

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f723-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB4/AN11/CPS4	RB4	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	AN11	AN	_	A/D Channel 11 input.
	CPS4	AN	_	Capacitive sensing input 4.
RB5/AN13/CPS5/T1G	RB5	TTL	CMOS	General purpose I/O. Individually controlled inter-
			CIVIOS	rupt-on-change. Individually enabled pull-up.
	AN13	AN	_	A/D Channel 13 input.
	CPS5	AN	—	Capacitive sensing input 5.
	T1G	ST	—	Timer1 Gate input.
RB6/ICSPCLK/ICDCLK	RB6	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	ICSPCLK	ST	_	Serial Programming Clock.
	ICDCLK	ST	_	In-Circuit Debug Clock.
RB7/ICSPDAT/ICDDAT	RB7	TTL	CMOS	General purpose I/O. Individually controlled inter-
				rupt-on-change. Individually enabled pull-up.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	—	In-Circuit Data I/O.
0/T1OSO/T1CKI 1/T1OSI/CCP2	RC0	ST	CMOS	General purpose I/O.
	T1OSO	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST	_	Timer1 clock input.
RC1/T1OSI/CCP2	RC1	ST	CMOS	General purpose I/O.
	T10SI	XTAL	XTAL	Timer1 oscillator connection.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RC2/CCP1	RC2	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
RC3/SCK/SCL	RC3	ST	CMOS	General purpose I/O.
	SCK	ST	CMOS	SPI clock.
	SCL	l ² C	OD	I ² C clock.
RC4/SDI/SDA	RC4	ST	CMOS	General purpose I/O.
	SDI	ST	_	SPI data input.
	SDA	l ² C	OD	I ² C data input/output.
RC5/SDO	RC5	ST	CMOS	General purpose I/O.
	SDO	_	CMOS	SPI data output.
RC6/TX/CK	RC6	ST	CMOS	General purpose I/O.
	ТХ	_	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
RC7/RX/DT	RC7	ST	CMOS	General purpose I/O.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
RD0/CPS8	RD0	ST	CMOS	General purpose I/O.
	CPS8	AN	_	Capacitive sensing input 8.
RD1/CPS9	RD1	ST	CMOS	General purpose I/O.
	CPS9	AN		Capacitive sensing input 9.
RD2/CPS10	RD2	ST	CMOS	General purpose I/O.
	1102			

TABLE 1-1:	PIC16(L)F722/3/4/6/7 PINOUT DESCRIPTION (CONTINUED)
IABLE 1-1:	PIC16(L)F/22/3/4/6/7 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

XTAL = Crystal levels HV = High Voltage

4.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the **Section 19.0** "**Power-Down Mode (Sleep)**" for more details.

4.4 INT Pin

The external interrupt, INT pin, causes an asynchronous, edge-triggered interrupt. The INTEDG bit of the OPTION register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector. This interrupt is disabled by clearing the INTE bit of the INTCON register.

4.5 Context Saving

When an interrupt occurs, only the return PC value is saved to the stack. If the ISR modifies or uses an instruction that modifies key registers, their values must be saved at the beginning of the ISR and restored when the ISR completes. This prevents instructions following the ISR from using invalid data. Examples of key registers include the W, STATUS, FSR and PCLATH registers.

The code shown in Example 4-1 can be used to do the following.

- Save the W register
- Save the STATUS register
- Save the PCLATH register
- Execute the ISR program
- Restore the PCLATH register
- Restore the STATUS register
- Restore the W register

Since most instructions modify the W register, it must be saved immediately upon entering the ISR. The SWAPF instruction is used when saving and restoring the W and STATUS registers because it will not affect any bits in the STATUS register. It is useful to place W_{TEMP} in shared memory because the ISR cannot predict which bank will be selected when the interrupt occurs.

The processor will branch to the interrupt vector by loading the PC with 0004h. The PCLATH register will remain unchanged. This requires the ISR to ensure that the PCLATH register is set properly before using an instruction that causes PCLATH to be loaded into the PC. See **Section 2.3 "PCL and PCLATH"** for details on PC operation.

EXAMPLE 4-1: SAVING W, STATUS AND PCLATH REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to W_TEMP register ;Swap status to be saved into W ;Swaps are used because they do not affect the status bits
MOVWF MOVF	STATUS_TEMP STATUS_TEMP PCLATH,W PCLATH_TEMP	;Select regardless of current bank ;Copy status to bank zero STATUS_TEMP register ;Copy PCLATH to W register ;Copy W register to PCLATH_TEMP
:(ISR) :		;Insert user code here
MOVF	STATUS_TEMP PCLATH_TEMP,W PCLATH STATUS_TEMP,W	;Select regardless of current bank ; ;Restore PCLATH ;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF SWAPF SWAPF	STATUS W_TEMP,F W_TEMP,W	;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W

4.5.1 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTB change and external RB0/INT/SEG0 pin interrupts.

```
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
```

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE	PEIE	TOIE	INTE	RBIE ⁽¹⁾	T0IF ⁽²⁾	INTF	RBIF		
bit 7							bit C		
Legend: R = Readabl	o hit	W = Writable I	nit	II – I Inimpler	nented bit, read	1 26 '0'			
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is cle		x = Bit is unkr	NOWD		
		1 – Dit 13 Set			areu		IOWIT		
bit 7	GIE: Global Ir	nterrupt Enable	bit						
	1 = Enables a 0 = Disables a	all unmasked in all interrupts	terrupts						
bit 6	1 = Enables a	eral Interrupt Er all unmasked pe all peripheral in	eripheral inte	rrupts					
bit 5	1 = Enables t	Overflow Interr he Timer0 inter the Timer0 inter	rupt	it					
bit 4	1 = Enables t	IT External Inte he RB0/INT ext the RB0/INT ex	ernal interru	ot					
bit 3	1 = Enables t	B Change Intern he PORTB cha the PORTB cha	nge interrupt						
bit 2	1 = TMR0 reg	Overflow Interr gister has overfl gister did not ov	owed (must l		oftware)				
bit 1	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur								
bit 0	 RBIF: PORTB Change Interrupt Flag bit 1 = When at least one of the PORTB general purpose I/O pins changed state (must be cleared software) 								
	0 = None of t				h				

REGISTER 4-1: INTCON: INTERRUPT CONTROL REGISTER

- The appropriate bits in the IOCB register must also be set. Note 1:
 - 2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing T0IF bit.

6.5.6 RD4/CPS12

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

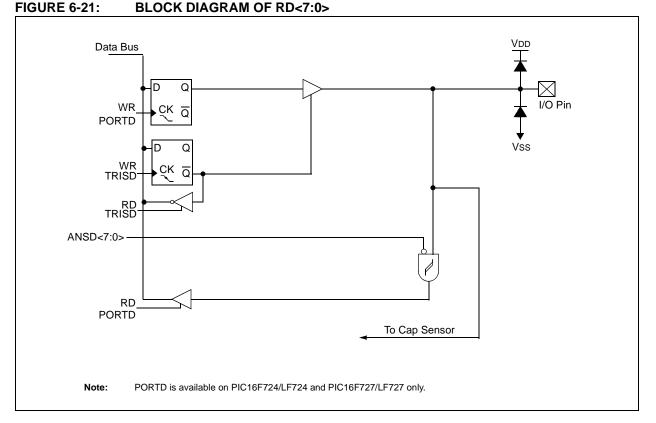
- a general purpose I/O
- · a capacitive sensing input

6.5.7 RD5/CPS13

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- a capacitive sensing input

6.5.8 RD6/CPS14


Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.9 RD7/CPS15

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

TABLE 6-4: SUMM	IARY OF REGISTERS ASSOCIATED WITH PORTD ⁽¹⁾
-----------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
CPSCON0	CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	0 0000	0 0000
CPSCON1		—	—	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	0000	0000
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	xxxx xxxx
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.**Note 1:**These registers are not implemented on the PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

© 2007-2015 Microchip Technology Inc.

DS40001341F-page 79

9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

- **Note 1:** The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
 - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INT-CON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 9.1.5** "Interrupts" for more information.

9.2 ADC Operation

9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 9.2.6 "A/D Conversion Procedure".

9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRES register with new conversion result

9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRES register will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

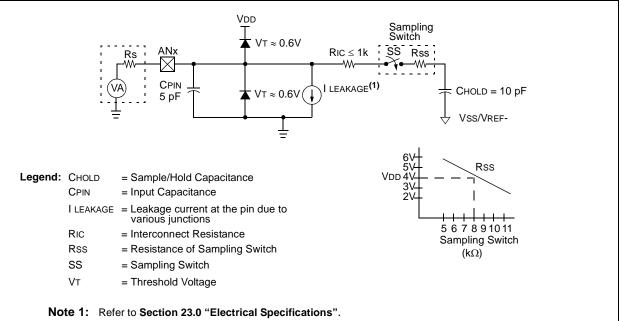
Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

9.2.4 ADC OPERATION DURING SLEEP

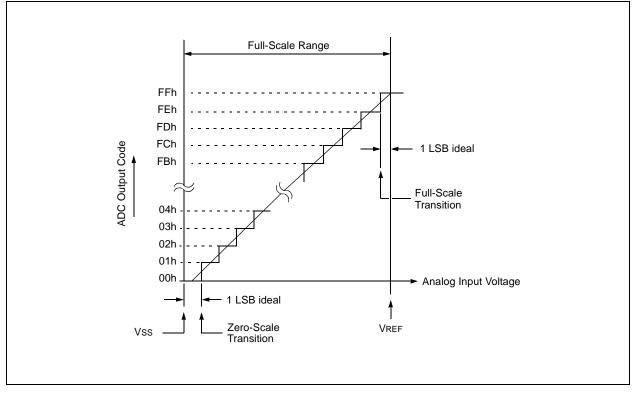
The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

9.2.5 SPECIAL EVENT TRIGGER

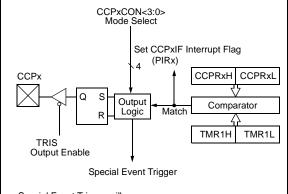

The Special Event Trigger of the CCP module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.


Refer to Section 15.0 "Capture/Compare/PWM (CCP) Module" for more information.

PIC16(L)F722/3/4/6/7

15.2 Compare Mode


In Compare mode, the 16-bit CCPRx register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCPx module may:

- Toggle the CCPx output
- Set the CCPx output
- · Clear the CCPx output
- Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register.

All Compare modes can generate an interrupt.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

- Special Event Trigger will:
- Clear TMR1H and TMR1L registers.
- NOT set interrupt flag bit TMR1IF of the PIR1 register.
 Set the GO/DONE bit to start the ADC conversion
- (CCP2 only).

15.2.1 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

15.2.2 TIMER1 MODE SELECTION

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. For the Compare operation of the TMR1 register to the CCPRx register to occur, Timer1 must be clocked from the Instruction Clock (Fosc/4) or from an external clock source.

15.2.3 SOFTWARE INTERRUPT MODE

When Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPxIF bit in the PIRx register is set and the CCPx module does not assert control of the CCPx pin (refer to the CCPxCON register).

15.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled (CCP2 only)

The CCPx module does not assert control of the CCPx pin in this mode (refer to the CCPxCON register).

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.

2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

15.2.5 COMPARE DURING SLEEP

The Compare Mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
bit 7				• •			bit (
Legend:						(a)					
R = Readable		W = Writable		-	mented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	lown				
bit 7	CDEN: Coriol	Dort Enchla bi	:(1)								
	SPEN: Serial Port Enable bit ⁽¹⁾ 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)										
		rt disabled (be			ins as senai poi	t pins)					
bit 6	RX9: 9-bit Re	ceive Enable b	oit								
	1 = Selects 9	-bit reception									
	0 = Selects 8	-bit reception									
bit 5	-	Receive Enal	ole bit								
	Asynchronous	<u>s mode</u> :									
	Don't care	mode - Maste	vr.								
	-	<u>Synchronous mode – Master</u> : 1 = Enables single receive									
	1 = Enables single receive 0 = Disables single receive										
	This bit is cleared after reception is complete.										
	Synchronous mode – Slave:										
L:1 1	Don't care		Enchla hit								
bit 4		nuous Receive	Enable bit								
	<u>Asynchronous</u> 1 = Enables										
	0 = Disables										
	<u>Synchronous</u>	mode:									
		continuous rec continuous rec		ble bit CREN is	cleared (CREN	l overrides SRE	EN)				
bit 3		ress Detect Er									
DIL J		s mode 9-bit (F									
		•		terrupt and loa	d the receive bu	uffer when RSR	<8> is set				
	0 = Disables	address detec	tion, all bytes		nd ninth bit can						
	<u>Asynchronous mode 8-bit (RX9 = 0)</u> :										
	Don't care <u>Synchronous mode</u> :										
	Must be set to										
bit 2	FERR: Frami										
		-	updated by rea	adina RCREG I	egister and rec	eive next valid l	ovte)				
	0 = No framin				-9		-))				
bit 1	OERR: Overr	un Error bit									
	1 = Overrun 0 = No overr		leared by clea	aring bit CREN)						
bit 0	RX9D: Ninth	bit of Received	l Data								
	This can be a	ddress/data bi	t or a parity bi	t and must be o	calculated by us	er firmware.					
	he AUSART m RISx = 1.	odule automa	tically change	es the pin fro	m tri-state to o	drive as neede	ed. Configur				

REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

16.3.2.3 AUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 16.3.1.4 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE interrupt enable bit of the PIE1 register is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 16.3.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 5. Set the CREN bit to enable reception.
- The RCIF bit of the PIR1 register will be set when reception is complete. An interrupt will be generated if the RCIE bit of the PIE1 register was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART Receive Data Register							0000 0000	0000 0000	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000X	0000 000X
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

19.2 Wake-up Using Interrupts

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 19-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

: 1 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 	Q4. ~'
INT pin	!
INTF flag (INTCON reg.)	
GIE bit (INTCON reg.), Sleep	
PC V PC + 1 V PC + 2 V PC + 2 V PC + 2 V 0005h Instruction { Inst(PC) = Sleep Inst(PC + 1) Inst(PC + 2) Inst(0004h) Inst(0005h)	h)
Instruction Inst(PC - 1) Sleep Inst(PC + 1) Dummy Cycle Dummy Cycle Inst(0004	h)

Note 1: XT, HS or LP Oscillator mode assumed.

2: TOST = 1024 Tosc (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.

3: GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.

4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 0000	0000 0000
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	_	_	_	—	—	_	CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	_	_	—	—	—	—	CCP2IF	0	0

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

23.2 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended) (Continued)

PIC16LF722/3/4/6/7			$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $						
PIC16F722/3/4/6/7		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param	Device	Min.	Тур†	Max.	Units	Conditions			
No.	Characteristics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Vdd	Note		
Supply Current (IDD) ^(1, 2)									
D014		_	290	330	μA	1.8	Fosc = 4 MHz		
		_	460	500	μA	3.0	EC Oscillator mode		
D014		_	300	430	μA	1.8	Fosc = 4 MHz		
			450	655	μA	3.0	EC Oscillator mode (Note 5)		
		—	500	730	μΑ	5.0			
D015		_	100	130	μA	1.8	Fosc = 500 kHz		
		_	120	150	μA	3.0	MFINTOSC mode		
D015		_	115	195	μA	1.8	Fosc = 500 kHz		
		_	135	200	μΑ	3.0	MFINTOSC mode (Note 5)		
		—	150	220	μA	5.0			
D016		_	650	800	μΑ	1.8	Fosc = 8 MHz		
			1000	1200	μA	3.0	HFINTOSC mode		
D016		_	625	850	μA		Fosc = 8 MHz		
		_	1000	1200	μA	3.0	HFINTOSC mode (Note 5)		
		—	1100	1500	μA	5.0			
D017			1.0	1.2	mA	1.8	Fosc = 16 MHz		
			1.5	1.85	mA	3.0	HFINTOSC mode		
D017		_	1	1.2	mA	1.8	Fosc = 16 MHz		
		_	1.5	1.7	mA	3.0	HFINTOSC mode (Note 5)		
		—	1.7	2.1	mA	5.0			
D018		_	210	240	μA	1.8	Fosc = 4 MHz		
		_	340	380	μA	3.0	EXTRC mode (Note 3, Note 5)		
D018		_	225	320	μA	1.8	Fosc = 4 MHz		
			360	445	μA	3.0	EXTRC mode (Note 3, Note 5)		
		—	410	650	μA	5.0			
D019			1.6	1.9	mA	3.0	Fosc = 20 MHz		
			2.0	2.8	mA	3.6	HS Oscillator mode		
D019		_	1.6	2	mA	3.0	Fosc = 20 MHz		
			1.9	3.2	mA	5.0	HS Oscillator mode (Note 5)		

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RA0).

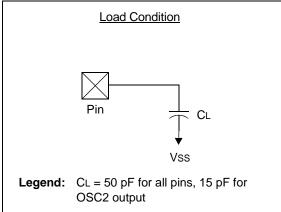
23.5 **Thermal Considerations**

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package		
			80	°C/W	28-pin SOIC package		
			90	°C/W	28-pin SSOP package		
			27.5	°C/W	28-pin UQFN 4x4mm package		
			27.5	°C/W	28-pin QFN 6x6mm package		
			47.2	°C/W	40-pin PDIP package		
			46	°C/W	44-pin TQFP package		
			24.4	°C/W	44-pin QFN 8x8mm package		
TH02 θJC	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package		
			24	°C/W	28-pin SOIC package		
			24	°C/W	28-pin SSOP package		
			24	°C/W	28-pin UQFN 4x4mm package		
			24	°C/W	28-pin QFN 6x6mm package		
			24.7	°C/W	40-pin PDIP package		
			14.5	°C/W	44-pin TQFP package		
			20	°C/W	44-pin QFN 8x8mm package		
TH03	Тјмах	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature


23.6 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

2. Tpp3			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 23-2: LOAD CONDITIONS

PIC16(L)F722/3/4/6/7

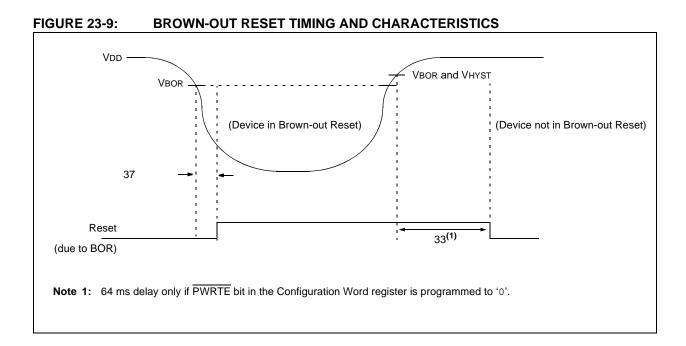
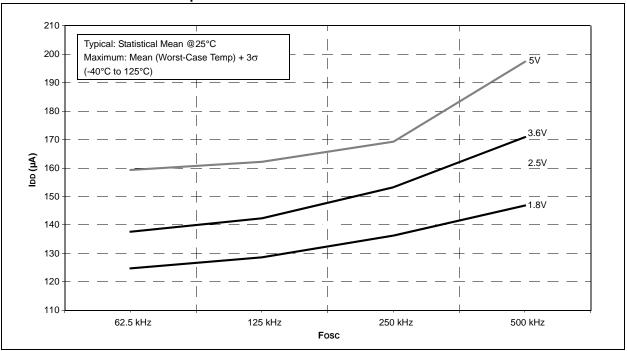
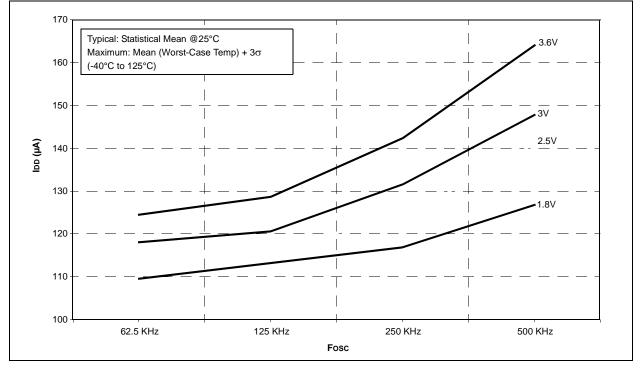
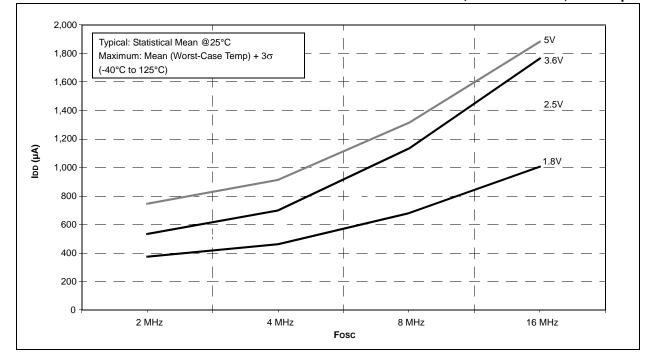
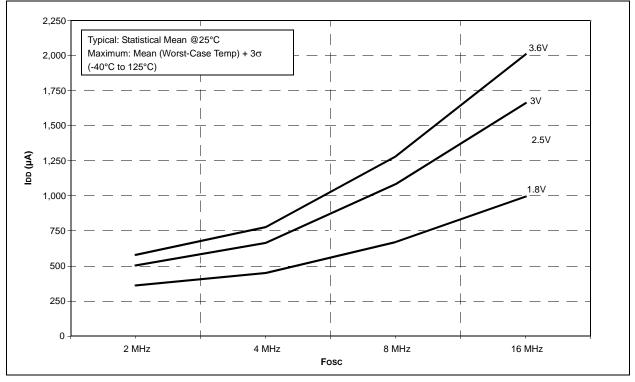
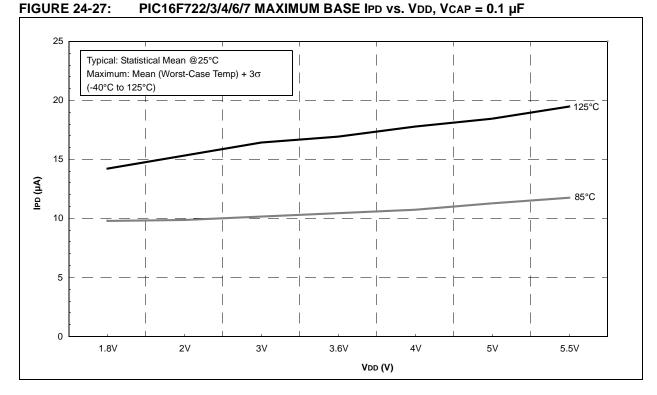
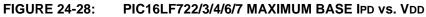
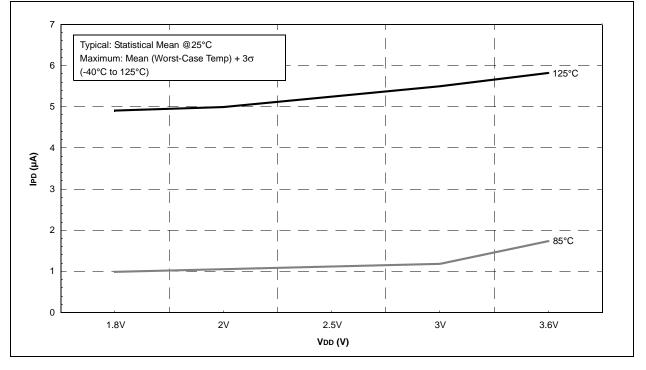





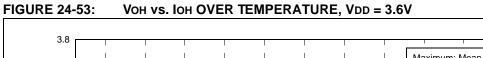
FIGURE 24-19: PIC16F722/3/4/6/7 MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP = 0.1μ F

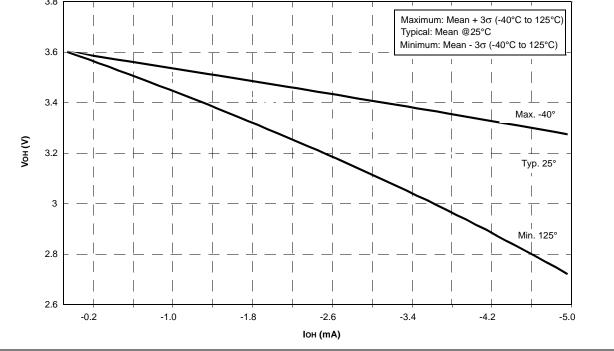







FIGURE 24-21: PIC16F722/3/4/6/7 MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP =1µF





© 2007-2015 Microchip Technology Inc.

PIC16(L)F722/3/4/6/7

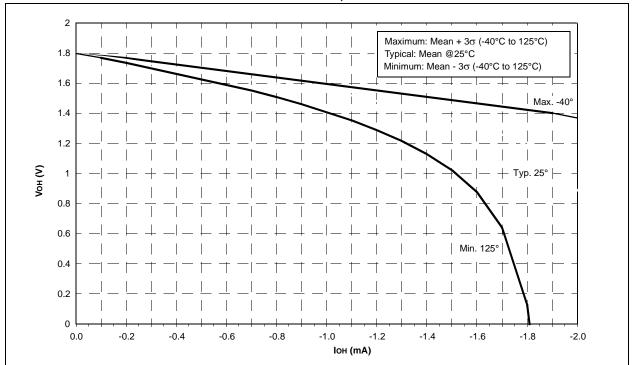
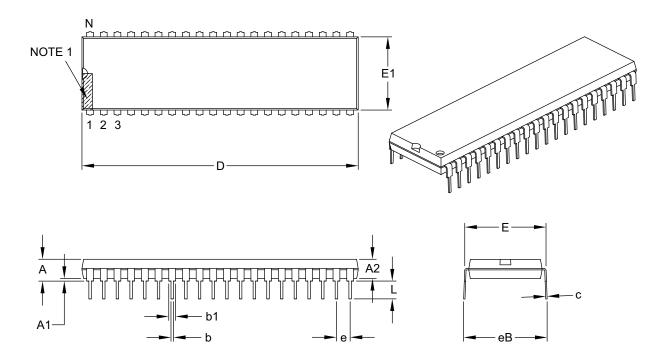



FIGURE 24-54: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	40				
Pitch	е	.100 BSC				
Top to Seating Plane	Α	-	-	.250		
Molded Package Thickness	A2	.125	-	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.590	-	.625		
Molded Package Width	E1	.485	-	.580		
Overall Length	D	1.980	-	2.095		
Tip to Seating Plane	L	.115	-	.200		
Lead Thickness	С	.008	-	.015		
Upper Lead Width	b1	.030	-	.070		
Lower Lead Width	b	.014	-	.023		
Overall Row Spacing §	eB	_	_	.700		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B