

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f722-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6:

PIC16F726/LF726 AND PIC16F727/LF727 SPECIAL FUNCTION REGISTERS

Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	ANSELA	185h
PORTB	06h	TRISB	86h		106h	ANSELB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h	CPSCON0	108h	ANSELD ⁽¹⁾	188h
PORTE	09h	TRISE	89h	CPSCON1	109h	ANSELE ⁽¹⁾	189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh	Reserved	18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh	Reserved	18Eh
TMR1H	0Fh	T1GCON	8Fh	PMADRH	10Fh	Reserved	18Fh
T1CON	10h	OSCCON	90h		110h		190h
TMR2	11h	OSCTUNE	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD/SSPMSK	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h	General	116h	General	196h
CCP1CON	17h		97h	Purpose	117h	Purpose	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch	APFCON	9Ch		11Ch		19Ch
CCP2CON	1Dh	FVRCON	9Dh		11Dh		19Dh
ADRES	1Eh		9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General		General	
		Purpose		Purpose		Purpose	
General		Register		Register		Register	
Purpose		80 Bytes		80 Bytes		80 Bytes	
Register 96 Bytes			EFh		16Fh		1EFh
So Bytes		Accesses	F0h	Accesses	170h	Accesses	1F0h
		70h-7Fh		70h-7Fh		70h-7Fh	
	7Fh		FFh		17Fh		1FFh
Bank 0		Bank 1		Bank 2	1	Bank 3	1
d: = Unimple	mented o	data memory locations,	read as	ʻ0',			
* = Not a ph				implemented on the			

IADLE .	J-1. C			S AND THEIR SIGNIFICANCE
POR	BOR	то	PD	Condition
0	x	1	1	Power-on Reset or LDO Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep

TABLE 3-1: STATUS BITS AND THEIR SIGNIFICANCE

TABLE 3-2: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	0001 1xxx	0x
MCLR Reset during normal operation	0000h	000u uuuu	uu
MCLR Reset during Sleep	0000h	0001 Ouuu	uu
WDT Reset	0000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	0000h	0001 luuu	u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

PIC16(L)F722/3/4/6/7

4.5.5 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 4-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	_		—	—		CCP2IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0 CCP2IF: CCP2 Interrupt Flag bit

Capture Mode:

1 = A TMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

Compare Mode:

1 = A TMR1 register compare match occurred (must be cleared in software)

0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

TABLE 4-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	_	_	_			—		CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	_	_	_	_	_	_	_	CCP2IF	0	0

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM.

PIC16(L)F722/3/4/6/7

REGISTER	19-2. ADCO		ITROL REG				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable bi	t	U = Unimpleme	ented bit, read as	s 'O'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	wn
bit 7	Unimplemente	ed: Read as '0'					
bit 6-4	ADCS<2:0>: A	/D Conversion C	lock Select bits				
	000 = Fosc/2						
	001 = Fosc/8						
	010 = Fosc/32	-					
	· · ·	ock supplied from	a dedicated RC	Coscillator)			
	100 = Fosc/4 101 = Fosc/16						
	101 = FOSC/10 110 = FOSC/64	-					
		, ock supplied from	a dedicated RC	coscillator)			
bit 3-2	Unimplemente	••		,			
bit 1-0	ADREF<1:0>:	Voltage Referend	e Configuration	bits			
		connected to VDD	0				
	10 = VREF is c	connected to exte	rnal VREF (RA3	/AN3)			
			nal Fixed Voltag				

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

REGISTER 9-3: ADRES: ADC RESULT REGISTER

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **ADRES<7:0>**: ADC Result Register bits 8-bit conversion result.

10.0 FIXED VOLTAGE REFERENCE

This device contains an internal voltage regulator. To provide a reference for the regulator, a band gap reference is provided. This band gap is also user accessible via an A/D converter channel.

User level band gap functions are controlled by the FVRCON register, which is shown in Register 10-1.

REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER

R-q	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
FVRRDY	FVREN	—	—	—	—	ADFVR1	ADFVR0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
q = Value depends on condition								
q = Value depe	ends on condition	on						

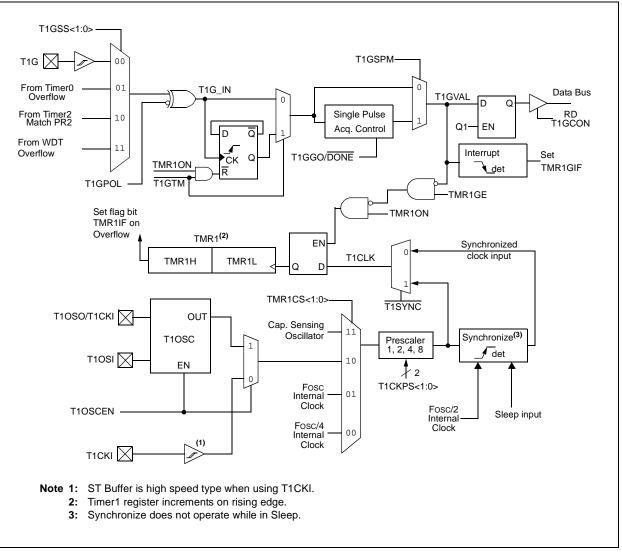
bit 7	FVRRDY ⁽¹⁾ : Fixed Voltage Reference Ready Flag bit
	0 = Fixed Voltage Reference output is not active or stable
	1 = Fixed Voltage Reference output is ready for use
bit 6	FVREN ⁽²⁾ : Fixed Voltage Reference Enable bit
	0 = Fixed Voltage Reference is disabled
	1 = Fixed Voltage Reference is enabled
bit 5-2	Unimplemented: Read as '0'
bit 1-0	ADFVR<1:0>: A/D Converter Fixed Voltage Reference Selection bits
	00 = A/D Converter Fixed Voltage Reference Peripheral output is off.
	01 = A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)
	$10 = A/D$ Converter Fixed Voltage Reference Peripheral output is $2x (2.048V)^{(2)}$
	11 = A/D Converter Fixed Voltage Reference Peripheral output is $4x (4.096V)^{(2)}$
Note 1:	FVRRDY is always '1' for the PIC16F72X devices.

2: Fixed Voltage Reference output cannot exceed VDD.

12.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 3-bit prescaler
- Dedicated LP oscillator circuit
- Synchronous or asynchronous operation
- Multiple Timer1 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with CCP)


- Gate Single-pulse mode
 - Gate Value StatusGate Event Interrupt

· Gate Toggle mode

Selectable Gate Source Polarity

Figure 12-1 is a block diagram of the Timer1 module.

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

12.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

12.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- TISYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured
- TMR1GIE bit of the T1GCON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

12.9 CCP Capture/Compare Time Base

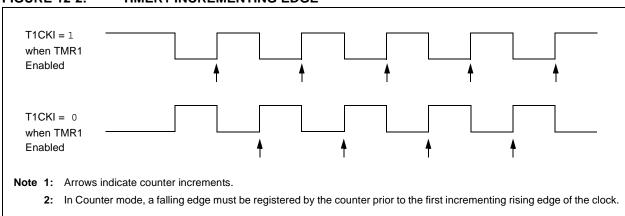
The CCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 15.0 "Capture/Compare/PWM (CCP) Module".

12.10 CCP Special Event Trigger


When the CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized to the Fosc/4 to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see Section 9.2.5 "Special Event Trigger".

FIGURE 12-2: TIMER1 INCREMENTING EDGE

12.12 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 12-2, is used to control Timer1 Gate.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0					
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0					
bit 7	•						bit					
Legend:												
R = Readable		W = Writable		-	nented bit, rea							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
h:+ 7		nor1 Coto Eng	hla hit									
bit 7	If TMR1GE: If	ner1 Gate Ena	DIE DIT									
	This bit is ign											
	<u>If TMR10N =</u>	<u>1</u> :										
			rolled by the Ti		ction							
1.11.0		-	ss of Timer1 ga	ate function								
bit 6		ner1 Gate Pola	•	into whon goto	ic high)							
			gh (Timer1 cou w (Timer1 coui									
bit 5		er1 Gate Toggl		J	/							
		1 = Timer1 Gate Toggle mode is enabled.										
			de is disabled		flop is cleared							
1.11.4	•		on every rising									
bit 4		T1GSPM: Timer1 Gate Single Pulse Mode bit										
	 1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate 0 = Timer1 gate Single-Pulse mode is disabled 											
bit 3		_			atus bit							
	T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge											
	 0 = Timer1 gate single-pulse acquisition has completed or has not been started This bit is automatically cleared when T1GSPM is cleared. 											
		-		SPM is cleared	d.							
bit 2		ner1 Gate Curr										
			f the Timer1 ga Enable (TMR1)		e provided to	IMR1H:TMR1L						
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits								
	00 = Timer1											
		Overflow outpu latch PR2 outp										
		og Timer scale										
	Watchde											

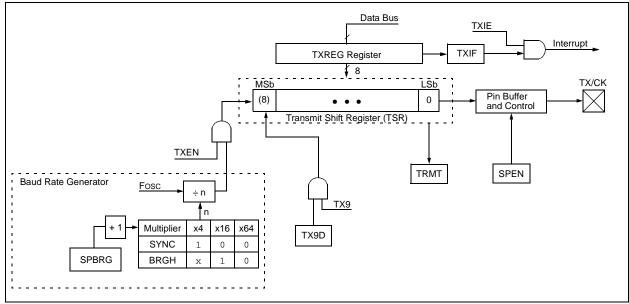
REGISTER 12-2: T1GCON: TIMER1 GATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL	Capture/Con	Capture/Compare/PWM Register X Low Byte								uuuu uuuu
CCPRxH	Capture/Con	npare/PWM R	egister X Hig	h Byte					xxxx xxxx	uuuu uuuu
PR2	Timer2 Perio	d Register							1111 1111	1111 1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2	Timer2 Modu	ule Register							0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 15-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

16.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)


The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The AUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The AUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Sleep operation

Block diagrams of the AUSART transmitter and receiver are shown in Figure 16-1 and Figure 16-2.

FIGURE 16-1: AUSART TRANSMIT BLOCK DIAGRAM

17.1.2.4 Slave Select Operation

The \overline{SS} pin allows Synchronous Slave mode operation. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPM<3:0> = 0100). The associated TRIS bit for the \overline{SS} pin must be set, making \overline{SS} an input.

In Slave Select mode, when:

- SS = 0, The device operates as specified in Section 17.1.2 "Slave Mode".
- $\overline{SS} = 1$, The SPI module is held in Reset and the SDO pin will be tri-stated.
 - Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPM<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is driven high.
 - 2: If the SPI is used in Slave mode with CKE set, the SS pin control must be enabled.

When the SPI module resets, the bit counter is cleared to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit. Figure 17-6 shows the timing waveform for such a synchronization event.

Note:	SSPSR must be reinitialized by writing to
	the SSPBUF register before the data can
	be clocked out of the slave again.

17.1.2.5 Sleep in Slave Mode

While in Sleep mode, the slave can transmit/receive data. The SPI Transmit/Receive Shift register operates asynchronously to the device on the externally supplied clock source. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the SSP Interrupt Flag bit will be set and if enabled, will wake the device from Sleep.

<u>88</u>										
SCK (CKP = 0						5				; ; ; ; ;
SCK (CKP = 1									; , , ,	· · · · · · · · · · · · · · · · · · ·
vine u SSPSUF			- 	2 2 2 2 2 2 3 3 3 3		SSPSR the SSP be bloc*	must be a BUF regis ed out of it	sinitistized by ter before the le siève agai	/ writing to e data can n.]	
soc		:	(****) (****)					**************************************	× 58 0	() ***********************************
SDI (SMP = 0)	· · ·	 bit 7	\bigcirc	4 4 5 5	, , , ,	<		\rightarrow	<u>}</u>	
Input Sample (3869 = c)	: : :		1	> > > >	; ; ;					*
SPER Interrupt Pag SSPSR to	, ; ,	, , , , , , , , , , , , , , , , , , ,	• • •	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,	5 5 5	• • •			

REGISTER 17-5: SSPMSK: SSP MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	
bit 7					-		bit	
Legend:								
R = Readable bit $W = Writable bit$		t	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is clear	ed	x = Bit is unkno	wn		

	0 = 110 received address bit instructused to detect i C address match
bit 0	MSK<0>: Mask bit for I ² C Slave Mode, 10-bit Address
	I ² C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):
	1 = The received address bit '0' is compared to SSPADD<0> to detect I ² C address match
	$0 =$ The received address bit '0' is not used to detect 1^2 C address match
	All other SSP modes: this bit has no effect.

REGISTER 17-6: SSPADD: SSP I²C ADDRESS REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7 | ADD6 | ADD5 | ADD4 | ADD3 | ADD2 | ADD1 | ADD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **ADD<7:0>:** Address bits Received address

TABLE 17-7: REGISTERS ASSOCIATED WITH I²C OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	x000 0000x	0000 000u
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								xxxx xxxx	uuuu uuuu
SSPADD	Synchronous	Serial Por	t (I ² C mod	e) Address	s Register				0000 0000	0000 0000
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPMSK ⁽²⁾	Synchronous	Serial Por	t (I ² C mod	e) Address	s Mask Re	gister			1111 1111	1111 1111
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
المسمسيان										1 1 2 2

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode.

Note 1: Maintain these bits clear in I^2C mode.

2: Accessible only when SSPM<3:0> = 1001.

PIC16(L)F722/3/4/6/7

SUBWF	Subtract W	from f			
Syntax:	[label] SU	JBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	on: Subtract (2's complement me W register from register 'f'. If ' '0', the result is stored in the V register. If 'd' is '1', the result stored back in register 'f.				
	C = 0	W > f			
	C = 1	W≤f			

 $\overline{DC} = 0$

DC = 1

W<3:0> > f<3:0> W<3:0> \leq f<3:0>

XORLW	Exclusive OR literal with W
Syntax:	[label] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

22.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

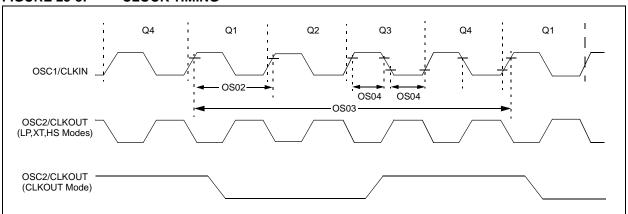
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

22.12 Third-Party Development Tools

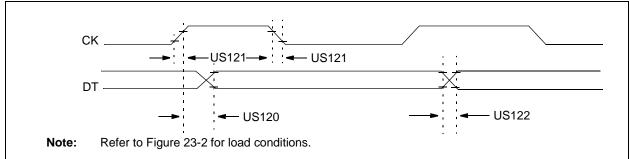
Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

23.7 AC Characteristics: PIC16F72X-I/E

FIGURE 23-3: CLOCK TIMING

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Oscillator mode
			DC	_	4	MHz	XT Oscillator mode
			DC	_	20	MHz	HS Oscillator mode
			DC	_	20	MHz	EC Oscillator mode
Osci		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	_	20	MHz	HS Oscillator mode
			DC	_	4	MHz	RC Oscillator mode
OS02 1	Tosc	External CLKIN Period ⁽¹⁾	27	—	×	μs	LP Oscillator mode
			250	_	×	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50	_	×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	—	μs	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			50	_	1,000	ns	HS Oscillator mode
			250	_	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	—	—	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	×	ns	XT oscillator
			0	—	×	ns	HS oscillator


TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

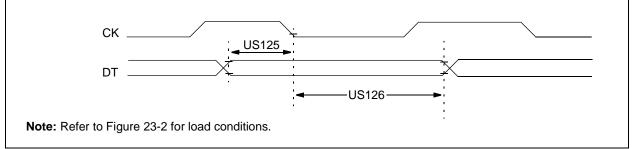


TABLE 23-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Characteristic	Characteristic		Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns	
	Clock high to data-out valid	1.8-5.5V	_	100	ns		
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V	_	45	ns	
	(Master mode)	1.8-5.5V	_	50	ns		
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	_	45	ns	
		1.8-5.5V	_	50	ns		

FIGURE 23-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

10

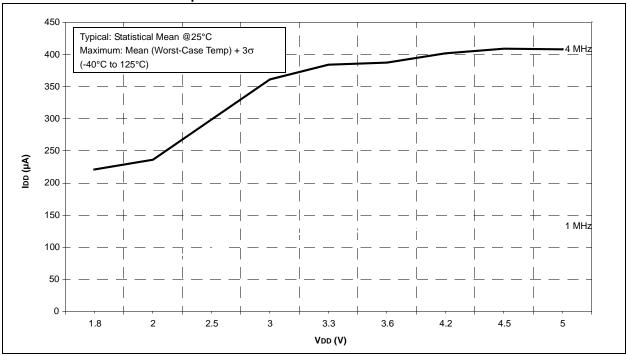
15

ns

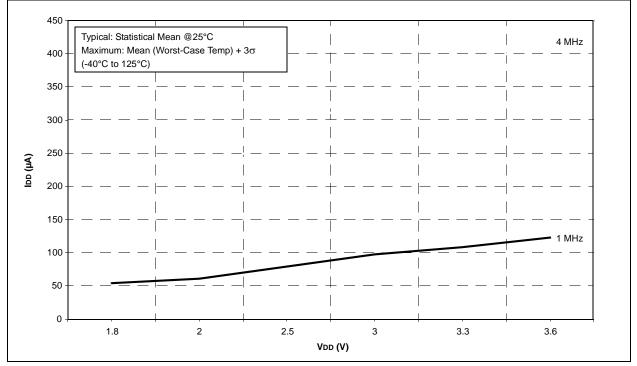
ns

TABLE 23-10: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Data-hold before $CK \downarrow (DT hold time)$


Data-hold after $CK \downarrow (DT hold time)$

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param. Symbol Characteristic Min. Max. Units Conditions US125 TDTV2CKL SYNC RCV (Master and Slave) Image: Condition state s


US126

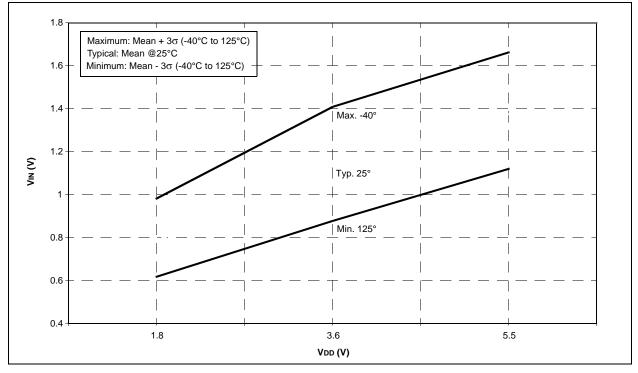
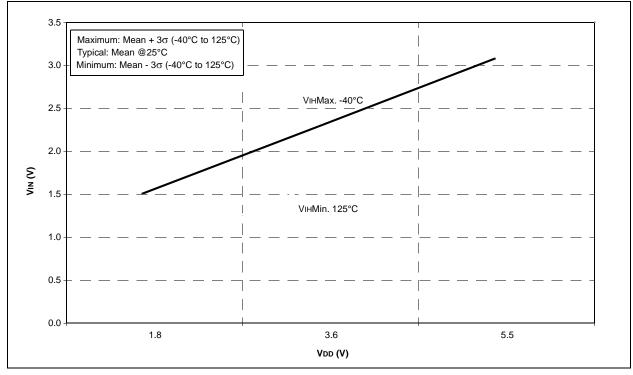
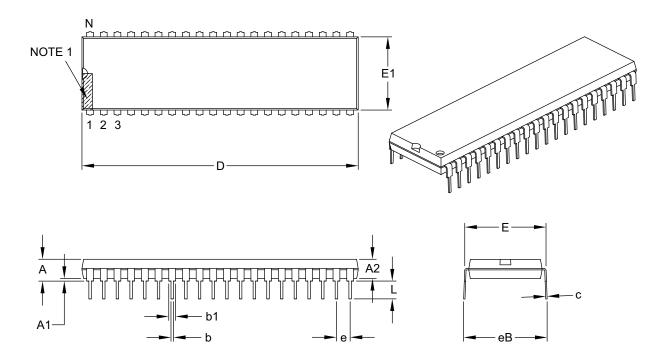

TCKL2DTL

FIGURE 24-7: PIC16F722/3/4/6/7 TYPICAL IDD vs. VDD OVER Fosc, EXTRC MODE, VCAP = 0.1μ F




FIGURE 24-49: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensior	Dimension Limits		NOM	MAX	
Number of Pins	Ν	40			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	_	_	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B