —          | _                           | —              | —                  | —                           |  |
| 1200   | —              | —          | —                           | —              | —          | —                           | —              | —          | —                           | —              | —                  | —                           |  |
| 2400   | —              | _          | _                           | _              | _          | _                           | _              | _          | _                           | —              | —                  | _                           |  |
| 9600   | 9615           | 0.16       | 129                         | 9600           | 0.00       | 119                         | 9615           | 0.16       | 103                         | 9600           | 0.00               | 71                          |  |
| 10417  | 10417          | 0.00       | 119                         | 10378          | -0.37      | 110                         | 10417          | 0.00       | 95                          | 10473          | 0.53               | 65                          |  |
| 19.2k  | 19.23k         | 0.16       | 64                          | 19.20k         | 0.00       | 59                          | 19.23k         | 0.16       | 51                          | 19.20k         | 0.00               | 35                          |  |
| 57.6k  | 56.82k         | -1.36      | 21                          | 57.60k         | 0.00       | 19                          | 58.8k          | 2.12       | 16                          | 57.60k         | 0.00               | 11                          |  |
| 115.2k | 113.64k        | -1.36      | 10                          | 115.2k         | 0.00       | 9                           | _              | _          | _                           | 115.2k         | 0.00               | 5                           |  |

# REGISTER 17-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)

| R/W-0 | R/W-0 | R-0 | R-0 | R-0 | R-0 | R-0 | R-0   |
|-------|-------|-----|-----|-----|-----|-----|-------|
| SMP   | CKE   | D/Ā | Р   | S   | R/W | UA  | BF    |
| bit 7 |       |     |     |     |     |     | bit 0 |

| R = Readab   | le bit                       | W = Writable bit                                                    | U = Unimplemented bit | , read as '0'      |  |  |  |  |  |
|--------------|------------------------------|---------------------------------------------------------------------|-----------------------|--------------------|--|--|--|--|--|
| -n = Value a | t POR                        | '1' = Bit is set                                                    | '0' = Bit is cleared  | x = Bit is unknown |  |  |  |  |  |
|              |                              |                                                                     |                       |                    |  |  |  |  |  |
| bit 7        | SMP: SF                      | PI Data Input Sample Phase                                          | bit                   |                    |  |  |  |  |  |
|              |                              | SPI Master mode:                                                    |                       |                    |  |  |  |  |  |
|              | •                            | t data sampled at end of data                                       | •                     |                    |  |  |  |  |  |
|              | 0 = Input<br><u>SPI Slav</u> | t data sampled at middle of c                                       | data output time      |                    |  |  |  |  |  |
|              |                              | st be cleared when SPI is us                                        | sed in Slave mode     |                    |  |  |  |  |  |
| bit 6        | CKE: SP                      | PI Clock Edge Select bit                                            |                       |                    |  |  |  |  |  |
|              | <u>SPI mod</u>               | <u>SPI mode, CKP = <math>0</math>:</u>                              |                       |                    |  |  |  |  |  |
|              |                              | 1 = Data stable on rising edge of SCK                               |                       |                    |  |  |  |  |  |
|              |                              | 0 = Data stable on falling edge of SCK<br><u>SPI mode, CKP = 1:</u> |                       |                    |  |  |  |  |  |
|              |                              | = Data stable on falling edge of SCK                                |                       |                    |  |  |  |  |  |
|              |                              | stable on rising edge of SCI                                        |                       |                    |  |  |  |  |  |
| bit 5        |                              | D/A: Data/Address bit                                               |                       |                    |  |  |  |  |  |
|              | Used in I                    | I <sup>2</sup> C mode only.                                         |                       |                    |  |  |  |  |  |
| bit 4        | P: Stop b                    | P: Stop bit                                                         |                       |                    |  |  |  |  |  |
|              | Used in I                    | l <sup>2</sup> C mode only.                                         |                       |                    |  |  |  |  |  |
| bit 3        | S: Start b                   | oit                                                                 |                       |                    |  |  |  |  |  |
|              | Used in I                    | l <sup>2</sup> C mode only.                                         |                       |                    |  |  |  |  |  |
| bit 2        | R/W: Re                      | ad/Write Information bit                                            |                       |                    |  |  |  |  |  |
|              | Used in I                    | l <sup>2</sup> C mode only.                                         |                       |                    |  |  |  |  |  |
| bit 1        | UA: Upd                      | ate Address bit                                                     |                       |                    |  |  |  |  |  |
|              | Used in I                    | Used in I <sup>2</sup> C mode only.                                 |                       |                    |  |  |  |  |  |
| bit 0        | BF: Buffe                    | BF: Buffer Full Status bit                                          |                       |                    |  |  |  |  |  |
|              | 1 = Rece                     | eive complete, SSPBUF is fu                                         | II                    |                    |  |  |  |  |  |
|              | 0 - Rece                     | eive not complete, SSPBUF                                           | is omntv              |                    |  |  |  |  |  |

# 17.2.5 RECEPTION

When the  $R/\overline{W}$  bit of the received address byte is clear, the master will write data to the slave. If an address match occurs, the received address is loaded into the SSPBUF register. An address byte overflow will occur if that loaded address is not read from the SSPBUF before the next complete byte is received.

An SSP interrupt is generated for each data transfer byte. The BF,  $R/\overline{W}$  and  $D/\overline{A}$  bits of the SSPSTAT register are used to determine the status of the last received byte.

### FIGURE 17-10: I<sup>2</sup>C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

| R/<br>Receiving Address    | $\overline{W} = 0$<br>$\overline{\Delta C K}$ Receiving Data $\overline{\Delta C K}$ Receiving Data |                                                                  |
|----------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| SDA 1 A7XA6XA5XA4XA3XA2XA1 | ACK Receiving Data ACK Receiving Data<br>/D7/D6/D5/D4/D3/D2/D1/D0//D7/D6/D5/D4/D3/                  |                                                                  |
|                            | 3, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5,                                                     | /6\_/7\_/8 <del>\_</del> _/9\_/ <sup>!</sup> ₽ <sup>!</sup><br>I |
| SSPIF                      | Cleared in software                                                                                 | Bus Master<br>sends Stop                                         |
| BF                         | <ul> <li>SSPBUF register is read</li> </ul>                                                         | condition                                                        |
| SSPOV                      |                                                                                                     |                                                                  |
|                            | Bit SSPOV is set because the SSPBUF register is                                                     | s still full. 🗕                                                  |
|                            |                                                                                                     | s not sent.                                                      |

| Operands         Image: Stree of the second sec | Mnem   | nonic,                                 | Description                  | Cycles       |       | 14-Bit | Opcode | )        | Status   | Notes   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------|------------------------------|--------------|-------|--------|--------|----------|----------|---------|
| ADDWF         f, d         Add W and f         1         00         0111         dfff         C, DC, Z         1, 2           ANDWF         f, d         AND W with f         1         00         0101         dfff         Z         1, 2           CLRF         f         Clear W         1         00         0001         dfff         Z         2           COMF         f, d         Complement f         1         00         0001         dfff         Z         1, 2           COMF         f, d         Decrement f, Skip if 0         1(2)         00         1011         dfff         T, 2, 3           INCFS         f, d         Increment f, Skip if 0         1(2)         00         1010         dfff         T, 2, 3           INCFS         f, d         Increment f, Skip if 0         1(2)         00         1010         dfff         T, 2, 3           INCFS         f, d         Increment f, Skip if 0         1(2)         00         1010         dfff         T, 2, 3           INCFS         f, d         Indusive OR W with f         1         00         0000         dffff         Z         1, 2           MOVF         f, d         Rotate Right through Carry </th <th>Oper</th> <th>ands</th> <th>Description</th> <th>Cycles</th> <th colspan="2"></th> <th>LSb</th> <th>Affected</th> <th>Notes</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oper   | ands                                   | Description                  | Cycles       |       |        | LSb    | Affected | Notes    |         |
| ANDWF         f, d         AND W with f         1         00         0101         dfff         fff         Z         1, 2           CLRF         f         Clear f         1         00         0001         lfff         fff         Z         2           COMF         f, d         Complement f         1         00         0001         dfff         fff         Z         1, 2, 3           DECFS         f, d         Decrement f, Skip if 0         1(2)         00         1011         dfff         fff         Z         1, 2, 3           INCFS         f, d         Increment f         1         00         1010         dfff         fff         Z         1, 2           INCFSZ         f, d         Increment f, Skip if 0         1(2)         00         1111         dfff         1         1, 2         1, 2           INCFSZ         f, d         Movef         1         00         1000         dfff         1, 2         1, 2         1, 2           INCFWF         f, d         Movef to         1         00         1000         dfff         1, 2         1, 2           MOVF         f, d         Rotate left through Carry         1         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | BYTE-ORIENTED FILE REGISTER OPERATIONS |                              |              |       |        |        |          |          |         |
| CLRF         f         Clear f         Clear W         1         00         0001         lfff         fff         Z         2           COMF         f, d         Complement f         1         00         0001         0xxxxxx         Z         1         1         00         0001         0xxxxxx         Z         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2 <th>ADDWF</th> <th>f, d</th> <th>Add W and f</th> <th>1</th> <th>00</th> <th>0111</th> <th>dfff</th> <th>ffff</th> <th>C, DC, Z</th> <th>1, 2</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADDWF  | f, d                                   | Add W and f                  | 1            | 00    | 0111   | dfff   | ffff     | C, DC, Z | 1, 2    |
| CLRW         -         Clear W         1         00         0001         0xxx xxxx         Z           COMF         f, d         Complement f         1         00         1010         dfff         ffff         Z         1, 2           DECF         f, d         Decrement f, Skip if 0         1(2)         00         1011         dfff         ffff         Z         1, 2           DECF         f, d         Increment f, Skip if 0         1(2)         00         1010         dfff         ffff         Z         1, 2           INCFS         f, d         Increment f, Skip if 0         1(2)         00         1111         dfff         ffff         Z         1, 2           INCFS         f, d         Increment f, Skip if 0         1(2)         00         1111         dfff         T         2, 2         1, 2           MOVF         f, d         Move f         1         00         0000         dfff         ffff         Z         1, 2         1, 2           MOVF         f, d         Rotate Left ftrough Carry         1         0         100         dfff         ffff         C         1, 2           SUBWF         f, d         Subtract W from f         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANDWF  | f, d                                   | AND W with f                 | 1            | 00    | 0101   | dfff   | ffff     | Z        | 1, 2    |
| COMF         f, d         Complement f         1         00         1011         dfff         ffff         Z         1,2           DECF         f, d         Decrement f, Skip if 0         1(2)         00         1011         dfff         ffff         Z         1,2           INCF         f, d         Increment, Skip if 0         1(2)         00         1010         dfff         ffff         Z         1,2           INCF         f, d         Increment, Skip if 0         1(2)         00         1010         dfff         ffff         Z         1,2           INCF         f, d         Increment, Skip if 0         1(2)         00         1010         dfff         ffff         Z         1,2           INCF         f, d         Move OR         With f         1         00         000         dfff         ffff         Z         1,2           MOVF         f, d         Rotate Left fthrough Carry         1         00         1000         dfff         ffff         C         1,2           RF         f, d         Rotate Right fthrough Carry         1         00         1010         dfff         ffff         Z         1,2           SWAPF         f, d<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLRF   | f                                      | Clear f                      | 1            | 00    | 0001   | lfff   | ffff     | Z        | 2       |
| DECF         f, d         Decrement f         1         00         0011         dfff         ffff         Z         1, 2           DECFSZ         f, d         Decrement f, Skip if 0         1(2)         00         1011         dfff         ffff         Z         1, 2           INCF         f, d         Increment f, Skip if 0         1(2)         00         1111         dfff         ffff         Z         1, 2           INCFSZ         f, d         Increment f, Skip if 0         1(2)         00         1111         dfff         ffff         Z         1, 2           INCFSZ         f, d         Incuesive OR W with f         1         00         100         dfff         ffff         Z         1, 2           MOVF         f         Move f         Move f         1         00         100         dfff         ffff         Z         1, 2           MOVF         f         Move f         Nove f         Nove f         1         00         100         dfff         ffff         Z         1, 2           SUBWF         f, d         Subtract W from f         1         00         110         dfff         ffff         Z         1, 2         1, 2 <td< td=""><td>CLRW</td><td>-</td><td>Clear W</td><td>1</td><td>00</td><td>0001</td><td>0xxx</td><td>xxxx</td><td>Z</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLRW   | -                                      | Clear W                      | 1            | 00    | 0001   | 0xxx   | xxxx     | Z        |         |
| DECFSZ         f, d         Decrement f, Skip if 0         1(2)         00         1011         dfff         fff         1, 2, 3           INCF         f, d         Increment f, Skip if 0         1(2)         00         1010         dff ffff         Z         1, 2, 3           INCFSZ         f, d         Increment, Skip if 0         1(2)         00         1010         dff ffff         Z         1, 2, 3           INCFSZ         f, d         Increment, Skip if 0         1         00         0100         dff ffff         Z         1, 2, 3           INCFSZ         f, d         Move f         1         00         0100         dff ffff         Z         1, 2, 3           MOVF         f, d         Move f         1         00         1000         dff ffff         Z         1, 2           MOVF         f, d         Rotate Left fthrough Carry         1         00         1100         dfff ffff         C         1, 2         1, 2           SUBWF         f, d         Subtract W from f         1         00         01010         dfff ffff         C         1, 2         1, 2           SUBWF         f, d         Subtract W from f         1         01         010 0bb fff <td>COMF</td> <td>f, d</td> <td>Complement f</td> <td>1</td> <td>00</td> <td>1001</td> <td>dfff</td> <td>ffff</td> <td>Z</td> <td>1, 2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMF   | f, d                                   | Complement f                 | 1            | 00    | 1001   | dfff   | ffff     | Z        | 1, 2    |
| INCF         f, d         Increment f         1         00         1010         dff ffff         Z         1,2           INCFSZ         f, d         Increment f, Skip if 0         1(2)         00         1111         dff ffff         Z         1,2         3           IORWF         f, d         Incusive OR W with f         1         00         1000         dff fffff         Z         1,2           MOVF         f, d         Move f         1         00         1000         dff fffff         Z         1,2           MOVF         f, d         Move f         1         00         1000         dff fffff         Z         1,2           MOVF         f, d         Rotate Left fthrough Carry         1         00         1101         dfff ffff         C         1,2           SUBWF         f, d         Subract W from f         1         00         1100         dfff ffff         C, DC, Z         1,2           SUBWF         f, d         Subract W from f         1         00         1101         dfff ffff         Z         1,2           SUBWF         f, d         But at f         1         01         010 bb fff         fffff         Z         1,2 <td>DECF</td> <td>f, d</td> <td>Decrement f</td> <td>1</td> <td>00</td> <td>0011</td> <td>dfff</td> <td>ffff</td> <td>Z</td> <td>1, 2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DECF   | f, d                                   | Decrement f                  | 1            | 00    | 0011   | dfff   | ffff     | Z        | 1, 2    |
| INCF         f, d         Increment f         1         00         1010         dff ffff         Z         1, 2           INCFSZ         f, d         Increment f, Skip if 0         1(2)         00         1111         dff ffff         Z         1, 2         3           IORWF         f, d         Inclusive OR W with f         1         00         1000         dff ffff         Z         1, 2           MOVF         f, d         Move f         1         00         1000         dff ffff         Z         1, 2           MOVF         f, d         Move f         1         00         1000         dff ffff         Z         1, 2           MOVF         f, d         Rotate Left through Carry         1         00         1101         dfff ffff         C         1, 2           SUBWF         f, d         Subract W from f         1         00         110         dfff ffff         Z         1, 2           SUBWF         f, d         Subract W from f         1         00         110         dfff ffff         Z         1, 2           SUBWF         f, d         Bit Test f         Skip if Clear         1         1         01         010 bb fff         fffff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DECFSZ | f, d                                   | Decrement f, Skip if 0       | 1 <b>(2)</b> | 00    | 1011   | dfff   | ffff     |          | 1, 2, 3 |
| IORWF         f, d         Inclusive OR W with f         1         00         0100         dfff         ffff         Z         1, 2           MOVF         f, d         Move f         1         00         1000         dfff         fffff         Z         1, 2           MOVWF         f         Move W to f         1         00         0000         lfff         fffff         Z         1, 2           MOVWF         f         Move W to f         1         00         0000         lfff         fffff         Z         1, 2           MOVF         f, d         Rotate Left fthrough Carry         1         00         1100         dfff         ffff         C         1, 2           SUBWF         f, d         Subtract W from f         1         00         1010         dfff         ffff         Z         1, 2           XORWF         f, d         Exclusive OR W with f         1         00         0110         dfff         ffff         Z         1, 2           XORWF         f, d         Exclusive OR W with f         1         01         010bb         bfff         ffff         Z         1, 2           SUBWF         f, d         Bit Set f         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INCF   | f, d                                   | Increment f                  | 1            | 00    | 1010   | dfff   | ffff     | Z        | 1, 2    |
| IORWF         f, d         Inclusive OR W with f         1         00         0100         dfff         ffff         Z         1, 2           MOVF         f, d         Move f         1         00         0000         dfff         fffff         Z         1, 2           MOVWF         f         Move W to f         1         00         0000         lfff         fffff         Z         1, 2           MOVWF         f         Move W to f         1         00         0000         lfff         fffff         Z         1, 2           MOVF         f, d         Rotate Left fhrough Carry         1         00         100         dfff         ffff         C         1, 2           SUBWF         f, d         Subtract W from f         1         00         1010         dfff         ffff         Z         1, 2           SUBWF         f, d         Exclusive OR W with f         1         00         1100         dfff         fffff         Z         1, 2           SUBWF         f, d         Exclusive OR W with f         1         01         010bb         bfff         fffff         Z         1, 2           SUBWF         f, d         Exclusive OR W with f <td>INCFSZ</td> <td>f, d</td> <td>Increment f, Skip if 0</td> <td>1<b>(2)</b></td> <td>00</td> <td>1111</td> <td>dfff</td> <td>ffff</td> <td></td> <td>1, 2, 3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INCFSZ | f, d                                   | Increment f, Skip if 0       | 1 <b>(2)</b> | 00    | 1111   | dfff   | ffff     |          | 1, 2, 3 |
| MOVWF         f         Move W to f         1         00         0000         lfff         ffff           NOP         -         No Operation         1         00         0000         0xx0         0000           RLF         f, d         Rotate Left through Carry         1         00         1100         dfff         ffff         C         1,2           SUBWF         f, d         Subtract W from f         1         00         1100         dfff         ffff         C         1,2           SWAPF         f, d         Swap nibbles in f         1         00         1100         dfff         ffff         Z         1,2           XORWF         f, d         Exclusive OR W with f         1         00         010         dfff         ffff         Z         1,2           XORWF         f, d         Exclusive OR W with f         1         00         010         dfff         ffff         Z         1,2           SWAPF         f, d         Exclusive OR W with f         1         01         00bb         bfff         fffff         Z         1,2           BCF         f, b         Bit Clear f         1         1         01         010bb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IORWF  | f, d                                   |                              |              | 00    | 0100   | dfff   | ffff     | Z        |         |
| MOVWF         f         Move W to f         1         00         0000         lfff         ffff           NOP         -         No Operation         1         00         0000         0xx0         0000           RLF         f, d         Rotate Left through Carry         1         00         1100         dfff         ffff         C         1,2           SUBWF         f, d         Subtract W from f         1         00         1100         dfff         ffff         C         1,2           SWAPF         f, d         Swap nibbles in f         1         00         1100         dfff         ffff         Z         1,2           XORWF         f, d         Exclusive OR W with f         1         00         010         dfff         ffff         Z         1,2           XORWF         f, d         Exclusive OR W with f         1         00         010         dfff         ffff         Z         1,2           SWAPF         f, d         Exclusive OR W with f         1         01         00bb         bfff         fffff         Z         1,2           BCF         f, b         Bit Clear f         1         1         01         010bb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOVF   | f, d                                   | Move f                       | 1            | 00    | 1000   | dfff   | ffff     | Z        | 1, 2    |
| RLF         f, d         Rotate Left f through Carry         1         00         1101         dfff         fff         C         1,2           RRF         f, d         Subtract W from f         1         00         1100         dfff         ffff         C         1,2           SUBWF         f, d         Subtract W from f         1         00         0100         dfff         ffff         C         1,2           SWAPF         f, d         Swap nibbles in f         1         00         0110         dfff         ffff         Z,0,7,2         1,2           XORWF         f, d         Exclusive OR W with f         1         00         0110         dfff         ffff         Z,1,2           XORWF         f, d         Exclusive OR W with f         1         01         010bb         bfff         ffff         Z,2         1,2           BCF         f, b         Bit Clear f         Bit Set f         1         01         010bb         bfff         ffff         1,2           BTFSC         f, b         Bit Test f, Skip if Clear         1         1         1         1         1,2         3           ADDLW         k         Add literal and W         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | f                                      | Move W to f                  | 1            | 00    | 0000   | lfff   | ffff     |          |         |
| RRF         f, d         Rotate Right fthrough Carry         1         00         1100         dfff         ffff         C         1,2           SUBWF         f, d         Subtract W from f         1         00         0010         dfff         ffff         C, DC, Z         1,2           SWAPF         f, d         Swap nibbles in f         1         00         1110         dfff         ffff         Z, DC, Z         1,2           XORWF         f, d         Exclusive OR W with f         1         00         0110         dfff         ffff         Z         1,2           XORWF         f, d         Exclusive OR W with f         1         01         00bb         bfff         ffff         Z         1,2           SUBWF         f, d         Bit Clear f         1         01         00bb         bfff         ffff         Z         1,2           BSF         f, b         Bit Test f, Skip if Clear         1         1         10b         bfff         ffff         3           BTFSS         f, b         Bit Test f, Skip if Set         1         1         1         111         111x         kkkk kkkk         Z         Z         Z         10         0kkkk kkkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOP    | -                                      | No Operation                 | 1            | 00    | 0000   | 0xx0   | 0000     |          |         |
| SUBWF         f, d         Subtract W from f         1         00         0010         dfff         ffff         C, DC, Z         1, 2           SWAPF         f, d         Swap nibbles in f         1         00         0110         dfff         ffff         Z         1, 2           XORWF         f, d         Exclusive OR W with f         1         00         0110         dfff         ffff         Z         1, 2           BIT-ORIENTED FILE REGISTER OPER-TIONS           BECF         f, b         Bit Clear f         1         01         00bb         bfff         ffff         1, 2           BSF         f, b         Bit Test f, Skip if Clear         1         01         01bb         bfff         ffff         1, 2           BTFSS         f, b         Bit Test f, Skip if Set         1         1         11         11bb         bff         ffff         3           LITERAL AND CONTROL OPERATURE           ADDLW         k         Add literal and W         1         1         11         11bb         kkkk kkkk         Z           ADLW         k         Add literal with W         1         1         100         00kk kkkkk kkkkk         Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RLF    | f, d                                   | Rotate Left f through Carry  | 1            | 00    | 1101   | dfff   | ffff     | С        | 1, 2    |
| SUBWF         f, d         Subtract W from f         1         00         0010         dfff         ffff         C, DC, Z         1, 2           SWAPF         f, d         Swap nibbles in f         1         00         0110         dfff         ffff         Z         1, 2           XORWF         f, d         Exclusive OR W with f         1         00         0110         dfff         ffff         Z         1, 2           BIT-ORIENTED FILE REGISTER OPER-TIONS           BECF         f, b         Bit Clear f         1         01         00bb         bfff         ffff         1, 2           BSF         f, b         Bit Test f, Skip if Clear         1         01         01bb         bfff         ffff         1, 2           BTFSS         f, b         Bit Test f, Skip if Set         1         1         11         11bb         bff         ffff         3           LITERAL AND CONTROL OPERATURE           ADDLW         k         Add literal and W         1         1         11         11bb         kkkk kkkk         Z           ADLW         k         Add literal with W         1         1         100         00kk kkkkk kkkkk         Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RRF    | f, d                                   | Rotate Right f through Carry | 1            | 00    | 1100   | dfff   | ffff     | С        | 1, 2    |
| SWAPF<br>XORWF         f, d         Swap nibbles in f<br>Exclusive OR W with f         1         00         1110         dfff         ffff         1, 2           BCF         f, b         Bit Clear f         1         01         00bb         bfff         ffff         1, 2           BSF         f, b         Bit Set f         1         01         00bb         bfff         ffff         1, 2           BTFSC         f, b         Bit Test f, Skip if Clear         1         01         01bb         bfff         fff         1, 2           BTFSS         f, b         Bit Test f, Skip if Set         1 (2)         01         10bb         bfff         ffff         3           BTFSS         f, b         Add literal and W         1         11         111x         kkkk         kkkk         Z           ADDLW         k         Add literal with W         1         11         111x         kkkk         Z         Z           CALL         k         Call Subroutine         2         10         0kkk         kkkkk         Z           GOTO         k         Go to address         2         10         1kkk         kkkkk         Z           IORLW         k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUBWF  | f, d                                   |                              | 1            | 00    | 0010   | dfff   | ffff     | C, DC, Z |         |
| XORWF         f, d         Exclusive OR W with f         1         00         0110         dfff         ffff         Z         1,2           BIT-ORIENTED FILE REGISTER OPERATIONS           BCF         f, b         Bit Clear f         1         01         00bb         bfff         ffff         1,2           BSF         f, b         Bit Set f         1         01         01bb         bfff         ffff         1,2           BTFSC         f, b         Bit Test f, Skip if Clear         1         01         01bb         bfff         ffff         3           BTFSS         f, b         Bit Test f, Skip if Set         1         1         11         11bb         bfff         ffff         3           ADDLW         k         Add literal and W         1         11         111         111x         kkkk         kkkk         Z           ANDLW         k         Add literal with W         1         11         11         1001         kkkk         kkkk         Z           CALL         k         Call Subroutine         2         10         0kkk         kkkk         Z         Z           GOTO         k         Go to address         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SWAPF  | f, d                                   | Swap nibbles in f            | 1            | 00    | 1110   | dfff   | ffff     |          |         |
| BCF         f, b         Bit Clear f         1         01         00bb         bfff         ffff         1, 2           BSF         f, b         Bit Set f         1         01         01bb         bfff         ffff         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         1, 2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XORWF  |                                        |                              | 1            | 00    | 0110   | dfff   | ffff     | Z        |         |
| BSFf, bBit Set f10101bbbfffffff1, 2BTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffff3BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffff3LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111xkkkkkkkkZANDLWkAND literal with W1111001kkkkkkkkZCALLkCall Subroutine2100kkkkkkkKTO, PDGOTOkGo to address2101kkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkNove literal to W11101xxkkkkZIRETFIE-Return from interrupt20000000100TO, PDRETLWkReturn with literal in W21101xxkkkkKkkkRETURN-Return from Subroutine20000000000TO, PDSUBLWkSubtract W from literal111110xkkkkC, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                        | BIT-ORIENTED FILE REGIS      |              | ATION | ١S     |        |          |          |         |
| BSFf, bBit Set f10101bbbfffffff1, 2BTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffff3BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffff3LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111xkkkkkkkkZANDLWkAND literal with W1111001kkkkkkkkZCALLkCall Subroutine2100kkkkkkkKTO, PDGOTOkGo to address2101kkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkNove literal to W11101xxkkkkZIRETFIE-Return from interrupt20000000100TO, PDRETLWkReturn with literal in W21101xxkkkkKkkkRETURN-Return from Subroutine20000000000TO, PDSUBLWkSubtract W from literal111110xkkkkC, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BCF    | f, b                                   | Bit Clear f                  | 1            | 01    | 00bb   | bfff   | ffff     |          | 1, 2    |
| BTFSC<br>BTFSSf, bBit Test f, Skip if Clear<br>Bit Test f, Skip if Set1 (2)0110bbbfffffff3J (2)0111bbbfffffff3J (2)0111bbbfffffff3J (2)0111bbbfffffff3J (2)0111bbbfffffff3J (2)11111bbbfffffff3J (2)11111bbbfffffff3ADDLWkAdd literal and W1111111011kkkkkkkC, DC, Z7ADDLWkAdd literal with W1111111001kkkkkkkkZCall Subroutine2100kkkkkkkkkkkZGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000xkkkkkkkkZRETFIE-Return from interrupt20000001001TO, PDRETURN-Return from Subroutine20000001000100SLEEP-Go into Standby mode101110110xkkkkkkkkKkkKkkkK<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | f, b                                   |                              | 1            | 01    | 01bb   | bfff   | ffff     |          | •       |
| BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffff3LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111xkkkkkkkkC, DC, ZANDLWkAND literal with W1111111001kkkkkkkkZCALLkCall Subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO, PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W11100xxkkkkkkkkZRETFIE-Return from interrupt200000000001001TO, PDRETURN-Return from Subroutine200000000001000TO, PDSLEEP-Go into Standby mode10000000110011TO, PDSUBLWkSubtract W from literal111110xkkkkkkkkKkkkKkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BTFSC  | f, b                                   | Bit Test f, Skip if Clear    | 1 (2)        | 01    | 10bb   | bfff   | ffff     |          |         |
| ADDLWkAdd literal and W111111111xkkkkkkkkC, DC, ZANDLWkAND literal with W1111001kkkkkkkkZCALLkCall Subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO, PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W11100xxkkkkkkkkZRETFIE-Return from interrupt20000001001TO, PDRETURN-Return with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine20000001000TO, PDSUBLWkSubtract W from literal111110xkkkkkkkkC, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | ,                                      |                              | • • •        | 01    |        |        |          |          |         |
| ANDLWkAND literal with W1111001kkkkkkkZCALLkCall Subroutine2100kkkkkkkkkkkKkkkCLRWDT-Clear Watchdog Timer100000001100100TO, PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000000001001TO, PDRETFIE-Return from interrupt200000000001001RETLWRETURN-Return with literal in W21101xxkkkkkkkkFD, PDSLEEP-Go into Standby mode100000000011TO, PDTO, PDSUBLWkSubtract W from literal111110xkkkkkkkkKkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                        | LITERAL AND CONTROL          | OPERAT       | IONS  |        |        |          |          |         |
| CALLkCall Subroutine2100kkkkkkkkkkkkkkkCLRWDT-Clear Watchdog Timer100000001100100TO, PDGOTOkGo to address2101kkkkkkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W11100xxkkkkkkkkZRETFIE-Return from interrupt200000000001001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000SLEEP-Go into Standby mode10000000110011TO, PDSUBLWkSubtract W from literal111110xkkkkkkkkkkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ADDLW  | k                                      | Add literal and W            | 1            | 11    | 111x   | kkkk   | kkkk     | C, DC, Z |         |
| CLRWDT-Clear Watchdog Timer100000001100100TO, PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1111000xkkkkkkkZRETFIE-Return from interrupt200000000001001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine20000001000TO, PDSLEEP-Go into Standby mode10000000111TO, PDSUBLWkSubtract W from literal111110xkkkkkkkkc, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANDLW  | k                                      | AND literal with W           | 1            | 11    | 1001   | kkkk   | kkkk     | Z        |         |
| GOTOkGo to address2101kkkkkkkkkkkkkkkIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1111000kkkkkkkkZRETFIE-Return from interrupt200000000001001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000SLEEP-Go into Standby mode1000000011TO, PDSUBLWkSubtract W from literal111110xkkkkkkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CALL   | k                                      | Call Subroutine              | 2            | 10    | 0kkk   | kkkk   | kkkk     |          |         |
| IORLW         k         Inclusive OR literal with W         1         11         1000         kkkk         kkkk         Z           MOVLW         k         Move literal to W         1         11         1000         kkkk         kkkk         Z           RETFIE         -         Return from interrupt         2         00         0000         0000         1001           RETLW         k         Return with literal in W         2         11         01xx         kkkk         kkkk           RETURN         -         Return from Subroutine         2         00         0000         1000         1000           SLEEP         -         Go into Standby mode         1         00         0000         011         TO, PD           SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLRWDT | -                                      | Clear Watchdog Timer         | 1            | 00    | 0000   | 0110   | 0100     | TO, PD   |         |
| MOVLW         k         Move literal to W         1         11         00xx         kkkk         kkkk           RETFIE         -         Return from interrupt         2         00         0000         0001         1001           RETLW         k         Return with literal in W         2         11         01xx         kkkk         kkkk           RETURN         -         Return from Subroutine         2         00         0000         1000           SLEEP         -         Go into Standby mode         1         00         0000         011         TO, PD           SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GOTO   | k                                      | Go to address                | 2            | 10    | 1kkk   | kkkk   | kkkk     |          |         |
| RETFIE         -         Return from interrupt         2         00         0000         0001         1001           RETLW         k         Return with literal in W         2         11         01xx         kkkk         kkkk           RETURN         -         Return from Subroutine         2         00         0000         0000         1000           SLEEP         -         Go into Standby mode         1         00         0000         011         TO, PD           SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IORLW  | k                                      | Inclusive OR literal with W  | 1            | 11    | 1000   | kkkk   | kkkk     | Z        |         |
| RETLW         k         Return with literal in W         2         11         01xx         kkkk         kkkk           RETURN         -         Return from Subroutine         2         00         0000         0000         1000           SLEEP         -         Go into Standby mode         1         00         0000         0110         011         TO, PD           SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         kkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MOVLW  | k                                      | Move literal to W            | 1            | 11    | 00xx   | kkkk   | kkkk     |          |         |
| RETURN         -         Return from Subroutine         2         00         0000         0000         1000           SLEEP         -         Go into Standby mode         1         00         0000         0110         0011         TO, PD           SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RETFIE | -                                      | Return from interrupt        | 2            | 00    | 0000   | 0000   | 1001     |          |         |
| SLEEP         –         Go into Standby mode         1         00         0000         0110         0011         TO, PD           SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RETLW  | k                                      | Return with literal in W     | 2            | 11    | 01xx   | kkkk   | kkkk     |          |         |
| SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RETURN | -                                      | Return from Subroutine       | 2            | 00    | 0000   | 0000   | 1000     |          |         |
| SUBLW         k         Subtract W from literal         1         11         110x         kkkk         kkkk         C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SLEEP  | _                                      | Go into Standby mode         | 1            | 00    | 0000   | 0110   | 0011     | TO, PD   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | k                                      |                              | 1            | 11    |        |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XORLW  | k                                      | Exclusive OR literal with W  | 1            | 11    | 1010   | kkkk   | kkkk     | Z        |         |

## TABLE 21-2: PIC16(L)F722/3/4/6/7 INSTRUCTION SET

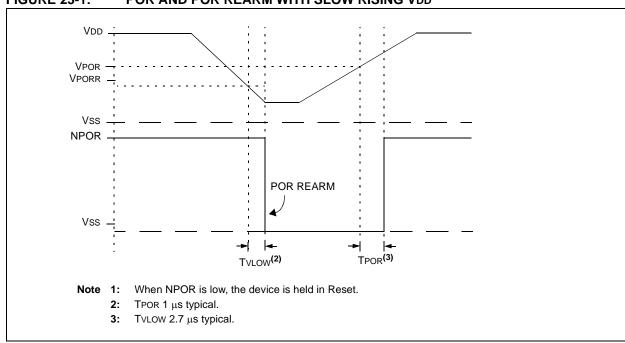
**Note 1:** When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

**3:** If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

| BTFSS            | Bit Test f, Skip if Set                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] BTFSS f,b                                                                                                                                                                                             |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$                                                                                                                                                |
| Operation:       | skip if (f <b>) = 1</b>                                                                                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                                            |
| Description:     | If bit 'b' in register 'f' is '0', the next<br>instruction is executed.<br>If bit 'b' is '1', then the next<br>instruction is discarded and a NOP<br>is executed instead, making this a<br>2-cycle instruction. |

| CLRWDT           | Clear Watchdog Timer                                                                                                                                                                |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] CLRWDT                                                                                                                                                                      |
| Operands:        | None                                                                                                                                                                                |
| Operation:       | $\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$ |
| Status Affected: | TO, PD                                                                                                                                                                              |
| Description:     | CLRWDT instruction resets the<br>Watchdog Timer. It also resets the<br>prescaler of the WDT.<br>Status bits TO and PD are set.                                                      |


| CALL             | Call Subroutine                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] CALL k                                                                                                                                                                                                                 |
| Operands:        | $0 \leq k \leq 2047$                                                                                                                                                                                                                    |
| Operation:       | $(PC)+ 1 \rightarrow TOS,$<br>$k \rightarrow PC<10:0>,$<br>$(PCLATH<4:3>) \rightarrow PC<12:11>$                                                                                                                                        |
| Status Affected: | None                                                                                                                                                                                                                                    |
| Description:     | Call Subroutine. First, return<br>address (PC + 1) is pushed onto<br>the stack. The 11-bit immediate<br>address is loaded into PC bits<br><10:0>. The upper bits of the PC<br>are loaded from PCLATH. CALL is<br>a 2-cycle instruction. |

| COMF             | Complement f                                                                                                                                                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] COMF f,d                                                                                                                                             |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                |
| Operation:       | $(\overline{f}) \rightarrow (destination)$                                                                                                                     |
| Status Affected: | Z                                                                                                                                                              |
| Description:     | The contents of register 'f' are<br>complemented. If 'd' is '0', the<br>result is stored in W. If 'd' is '1',<br>the result is stored back in<br>register 'f'. |

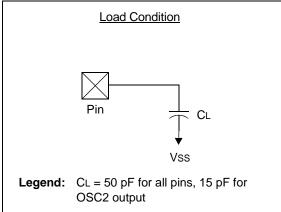
| CLRF             | Clear f                                                               |  |  |  |
|------------------|-----------------------------------------------------------------------|--|--|--|
| Syntax:          | [ <i>label</i> ] CLRF f                                               |  |  |  |
| Operands:        | $0 \le f \le 127$                                                     |  |  |  |
| Operation:       | $\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$ |  |  |  |
| Status Affected: | Z                                                                     |  |  |  |
| Description:     | The contents of register 'f' are<br>cleared and the Z bit is set.     |  |  |  |

| DECF             | Decrement f                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] DECF f,d                                                                                                                                |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                 |
| Operation:       | (f) - 1 $\rightarrow$ (destination)                                                                                                               |
| Status Affected: | Z                                                                                                                                                 |
| Description:     | Decrement register 'f'. If 'd' is '0',<br>the result is stored in the W<br>register. If 'd' is '1', the result is<br>stored back in register 'f'. |

| CLRW             | Clear W                                                               |
|------------------|-----------------------------------------------------------------------|
| Syntax:          | [label] CLRW                                                          |
| Operands:        | None                                                                  |
| Operation:       | $\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$ |
| Status Affected: | Z                                                                     |
| Description:     | W register is cleared. Zero bit (Z) is set.                           |



#### FIGURE 23-1: POR AND POR REARM WITH SLOW RISING VDD


# 23.6 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

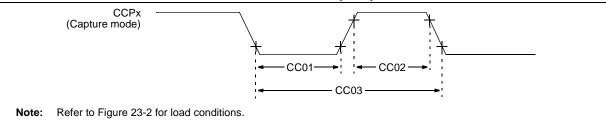
- 1. TppS2ppS
- 2. TppS

| 2. Tpp3 |                                      |     |                |
|---------|--------------------------------------|-----|----------------|
| т       |                                      |     |                |
| F       | Frequency                            | Т   | Time           |
| Lowerc  | ase letters (pp) and their meanings: |     |                |
| рр      |                                      |     |                |
| сс      | CCP1                                 | osc | OSC1           |
| ck      | CLKOUT                               | rd  | RD             |
| CS      | CS                                   | rw  | RD or WR       |
| di      | SDI                                  | sc  | SCK            |
| do      | SDO                                  | SS  | SS             |
| dt      | Data in                              | tO  | TOCKI          |
| io      | I/O PORT                             | t1  | T1CKI          |
| mc      | MCLR                                 | wr  | WR             |
| Upperc  | ase letters and their meanings:      |     |                |
| S       |                                      |     |                |
| F       | Fall                                 | Р   | Period         |
| н       | High                                 | R   | Rise           |
| I       | Invalid (High-impedance)             | V   | Valid          |
| L       | Low                                  | Z   | High-impedance |

#### FIGURE 23-2: LOAD CONDITIONS



# TABLE 23-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

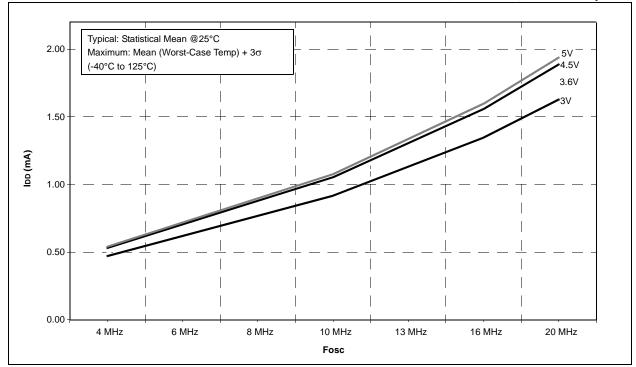

Standard Operating Conditions (unless otherwise stated)

| Param<br>No. | Sym.      |                                                       | Characteristic                                                       |                | Min.                                      | Тур†   | Max.   | Units | Conditions                         |
|--------------|-----------|-------------------------------------------------------|----------------------------------------------------------------------|----------------|-------------------------------------------|--------|--------|-------|------------------------------------|
| 40*          | T⊤0H      | T0CKI High Pulse Width No Prescaler<br>With Prescaler |                                                                      | 0.5 Tcy + 20   | —                                         | _      | ns     |       |                                    |
|              |           |                                                       |                                                                      | With Prescaler | 10                                        | _      | _      | ns    |                                    |
| 41*          | TT0L      | T0CKI Low F                                           | Pulse Width No Prescaler                                             |                | 0.5 TCY + 20                              | —      | _      | ns    |                                    |
|              |           |                                                       |                                                                      | With Prescaler | 10                                        | —      | _      | ns    |                                    |
| 42*          | Тт0Р      | T0CKI Period                                          | 1                                                                    |                | Greater of:<br>20 or <u>Tcy + 40</u><br>N | —      | _      | ns    | N = prescale value<br>(2, 4,, 256) |
| 45*          | T⊤1H      | T1CKI High<br>Time                                    | Synchronous, No Prescaler                                            |                | 0.5 TCY + 20                              | _      | _      | ns    |                                    |
|              |           |                                                       | Synchronous, with Prescaler                                          |                | 15                                        | _      | _      | ns    |                                    |
|              |           |                                                       | Asynchronous                                                         |                | 30                                        | —      | _      | ns    |                                    |
| 46*          | TT1L      | T1CKI Low<br>Time                                     | Synchronous, No Prescaler                                            |                | 0.5 TCY + 20                              | —      | _      | ns    |                                    |
|              |           |                                                       | Synchronous, with Prescaler                                          |                | 15                                        | —      | _      | ns    |                                    |
|              |           |                                                       | Asynchronous                                                         |                | 30                                        | —      | _      | ns    |                                    |
| 47*          | TT1P      | T1CKI Input<br>Period                                 | Synchronous                                                          |                | Greater of:<br>30 or <u>TCY + 40</u><br>N | —      |        | ns    | N = prescale value<br>(1, 2, 4, 8) |
|              |           |                                                       | Asynchronous                                                         | 3              | 60                                        | _      | _      | ns    |                                    |
| 48           | F⊤1       |                                                       | scillator Input Frequency Range<br>r enabled by setting bit T1OSCEN) |                | 32.4                                      | 32.768 | 33.1   | kHz   |                                    |
| 49*          | TCKEZTMR1 | Delay from E<br>Increment                             | Delay from External Clock Edge to Timer ncrement                     |                |                                           | —      | 7 Tosc | —     | Timers in Sync mode                |

These parameters are characterized but not tested.

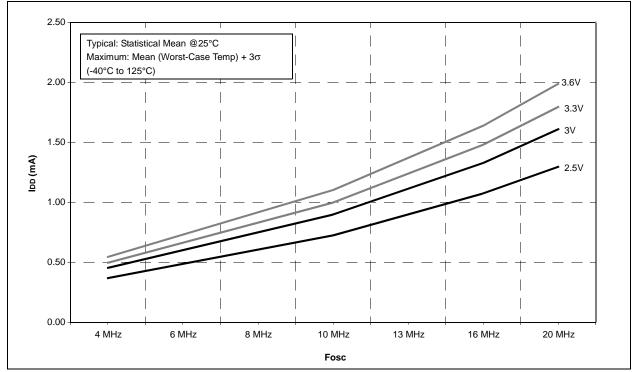
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### FIGURE 23-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)



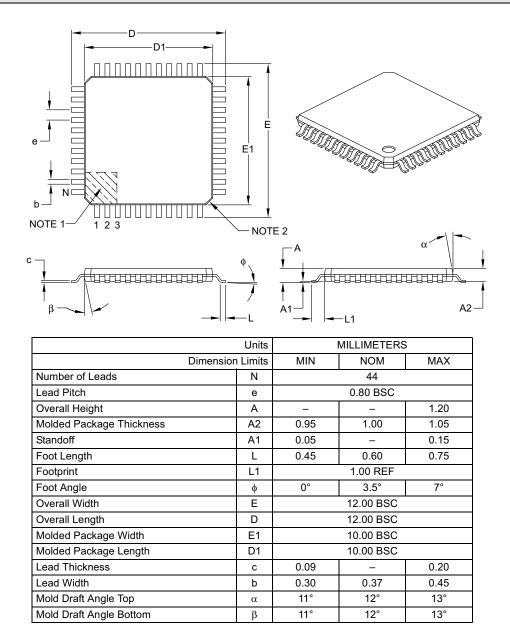

#### TABLE 23-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

| Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |      |                      |                |                       |      |      |       |                                 |
|----------------------------------------------------------------------------------------------------------------------|------|----------------------|----------------|-----------------------|------|------|-------|---------------------------------|
| Param<br>No.                                                                                                         | Sym. | Characteristic       |                | Min.                  | Тур† | Max. | Units | Conditions                      |
| CC01*                                                                                                                | TccL | CCPx Input Low Time  | No Prescaler   | 0.5Tcy + 20           | _    | —    | ns    |                                 |
|                                                                                                                      |      |                      | With Prescaler | 20                    | _    | _    | ns    |                                 |
| CC02*                                                                                                                | TccH | CCPx Input High Time | No Prescaler   | 0.5TCY + 20           | _    | _    | ns    |                                 |
|                                                                                                                      |      |                      | With Prescaler | 20                    | _    | _    | ns    |                                 |
| CC03*                                                                                                                | TccP | CCPx Input Period    |                | <u>3Tcy + 40</u><br>N |      | _    | ns    | N = prescale value (1, 4 or 16) |


These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.










# 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



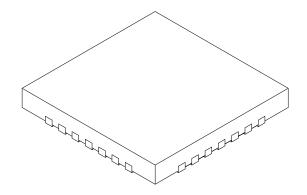
#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

### 28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | MILLIMETERS |                |          |      |  |  |
|------------------------|-------------|----------------|----------|------|--|--|
| Dimensio               | MIN         | NOM            | MAX      |      |  |  |
| Number of Pins         | Ν           |                | 28       | -    |  |  |
| Pitch                  | е           |                | 0.40 BSC |      |  |  |
| Overall Height         | Α           | 0.45           | 0.50     | 0.55 |  |  |
| Standoff               | A1          | 0.00           | 0.02     | 0.05 |  |  |
| Contact Thickness      | A3          | 0.127 REF      |          |      |  |  |
| Overall Width          | E           | 4.00 BSC       |          |      |  |  |
| Exposed Pad Width      | E2          | 2.55           | 2.65     | 2.75 |  |  |
| Overall Length         | D           | 4.00 BSC       |          |      |  |  |
| Exposed Pad Length     | D2          | 2.55           | 2.65     | 2.75 |  |  |
| Contact Width          | b           | 0.15 0.20 0.25 |          |      |  |  |
| Contact Length         | L           | 0.30 0.40 0.50 |          |      |  |  |
| Contact-to-Exposed Pad | K           | 0.20           |          |      |  |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
    - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

# THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

# **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support

NOTES: