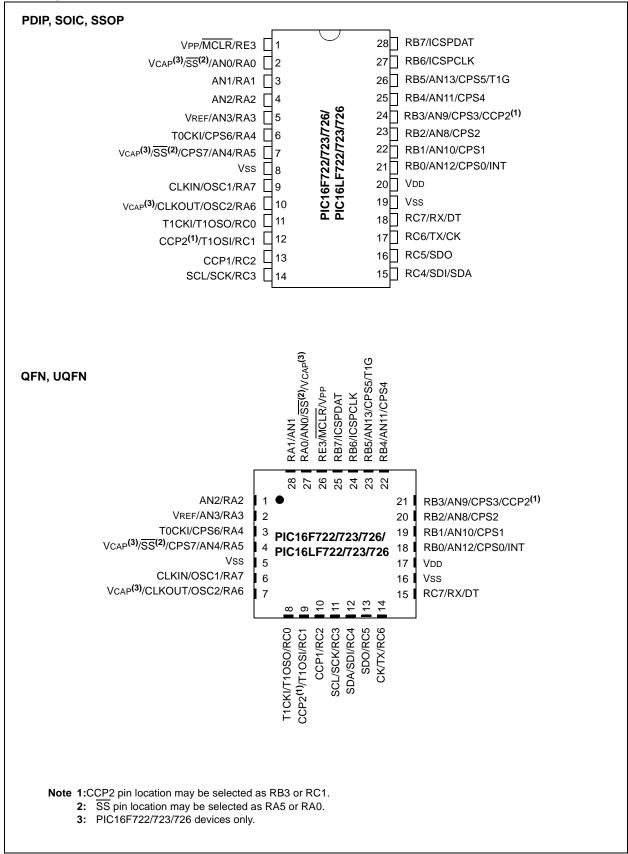


Welcome to E-XFL.COM

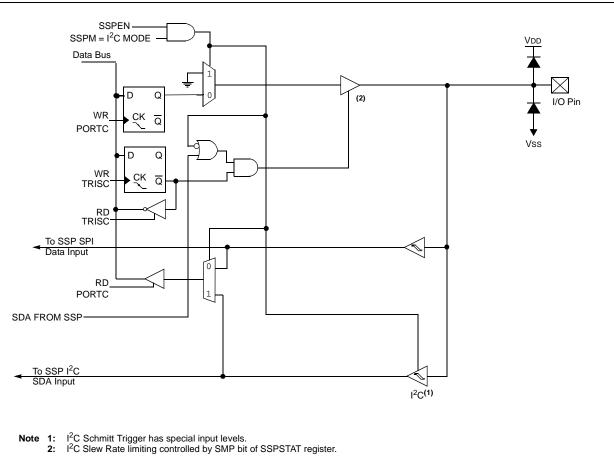
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f723-e-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

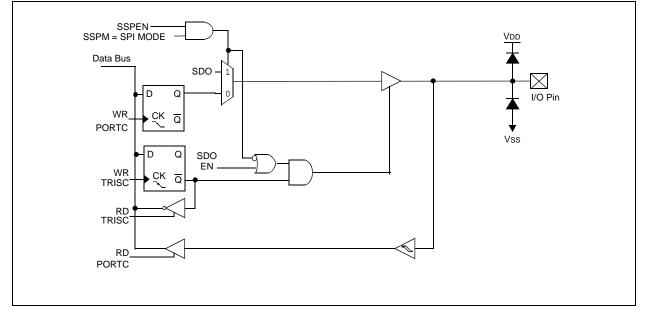

Pin Diagrams - 28-PIN PDIP/SOIC/SSOP/QFN/UQFN (PIC16F722/723/726/PIC16LF722/723/726)

FIGURE 6-17: BLOCK DIAGRAM OF RC4

REGISTER 6-13:	TRISD: PORTD TRI-STATE REGISTER ⁽¹⁾

TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 bit 7 bit 0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
bit 7 bit 0	TRISD7	TRISD6	TRISD6 TRISD5 TRISD4		TRISD3	TRISD2	TRISD1	TRISD0
	bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0

TRISD<7:0>: PORTD Tri-State Control bits 1 = PORTD pin configured as an input (tri-stated) 0 = PORTD pin configured as an output

Note 1: TRISD is not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

REGISTER 6-14: ANSELD: PORTD ANALOG SELECT REGISTER⁽²⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSD7	SD7 ANSD6 ANSD5 ANSD4		ANSD3	ANSD2	ANSD1	ANSD0	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	able bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 **ANSD<7:0>**: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively 0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELD register is not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

Note: PORTD is available on PIC16F724/LF724 and PIC16F727/LF727 only.

6.5.2 RD0/CPS8

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.3 RD1/CPS9

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.4 RD2/CPS10

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.5 RD3/CPS11

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

11.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 11-1 is a block diagram of the Timer0 module.

11.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

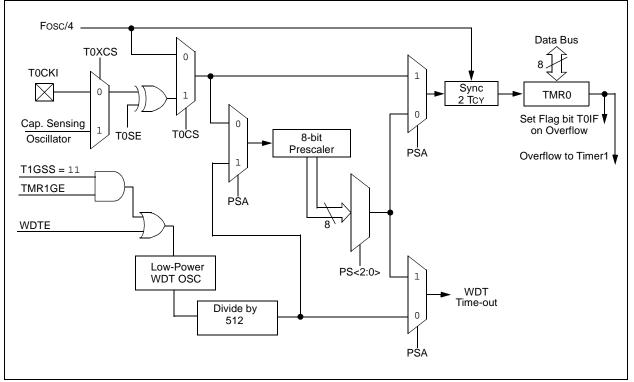
11.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-Bit Timer mode is selected by clearing the T0CS bit of the OPTION register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

11.1.2 8-BIT COUNTER MODE


In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSOSC) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the T0CS bit in the OPTION register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSOSC) signal is selected by setting the TOCS bit in the OPTION register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the T0SE bit in the OPTION register.

FIGURE 11-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

12.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 Gate circuitry. This is also referred to as Timer1 Gate Count Enable.

Timer1 Gate can also be driven by multiple selectable sources.

12.6.1 TIMER1 GATE COUNT ENABLE

The Timer1 Gate is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate (T1G) input is active, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate input is inactive, no incrementing will occur and Timer1 will hold the current count. See Figure 12-3 for timing details.

TABLE 12-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

12.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 Gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 12-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Timer2 match PR2 (TMR2 increments to match PR2)
11	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)

12.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 Gate Control. It can be used to supply an external source to the Timer1 Gate circuitry.

12.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.3 Timer2 Match Gate Operation

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.4 Watchdog Overflow Gate Operation

The Watchdog Timer oscillator, prescaler and counter will be automatically turned on when TMR1GE = 1 and T1GSS selects the WDT as a gate source for Timer1 (T1GSS = 11). TMR1ON does not factor into the oscillator, prescaler and counter enable. See Table 12-5.

The PSA and PS bits of the OPTION register still control what time-out interval is selected. Changing the prescaler during operation may result in a spurious capture.

Enabling the Watchdog Timer oscillator does not automatically enable a Watchdog Reset or Wake-up from Sleep upon counter overflow.

Note:	When using the WDT as a gate source for Timer1, operations that clear the Watchdog
	Timer (CLRWDT, SLEEP instructions) will
	affect the time interval being measured for
	capacitive sensing. This includes waking
	from Sleep. All other interrupts that might
	wake the device from Sleep should be
	disabled to prevent them from disturbing
	the measurement period.

As the gate signal coming from the WDT counter will generate different pulse widths depending on if the WDT is enabled, when the CLRWDT instruction is executed, and so on, Toggle mode must be used. A specific sequence is required to put the device into the correct state to capture the next WDT counter interval.

	SYNC = 0, BRGH = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc	: = 3.686	4 MHz	Fos	c = 1.000) MHz
RATE Ac	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	—	_	_		_	_	_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	—	_	57.60k	0.00	3	—	_	_
115.2k	—	_	—	_	_	—	115.2k	0.00	1	_	_	—

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

FIGURE 16-8:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin	
Write to bit SREN	
SREN bit	
CREN bit	ʻ0'
RCIF bit (Interrupt) ———	
Read RCREG	
Note: Timing d	iagram demonstrates Synchronous Master mode with bit SREN = 1 and bit BRGH = 0 .

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	REG AUSART Receive Data Register								0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000X	0000 000X
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

16.3.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the AUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the AUSART.

16.3.2.1 AUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (refer to **Section 16.3.1.2 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- 4. After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 16.3.2.2 Synchronous Slave Transmission Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the CREN and SREN bits.
- If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the TXIE bit.
- 4. If 9-bit transmission is desired, set the TX9 bit.
- 5. Enable transmission by setting the TXEN bit.
- 6. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000X	0000 000X
TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG AUSART Transmit Data Register						0000 0000	0000 0000		
CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
	GIE MR1GIE MR1GIF SPEN TRISC7 USART Tr CSRC	GIE PEIE MR1GIE ADIE MR1GIF ADIF SPEN RX9 TRISC7 TRISC6 USART Transmit Dat CSRC TX9	GIEPEIETOIEMR1GIEADIERCIEMR1GIFADIFRCIFSPENRX9SRENTRISC7TRISC6TRISC5USART Transmit DataRegisterCSRCTX9TXEN	GIEPEIETOIEINTEMR1GIEADIERCIETXIEMR1GIFADIFRCIFTXIFSPENRX9SRENCRENTRISC7TRISC6TRISC5TRISC4USART Transmit Data RegisterCSRCTX9TXEN	GIEPEIETOIEINTERBIEMR1GIEADIERCIETXIESSPIEMR1GIFADIFRCIFTXIFSSPIFSPENRX9SRENCRENADDENTRISC7TRISC6TRISC5TRISC4TRISC3USART Transmit Data RegisterSYNC—	GIEPEIETOIEINTERBIETOIFMR1GIEADIERCIETXIESSPIECCP1IEMR1GIFADIFRCIFTXIFSSPIFCCP1IFSPENRX9SRENCRENADDENFERRTRISC7TRISC6TRISC5TRISC4TRISC3TRISC2USART Transmit Data RegisterCSRCTX9TXENSYNC—BRGH	GIEPEIETOIEINTERBIETOIFINTFMR1GIEADIERCIETXIESSPIECCP1IETMR2IEMR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFSPENRX9SRENCRENADDENFERROERRTRISC7TRISC6TRISC5TRISC4TRISC3TRISC2TRISC1USART Transmit Data RegisterCSRCTX9TXENSYNC—BRGHTRMT	GIEPEIETOIEINTERBIETOIFINTFRBIFMR1GIEADIERCIETXIESSPIECCP1IETMR2IETMR1IEMR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IFSPENRX9SRENCRENADDENFERROERRRX9DTRISC7TRISC6TRISC5TRISC4TRISC3TRISC2TRISC1TRISC0USART Transmit DataRegisterCSRCTX9TXENSYNC—BRGHTRMTTX9D	GIEPEIETOIEINTERBIETOIFINTFRBIF0000000xMR1GIEADIERCIETXIESSPIECCP1IETMR2IETMR1IE00000000MR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IF00000000MR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IF00000000SPENRX9SRENCRENADDENFERROERRRX9D0000000xTRISC7TRISC6TRISC5TRISC4TRISC3TRISC2TRISC1TRISC011111111USART Transmit Data Register00000000

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

REGISTER 17-5: SSPMSK: SSP MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	
bit 7					-		bit	
Legend:								
R = Readable	bit	W = Writable bit	t	U = Unimpleme	ented bit, read a	s 'O'		
-n = Value at POR '1' = Bit is set				0' = Bit is cleared $x = Bit is unknown$				

	0 = 110 received address bit instructused to detect i C address match
bit 0	MSK<0>: Mask bit for I ² C Slave Mode, 10-bit Address
	I ² C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):
	1 = The received address bit '0' is compared to SSPADD<0> to detect I ² C address match
	$0 =$ The received address bit '0' is not used to detect 1^2 C address match
	All other SSP modes: this bit has no effect.

REGISTER 17-6: SSPADD: SSP I²C ADDRESS REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7 | ADD6 | ADD5 | ADD4 | ADD3 | ADD2 | ADD1 | ADD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **ADD<7:0>:** Address bits Received address

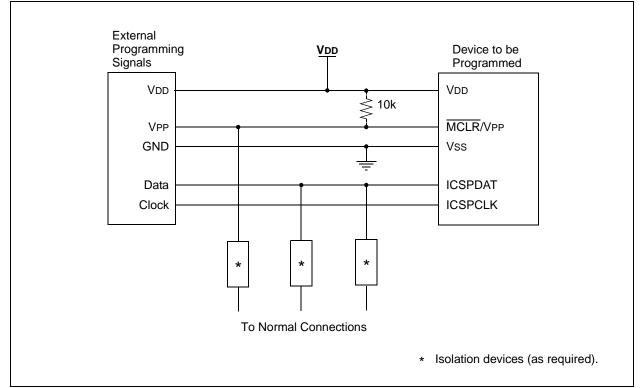
TABLE 17-7: REGISTERS ASSOCIATED WITH I²C OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register							xxxx xxxx	uuuu uuuu	
SSPADD	Synchronous	Serial Por	t (I ² C mod	e) Address	s Register				0000 0000	0000 0000
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPMSK ⁽²⁾	SPMSK ⁽²⁾ Synchronous Serial Port (I ² C mode) Address Mask Register 1111 1111 1111 1111					1111 1111				
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
\mathbf{L}										

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode.

Note 1: Maintain these bits clear in I^2C mode.

2: Accessible only when SSPM<3:0> = 1001.


20.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

The device is placed into Program/Verify mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP from 0v to VPP. In Program/Verify mode the program memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ISCPCLK pin is the clock input. For more information on ICSP, refer to the "*PIC16(L)F72x Memory Programming Specification*" (DS41332).

Note: The ICD 2 produces a VPP voltage greater than the maximum VPP specification of the PIC16(L)F722/3/4/6/7. When using this programmer, an external circuit, such as the AC164112 MPLAB ICD 2 VPP voltage limiter, is required to keep the VPP voltage within the device specifications.

FIGURE 20-1: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING

ADDLW	Add literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W reg- ister.

	ISTEL.
ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

21.2 Instruction Descriptions

© 2007-2015 Microchip Technology Inc.

MOVF	Move f							
Syntax:	[<i>label</i>] MOVF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	(f) \rightarrow (dest)							
Status Affected:	Z							
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.							
Words:	1							
Cycles:	1							
Example:	MOVF FSR, 0							
	After Instruction W = value in FSR register Z = 1							

MOVWF	Move W to f							
Syntax:	[label] MOVWF f							
Operands:	$0 \le f \le 127$							
Operation:	$(W) \to (f)$							
Status Affected:	None							
Description:	Move data from W register to register 'f'.							
Words:	1							
Cycles:	1							
Example:	MOVW OPTION F							
	Before Instruction OPTION = 0xFF W = 0x4F							
	After Instruction OPTION = 0x4F							
	W = 0x4F							

MOVLW	Move literal to W								
Syntax:	[<i>label</i>] MOVLW k								
Operands:	$0 \le k \le 255$								
Operation:	$k \rightarrow (W)$								
Status Affected:	None								
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.								
Words:	1								
Cycles:	1								
Example:	MOVLW 0x5A								
	After Instruction W = 0x5A								

NOP	No Operation					
Syntax:	[label] NOP					
Operands:	None					
Operation:	No operation					
Status Affected:	None					
Description:	No operation.					
Words:	1					
Cycles:	1					
Example:	NOP					

23.3 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Power-Down) (Continued)

PIC16LF722/3/4/6/7				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
PIC16F722/3/4/6/7				rd Operations temperations temperations and temperations and temperations and the second seco		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param No.	Device Characteristics	Min.	Тур†	Max. +85°C	Max. +125°C	Units		Conditions	
NO.				+05 C	+125 C		Vdd	Note	
Power-down Base Current (IPD) ⁽²⁾									
D027			0.06	0.7	5.0	μA	1.8	A/D Current (Note 1, Note 4), no	
			0.08	1.0	5.5	μΑ	3.0	conversion in progress	
D027			6	10.7	18	μΑ	1.8	A/D Current (Note 1, Note 4), no	
			7	10.6	20	μΑ	3.0	conversion in progress	
		—	7.2	11.9	22	μΑ	5.0		
D027A		—	250	400	—	μA	1.8	A/D Current (Note 1, Note 4),	
		—	250	400	—	μA	3.0	conversion in progress	
D027A			280	430		μA	1.8	A/D Current (Note 1, Note 4,	
			280	430	_	μA	3.0	Note 5), conversion in progress	
			280	430		μA	5.0		
D028			2.2	3.2	14.4	μΑ	1.8	Cap Sense Low Power	
		—	3.3	4.4	15.6	μΑ	3.0	Oscillator mode	
D028		—	6.5	13	21	μΑ	1.8	Cap Sense Low Power	
		—	8	14	23	μΑ	3.0	Oscillator mode	
		—	8	14	25	μA	5.0		
D028A		—	4.2	6	17	μA	1.8	Cap Sense Medium Power	
		—	6	7	18	μA	3.0	Oscillator mode	
D028A		_	8.5	15.5	23	μA	1.8	Cap Sense Medium Power	
		—	11	17	24	μA	3.0	Oscillator mode	
		—	11	18	27	μA	5.0		
D028B		—	12	14	25	μA	1.8	Cap Sense High Power	
		—	32	35	44	μA	3.0	Oscillator mode	
D028B		—	16	20	31	μΑ	1.8	Cap Sense High Power	
		_	36	41	50	μΑ	3.0	Oscillator mode	
		_	42	49	58	μA	5.0		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled

4: A/D oscillator source is FRC

5: 0.1 μ F capacitor on VCAP (RA0).

23.4 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Continued)

			Standard Operating Conditions (unless otherwise stated)Operating temperature -40°C \leq TA \leq +85°C for industrial-40°C \leq TA \leq +125°C for extended					
Param Sym. Characteristic		Min.	Тур†	Max.	Units	Conditions		
D130	Eр	Cell Endurance	100	1k	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131		VDD for Read	Vmin	—	_	V		
		Voltage on MCLR/VPP during Erase/Program	8.0	_	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
		VDD for Bulk Erase	2.7	3	_	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132	VPEW	VDD for Write or Row Erase	2.7	_	—	V	VMIN = Minimum operating voltage VMAX = Maximum operating voltage	
	IPPPGM	Current on MCLR/VPP during Erase/Write	—	-	5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
	IDDPGM	Current on VDD during Erase/ Write	—		5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D133	TPEW	Erase/Write cycle time	-		2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
	VCAP Capacitor Charging							
D135		Charging current	—	200	_	μΑ		
D135A		Source/sink capability when charging complete	—	0.0	—	mA		

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

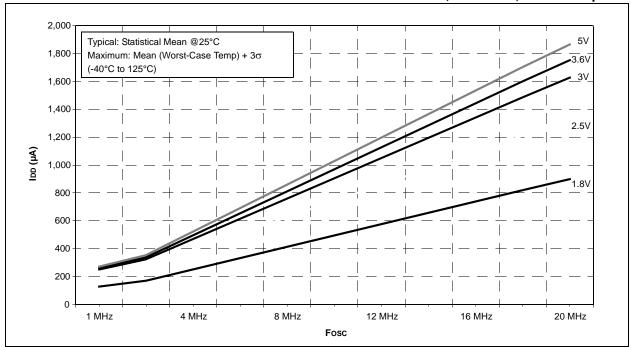
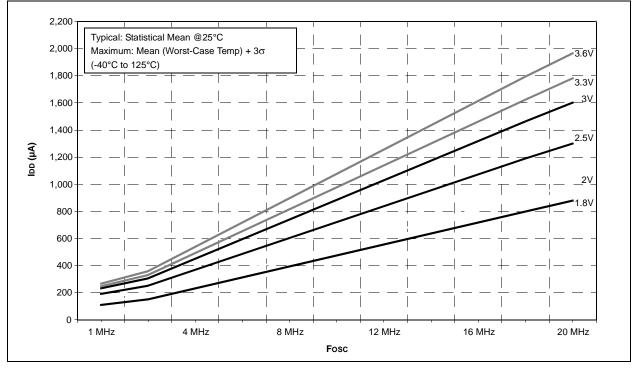

Param. No.	Symbol	Characteristic		Symbol Charact	Characteristic		Max.	Units	Conditions
SP100*	SP100* THIGH Clock high time 100		100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz		
			SSP Module	1.5Tcy	_				
SP101*	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz		
			SSP Module	1.5Tcy	_				
SP102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns			
		time	400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF		
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns			
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF		
SP106*	THD:DAT	Data input hold time	100 kHz mode	0		ns			
			400 kHz mode	0	0.9	μs	-		
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)		
			400 kHz mode	100		ns	-		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)		
		clock	400 kHz mode	_		ns			
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free		
			400 kHz mode	1.3	—	μs	before a new transmission can start		
SP111	Св	Bus capacitive loading		—	400	pF			

TABLE 23-13: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

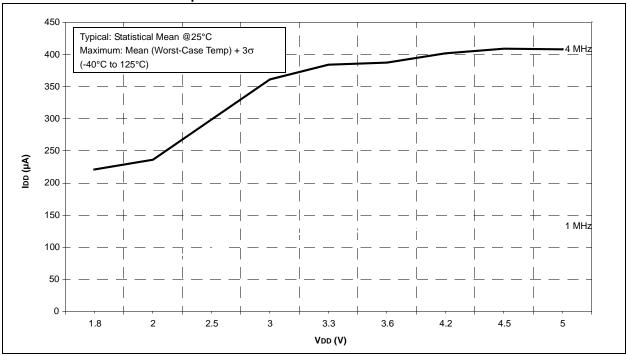
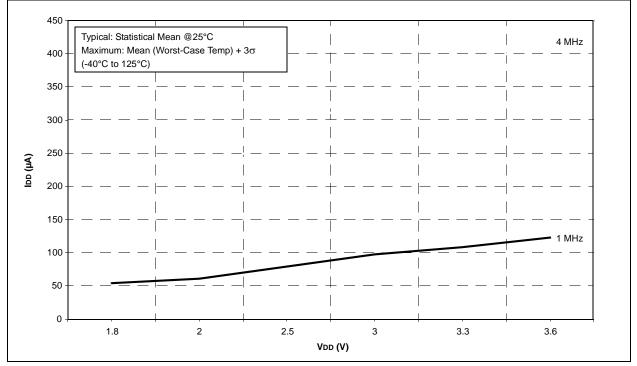


FIGURE 24-3: PIC16F722/3/4/6/7 TYPICAL IDD vs. Fosc OVER VDD, EC MODE, VCAP = 0.1 µF



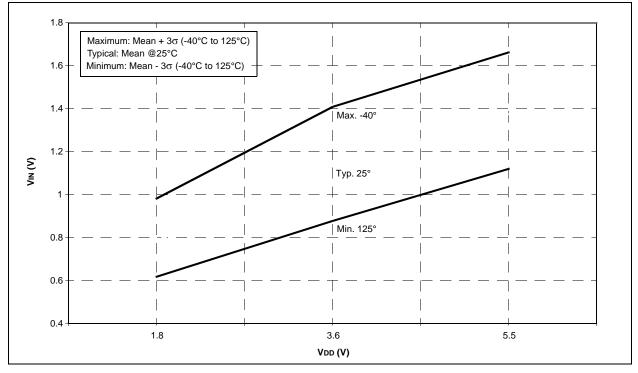
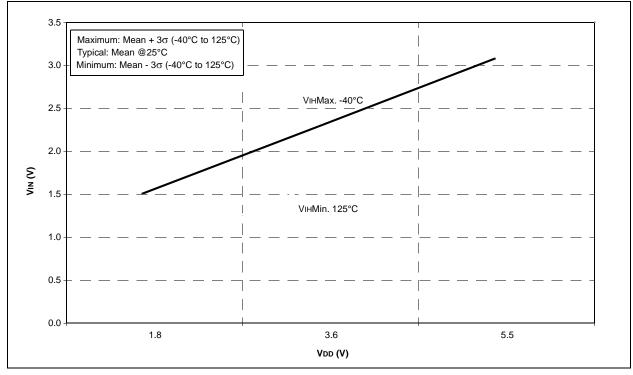
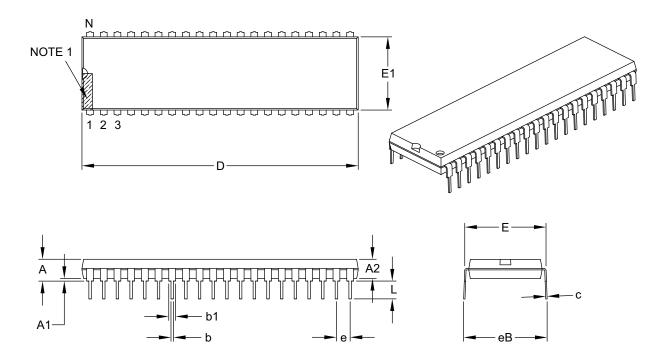


FIGURE 24-7: PIC16F722/3/4/6/7 TYPICAL IDD vs. VDD OVER Fosc, EXTRC MODE, VCAP = 0.1μ F




FIGURE 24-49: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

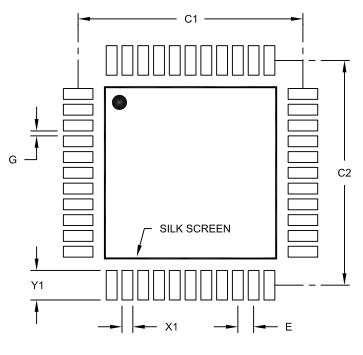
	Units					
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	40				
Pitch	е	.100 BSC				
Top to Seating Plane	Α	-	-	.250		
Molded Package Thickness	A2	.125	-	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.590	-	.625		
Molded Package Width	E1	.485	-	.580		
Overall Length	D	1.980	-	2.095		
Tip to Seating Plane	L	.115	-	.200		
Lead Thickness	С	.008	-	.015		
Upper Lead Width	b1	.030	-	.070		
Lower Lead Width	b	.014	-	.023		
Overall Row Spacing §	eB	_	_	.700		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS	-	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A