



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 20MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 25                                                                       |
| Program Memory Size        | 7KB (4K x 14)                                                            |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 192 x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                              |
| Data Converters            | A/D 11x8b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                           |
| Supplier Device Package    | 28-SOIC                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f723-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Name                                                                           | Function                     | Input<br>Type                | Output<br>Type                         | Description                                                                                               |
|--------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|
| RD3/CPS11                                                                      | RD3                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | CPS11                        | AN                           | —                                      | Capacitive sensing input 11.                                                                              |
| RD4/CPS12                                                                      | RD4                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | CPS12                        | AN                           | —                                      | Capacitive sensing input 12.                                                                              |
| RD5/CPS13                                                                      | RD5                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | CPS13                        | AN                           | —                                      | Capacitive sensing input 13.                                                                              |
| RD6/CPS14                                                                      | RD6                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | CPS14                        | AN                           | _                                      | Capacitive sensing input 14.                                                                              |
| RD7/CPS15                                                                      | RD7                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | CPS15                        | AN                           | _                                      | Capacitive sensing input 15.                                                                              |
| RE0/AN5                                                                        | RE0                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | AN5                          | AN                           | —                                      | A/D Channel 5 input.                                                                                      |
| RE1/AN6                                                                        | RE1                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | AN6                          | AN                           | —                                      | A/D Channel 6 input.                                                                                      |
| RE2/AN7                                                                        | RE2                          | ST                           | CMOS                                   | General purpose I/O.                                                                                      |
|                                                                                | AN7                          | AN                           |                                        | A/D Channel 7 input.                                                                                      |
| RE3/MCLR/VPP                                                                   | RE3                          | TTL                          | —                                      | General purpose input.                                                                                    |
|                                                                                | MCLR                         | ST                           | —                                      | Master Clear with internal pull-up.                                                                       |
|                                                                                | Vpp                          | HV                           | —                                      | Programming voltage.                                                                                      |
| VDD                                                                            | Vdd                          | Power                        | —                                      | Positive supply.                                                                                          |
| Vss                                                                            | Vss                          | Power                        | —                                      | Ground reference.                                                                                         |
| Legend: AN = Analog input or o<br>TTL = TTL compatible in<br>HV = High Voltage | utput CMO<br>nput ST<br>XTAL | S = CMO<br>= Schm<br>= Cryst | S compati<br>iitt Trigger<br>al levels | ible input or output OD = Open Drain<br>input with CMOS levels $I^2C$ = Schmitt Trigger input with $I^2C$ |

#### TABLE 1-1: PIC16(L)F722/3/4/6/7 PINOUT DESCRIPTION (CONTINUED)

**Note:** The PIC16F722/3/4/6/7 devices have an internal low dropout voltage regulator. An external capacitor must be connected to one of the available VCAP pins to stabilize the regulator. For more information, see **Section 5.0 "Low Dropout (LDO) Voltage Regulator**". The PIC16LF722/3/4/6/7 devices do not have the voltage regulator and therefore no external capacitor is required.

| Address               | Name                  | Bit 7         | Bit 6         | Bit 5                   | Bit 4          | Bit 3                   | Bit 2                 | Bit 1                 | Bit 0                 | Value on:<br>POR, BOR | Page   |
|-----------------------|-----------------------|---------------|---------------|-------------------------|----------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------|
| Bank 1                | k1                    |               |               |                         |                |                         |                       |                       |                       |                       |        |
| 80h <sup>(2)</sup>    | INDF                  | Addressing    | this location | uses conten             | ts of FSR to a | address data            | memory (not           | a physical re         | gister)               | xxxx xxxx             | 29,37  |
| 81h                   | OPTION_REG            | RBPU          | INTEDG        | TOCS                    | TOSE           | PSA                     | PS2                   | PS1                   | PS0                   | 1111 1111             | 26,37  |
| 82h <sup>(2)</sup>    | PCL                   | Program Co    | ounter (PC) L | east Signific           | ant Byte       |                         |                       |                       |                       | 0000 0000             | 28,37  |
| 83h <sup>(2)</sup>    | STATUS                | IRP           | RP1           | RP0                     | TO             | PD                      | Z                     | DC                    | С                     | 0001 1xxx             | 25,37  |
| 84h <sup>(2)</sup>    | FSR                   | Indirect Data | a Memory Ad   | ddress Point            | er             |                         |                       |                       |                       | xxxx xxxx             | 29,37  |
| 85h                   | TRISA                 | TRISA7        | TRISA6        | TRISA5                  | TRISA4         | TRISA3                  | TRISA2                | TRISA1                | TRISA0                | 1111 1111             | 51,37  |
| 86h                   | TRISB                 | TRISB7        | TRISB6        | TRISB5                  | TRISB4         | TRISB3                  | TRISB2                | TRISB1                | TRISB0                | 1111 1111             | 60,37  |
| 87h                   | TRISC                 | TRISC7        | TRISC6        | TRISC5                  | TRISC4         | TRISC3                  | TRISC2                | TRISC1                | TRISC0                | 1111 1111             | 70,37  |
| 88h <sup>(3)</sup>    | TRISD                 | TRISD7        | TRISD6        | TRISD5                  | TRISD4         | TRISD3                  | TRISD2                | TRISD1                | TRISD0                | 1111 1111             | 78,37  |
| 89h                   | TRISE                 | _             | —             | _                       | _              | TRISE3 <sup>(6)</sup>   | TRISE2 <sup>(3)</sup> | TRISE1 <sup>(3)</sup> | TRISE0 <sup>(3)</sup> | 1111                  | 81,37  |
| 8Ah <sup>(1, 2)</sup> | PCLATH                | _             | _             | _                       | Write Buffer   | for the upper           | 5 bits of the F       | Program Cou           | nter                  | 0 0000                | 28,37  |
| 8Bh <sup>(2)</sup>    | INTCON                | GIE           | PEIE          | TOIE                    | INTE           | RBIE                    | T0IF                  | INTF                  | RBIF                  | 0000 000x             | 44,37  |
| 8Ch                   | PIE1                  | TMR1GIE       | ADIE          | RCIE                    | TXIE           | SSPIE                   | CCP1IE                | TMR2IE                | TMR1IE                | 0000 0000             | 45,37  |
| 8Dh                   | PIE2                  | _             | —             | —                       | _              | _                       | _                     | _                     | CCP2IE                | 0                     | 46,37  |
| 8Eh                   | PCON                  | _             | _             | _                       | _              | _                       | _                     | POR                   | BOR                   | qq                    | 27,38  |
| 8Fh                   | T1GCON                | TMR1GE        | T1GPOL        | T1GTM                   | T1GSPM         | T <u>1GGO</u> /<br>DONE | T1GVAL                | T1GSS1                | T1GSS0                | 0000 0x00             | 118,38 |
| 90h                   | OSCCON                | _             | _             | IRCF1                   | IRCF0          | ICSL                    | ICSS                  | _                     | _                     | 10 qq                 | 87,38  |
| 91h                   | OSCTUNE               | _             | _             | TUN5                    | TUN4           | TUN3                    | TUN2                  | TUN1                  | TUN0                  | 00 0000               | 88,38  |
| 92h                   | PR2                   | Timer2 Peri   | od Register   |                         |                |                         |                       |                       |                       | 1111 1111             | 120,38 |
| 93h                   | SSPADD <sup>(5)</sup> | Synchronou    | s Serial Port | (I <sup>2</sup> C mode) | Address Regi   | ister                   |                       |                       |                       | 0000 0000             | 169,38 |
| 93h                   | SSPMSK <sup>(4)</sup> | Synchronou    | s Serial Port | (I <sup>2</sup> C mode) | Address Mas    | k Register              |                       |                       |                       | 1111 1111             | 180,38 |
| 94h                   | SSPSTAT               | SMP           | CKE           | D/A                     | Р              | S                       | R/W                   | UA                    | BF                    | 0000 0000             | 179,38 |
| 95h                   | WPUB                  | WPUB7         | WPUB6         | WPUB5                   | WPUB4          | WPUB3                   | WPUB2                 | WPUB1                 | WPUB0                 | 1111 1111             | 61,38  |
| 96h                   | IOCB                  | IOCB7         | IOCB6         | IOCB5                   | IOCB4          | IOCB3                   | IOCB2                 | IOCB1                 | IOCB0                 | 0000 0000             | 61,38  |
| 97h                   | —                     | Unimpleme     | nted          |                         |                |                         |                       |                       |                       | _                     | —      |
| 98h                   | TXSTA                 | CSRC          | TX9           | TXEN                    | SYNC           | _                       | BRGH                  | TRMT                  | TX9D                  | 0000 -010             | 147,38 |
| 99h                   | SPBRG                 | BRG7          | BRG6          | BRG5                    | BRG4           | BRG3                    | BRG2                  | BRG1                  | BRG0                  | 0000 0000             | 149,38 |
| 9Ah                   | -                     | Unimpleme     | nted          |                         |                |                         |                       |                       |                       | _                     | —      |
| 9Bh                   | -                     | Unimpleme     | nted          |                         |                |                         |                       |                       |                       | _                     | —      |
| 9Ch                   | APFCON                | _             | _             | _                       | _              | _                       | _                     | SSSEL                 | CCP2SEL               | 00                    | 50,38  |
| 9Dh                   | FVRCON                | FVRRDY        | FVREN         | _                       | _              | _                       | _                     | ADFVR1                | ADFVR0                | d000                  | 104,38 |
| 9Eh                   | _                     | Unimpleme     | nted          |                         |                |                         |                       |                       |                       | —                     | —      |
| 9Fh                   | ADCON1                | _             | ADCS2         | ADCS1                   | ADCS0          | _                       | —                     | ADREF1                | ADREF0                | 000000                | 100,38 |

#### **TABLE 2-1:** PIC16(L)F722/3/4/6/7 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are 1: transferred to the upper byte of the program counter.

2:

These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'. 3:

Accessible only when SSPM<3:0>  $\pm$  1001. Accessible only when SSPM<3:0>  $\pm$  1001. This bit is always '1' as RE3 is input-only. 4:

5: 6:

| Register              | Address | Power-on Reset/<br>Brown-out Reset <sup>(1)</sup> | MCLR Reset/<br>WDT Reset | Wake-up from Sleep through<br>Interrupt/Time out |
|-----------------------|---------|---------------------------------------------------|--------------------------|--------------------------------------------------|
| PCON                  | 8Eh     | dd                                                | (1,5)                    | uu                                               |
| T1GCON                | 8Fh     | 0000 0x00                                         | uuuu uxuu                | uuuu uxuu                                        |
| OSCCON                | 90h     | 10 qq                                             | 10 qq                    | uu qq                                            |
| OSCTUNE               | 91h     | 00 0000                                           | uu uuuu                  | uu uuuu                                          |
| PR2                   | 92h     | 1111 1111                                         | 1111 1111                | uuuu uuuu                                        |
| SSPADD                | 93h     | 0000 0000                                         | 0000 0000                | uuuu uuuu                                        |
| SSPMSK                | 93h     | 1111 1111                                         | 1111 1111                | uuuu uuuu                                        |
| SSPSTAT               | 94h     | 0000 0000                                         | 0000 0000                | uuuu uuuu                                        |
| WPUB                  | 95h     | 1111 1111                                         | 1111 1111                | uuuu uuuu                                        |
| IOCB                  | 96h     | 0000 0000                                         | 0000 0000                | uuuu uuuu                                        |
| TXSTA                 | 98h     | 0000 -010                                         | 0000 -010                | uuuu -uuu                                        |
| SPBRG                 | 99h     | 0000 0000                                         | 0000 0000                | uuuu uuuu                                        |
| APFCON                | 9Ch     | 00                                                | 00                       | uu                                               |
| FVRCON                | 9Dh     | q00000                                            | q00000                   | uuuuuu                                           |
| ADCON1                | 9Fh     | -00000                                            | -00000                   | -uuuuu                                           |
| CPSCON0               | 108h    | 0 0000                                            | 0 0000                   | u uuuu                                           |
| CPSCON1               | 109h    | 0000                                              | 0000                     | uuuu                                             |
| PMDATL                | 10Ch    | xxxx xxxx                                         | xxxx xxxx                | uuuu uuuu                                        |
| PMADRL                | 10Dh    | xxxx xxxx                                         | xxxx xxxx                | uuuu uuuu                                        |
| PMDATH                | 10Eh    | xx xxxx                                           | xx xxxx                  | uu uuuu                                          |
| PMADRH                | 10Fh    | x xxxx                                            | x xxxx                   | u uuuu                                           |
| ANSELA                | 185h    | 11 1111                                           | 11 1111                  | uu uuuu                                          |
| ANSELB                | 186h    | 11 1111                                           | 11 1111                  | uu uuuu                                          |
| ANSELD <sup>(6)</sup> | 188h    | 1111 1111                                         | 1111 1111                | uuuu uuuu                                        |
| ANSELE                | 189h    | 111                                               | 111                      | uuu                                              |
| PMCON1                | 18Ch    | 10                                                | 10                       | u u                                              |

#### TABLE 3-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 3-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: PIC16F724/727/PIC16LF724/727 only.

Note

#### 4.5.3 PIE2 REGISTER

Γ.

bit 0

The PIE2 register contains the interrupt enable bits, as shown in Register 4-3.

### Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

#### REGISTER 4-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0  |
|-------|-----|-----|-----|-----|-----|-----|--------|
| —     | —   | —   | —   | —   | —   | —   | CCP2IE |
| bit 7 |     |     |     |     |     |     | bit 0  |

| Legena:               |                |                             |                    |
|-----------------------|----------------|-----------------------------|--------------------|
| R = Readable bit W    | = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR '1' | = Bit is set   | 0' = Bit is cleared         | x = Bit is unknown |

#### bit 7-1 Unimplemented: Read as '0'

CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt

0 = Disables the CCP2 interrupt

#### 6.4 PORTC and TRISC Registers

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 6-11). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-3 shows how to initialize PORTC.

Reading the PORTC register (Register 6-10) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISC register (Register 6-11) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

#### EXAMPLE 6-3: INITIALIZING PORTC

| BANKSEL | PORTC       | ;                      |
|---------|-------------|------------------------|
| CLRF    | PORTC       | ;Init PORTC            |
| BANKSEL | TRISC       | ;                      |
| MOVLW   | B'00001100' | ;Set RC<3:2> as inputs |
| MOVWF   | TRISC       | ;and set RC<7:4,1:0>   |
|         |             | ;as outputs            |
|         |             |                        |

The location of the CCP2 function is controlled by the CCP2SEL bit in the APFCON register (refer to Register 6-1)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7   | RC6   | RC5   | RC4   | RC3   | RC2   | RC1   | RC0   |
| bit 7 |       |       |       |       |       |       | bit 0 |

#### REGISTER 6-10: PORTC: PORTC REGISTER

| Legend:           |                  |                                    |                    |
|-------------------|------------------|------------------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits

1 = Port pin is > VIH 0 = Port pin is < VIL

### REGISTER 6-11: TRISC: PORTC TRI-STATE REGISTER

| R/W-1  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:           |                  |                                    |                    |
|-------------------|------------------|------------------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

bit 7-0 **TRISC<7:0>:** PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output









| REGISTER        | 9-2. ADCO      |                                                           | IT NOL KEGI       | SIEKI             |                    |                  |        |  |  |  |  |
|-----------------|----------------|-----------------------------------------------------------|-------------------|-------------------|--------------------|------------------|--------|--|--|--|--|
| U-0             | R/W-0          | R/W-0                                                     | R/W-0             | U-0               | U-0                | R/W-0            | R/W-0  |  |  |  |  |
| _               | ADCS2          | ADCS1                                                     | ADCS0             | —                 | _                  | ADREF1           | ADREF0 |  |  |  |  |
| bit 7           |                |                                                           |                   |                   |                    |                  | bit 0  |  |  |  |  |
| Legend:         |                |                                                           |                   |                   |                    |                  |        |  |  |  |  |
| R = Readable    | bit            | W = Writable bi                                           | t                 | U = Unimplem      | ented bit, read as | s 'O'            |        |  |  |  |  |
| -n = Value at P | POR            | '1' = Bit is set                                          |                   | '0' = Bit is clea | red                | x = Bit is unkno | own    |  |  |  |  |
|                 |                |                                                           |                   |                   |                    |                  |        |  |  |  |  |
| bit 7           | Unimplemente   | ed: Read as '0'                                           |                   |                   |                    |                  |        |  |  |  |  |
| bit 6-4         | ADCS<2:0>: A   | ADCS<2:0>: A/D Conversion Clock Select bits               |                   |                   |                    |                  |        |  |  |  |  |
|                 | 000 = Fosc/2   | 000 = Fosc/2                                              |                   |                   |                    |                  |        |  |  |  |  |
|                 | 001 = Fosc/8   | 001 = Fosc/8                                              |                   |                   |                    |                  |        |  |  |  |  |
|                 | 010 = Fosc/32  | 010 = Fosc/32                                             |                   |                   |                    |                  |        |  |  |  |  |
|                 | 011 = FRC (clo | 011 = FRC (clock supplied from a dedicated RC oscillator) |                   |                   |                    |                  |        |  |  |  |  |
|                 | 100 = Fosc/4   | 100 = Fosc/4                                              |                   |                   |                    |                  |        |  |  |  |  |
|                 | 101 = FOSC/16  | 101 = FOSC/16                                             |                   |                   |                    |                  |        |  |  |  |  |
|                 | 110 = FOSC/64  | 110 = FOSC/64                                             |                   |                   |                    |                  |        |  |  |  |  |
|                 |                | ock supplied nom                                          | a dedicated RC    | oscillator)       |                    |                  |        |  |  |  |  |
| bit 3-2         | Unimplemente   | ed: Read as '0'                                           |                   |                   |                    |                  |        |  |  |  |  |
| bit 1-0         | ADREF<1:0>:    | ADREF<1:0>: Voltage Reference Configuration bits          |                   |                   |                    |                  |        |  |  |  |  |
|                 | 0x = VREF is c | connected to VDD                                          | 1                 |                   |                    |                  |        |  |  |  |  |
|                 | 10 = VREF is c | connected to exte                                         | rnal VREF (RA3/   | (AN3)             |                    |                  |        |  |  |  |  |
|                 | 11 = VREF is 0 | connected to inte                                         | rnal Fixed Voltag | ge Reference      |                    |                  |        |  |  |  |  |
|                 |                |                                                           |                   |                   |                    |                  |        |  |  |  |  |

#### REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

#### REGISTER 9-3: ADRES: ADC RESULT REGISTER

| R/W-x  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-0 **ADRES<7:0>**: ADC Result Register bits 8-bit conversion result.

#### 12.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 12-1 displays the Timer1 enable selections.

### TABLE 12-1: TIMER1 ENABLE SELECTIONS

| TMR10N | TMR1GE | Timer1<br>Operation |
|--------|--------|---------------------|
| 0      | 0      | Off                 |
| 0      | 1      | Off                 |
| 1      | 0      | Always On           |
| 1      | 1      | Count Enabled       |

#### 12.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 12-2 displays the clock source selections.

#### 12.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

#### 12.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI or the capacitive sensing oscillator signal. Either of these external clock sources can be synchronized to the microcontroller system clock or they can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

| Note: | In Counter mode, a falling edge must be      |
|-------|----------------------------------------------|
|       | registered by the counter prior to the first |
|       | incrementing rising edge after any one or    |
|       | more of the following conditions:            |

- Timer1 enabled after POR reset
- Write to TMR1H or TMR1L
- Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON= 1) when T1CKI is low.

| TMR1CS1 | TMR1CS0 | T10SCEN | Clock Source                           |
|---------|---------|---------|----------------------------------------|
| 0       | 1       | x       | System Clock (FOSC)                    |
| 0       | 0       | x       | Instruction Clock (Fosc/4)             |
| 1       | 1       | x       | Capacitive Sensing Oscillator          |
| 1       | 0       | 0       | External Clocking on T1CKI Pin         |
| 1       | 0       | 1       | Oscillator Circuit on T1OSI/T1OSO Pins |

#### TABLE 12-2: CLOCK SOURCE SELECTIONS

#### 16.1.2 AUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 16-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the AUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

#### 16.1.2.1 Enabling the Receiver

The AUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other AUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the AUSART. Clearing the SYNC bit of the TXSTA register configures the AUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the AUSART and automatically configures the RX/DT I/O pin as an input.

| Note: | When the SPEN bit is set the TX/CK I/O         |
|-------|------------------------------------------------|
|       | pin is automatically configured as an          |
|       | output, regardless of the state of the         |
|       | corresponding TRIS bit and whether or          |
|       | not the AUSART transmitter is enabled.         |
|       | The PORT latch is disconnected from the        |
|       | output driver so it is not possible to use the |
|       | TX/CK pin as a general purpose output.         |

#### 16.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. Refer to Section 16.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the AUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. Refer to Section 16.1.2.5 "Receive Overrun Error" for more information on overrun errors.

#### 16.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the AUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE interrupt enable bit of the PIE1 register
- PEIE peripheral interrupt enable bit of the INTCON register
- GIE global interrupt enable bit of the INTCON register

The RCIF interrupt flag bit of the PIR1 register will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

#### 16.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the AUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

| Note: | If all receive characters in the receive  |
|-------|-------------------------------------------|
|       | FIFO have framing errors, repeated reads  |
|       | of the RCREG will not clear the FERR bit. |

#### 16.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by setting the AUSART by clearing the SPEN bit of the RCSTA register.

#### 16.1.2.6 Receiving 9-bit Characters

The AUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the AUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

#### 16.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit of the PIR1 register. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

#### 17.1.2.4 Slave Select Operation

The  $\overline{SS}$  pin allows Synchronous Slave mode operation. The SPI must be in Slave mode with  $\overline{SS}$  pin control enabled (SSPM<3:0> = 0100). The associated TRIS bit for the  $\overline{SS}$  pin must be set, making  $\overline{SS}$  an input.

In Slave Select mode, when:

- SS = 0, The device operates as specified in Section 17.1.2 "Slave Mode".
- $\overline{SS} = 1$ , The SPI module is held in Reset and the SDO pin will be tri-stated.
  - Note 1: When the SPI is in Slave mode with  $\overline{SS}$  pin control enabled (SSPM<3:0> = 0100), the SPI module will reset if the  $\overline{SS}$  pin is driven high.
    - 2: If the SPI is used in Slave mode with CKE set, the SS pin control must be enabled.

When the SPI module resets, the bit counter is cleared to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit. Figure 17-6 shows the timing waveform for such a synchronization event.

| Note: | SSPSR must be reinitialized by writing to |
|-------|-------------------------------------------|
|       | the SSPBUF register before the data can   |
|       | be clocked out of the slave again.        |

#### 17.1.2.5 Sleep in Slave Mode

While in Sleep mode, the slave can transmit/receive data. The SPI Transmit/Receive Shift register operates asynchronously to the device on the externally supplied clock source. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the SSP Interrupt Flag bit will be set and if enabled, will wake the device from Sleep.



|                                |          |         |                 |                                                         |                                                |                             | c<br>v                                 |
|--------------------------------|----------|---------|-----------------|---------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------|
| SCK<br>(CKP = 0<br>(%8 x 8)    |          |         |                 |                                                         |                                                |                             |                                        |
| SCK<br>(CKP = 1                |          |         |                 |                                                         |                                                |                             | · · · · · · · · · · · · · · · · · · ·  |
| VATALA 40<br>2658-2608         |          |         | se<br>the<br>be | PSR must be rei<br>SSPBUF registe<br>plocked out of the | nitistized by<br>a before the<br>a slave again | i<br>writing to<br>data can | (<br>)<br>)<br>)<br>)<br>)<br>)<br>)   |
| S(X)                           |          |         |                 |                                                         |                                                |                             | ************************************** |
| <b>SDI</b><br>(88862 = 0)      | bit 7    |         |                 |                                                         | $\rightarrow$                                  |                             |                                        |
| Input<br>Sample<br>(2002 = 0)  | <u> </u> |         | 2               |                                                         | <u> </u>                                       |                             | <u></u>                                |
| Sisteri<br>Interrupt<br>Pag    | : :      | 8 8<br> |                 | 5 5<br>5 7                                              | ;<br>                                          |                             |                                        |
| 8557934.40<br>9599939 <u>5</u> |          |         |                 |                                                         | ····· 🖗 ·····                                  |                             | //.<br>                                |





| MOVF             | Move f                                                                                                                                                                                                                                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] MOVF f,d                                                                                                                                                                                                                                                                     |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                                                                                                                    |
| Operation:       | (f) $\rightarrow$ (dest)                                                                                                                                                                                                                                                             |
| Status Affected: | Z                                                                                                                                                                                                                                                                                    |
| Description:     | The contents of register f is<br>moved to a destination dependent<br>upon the status of d. If $d = 0$ ,<br>destination is W register. If $d = 1$ ,<br>the destination is file register f<br>itself. $d = 1$ is useful to test a file<br>register since status flag Z is<br>affected. |
| Words:           | 1                                                                                                                                                                                                                                                                                    |
| Cycles:          | 1                                                                                                                                                                                                                                                                                    |
| Example:         | MOVF FSR, 0                                                                                                                                                                                                                                                                          |
|                  | After Instruction<br>W = value in FSR<br>register<br>Z = 1                                                                                                                                                                                                                           |

| MOVWF            | Move W to f                                |
|------------------|--------------------------------------------|
| Syntax:          | [ <i>label</i> ] MOVWF f                   |
| Operands:        | $0 \leq f \leq 127$                        |
| Operation:       | $(W) \rightarrow (f)$                      |
| Status Affected: | None                                       |
| Description:     | Move data from W register to register 'f'. |
| Words:           | 1                                          |
| Cycles:          | 1                                          |
| Example:         | MOVW OPTION<br>F                           |
|                  | Before Instruction                         |
|                  | OPTION = 0xFF                              |
|                  | W = 0x4F                                   |
|                  | After Instruction                          |
|                  | OPTION = 0X4F                              |
|                  | vv = 0x4F                                  |

| MOVLW            | Move literal to W                                                                         |
|------------------|-------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] MOVLW k                                                                  |
| Operands:        | $0 \le k \le 255$                                                                         |
| Operation:       | $k \rightarrow (W)$                                                                       |
| Status Affected: | None                                                                                      |
| Description:     | The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's. |
| Words:           | 1                                                                                         |
| Cycles:          | 1                                                                                         |
| Example:         | MOVLW 0x5A                                                                                |
|                  | After Instruction<br>W = 0x5A                                                             |

| NOP              | No Operation  |  |  |  |  |  |
|------------------|---------------|--|--|--|--|--|
| Syntax:          | [label] NOP   |  |  |  |  |  |
| Operands:        | None          |  |  |  |  |  |
| Operation:       | No operation  |  |  |  |  |  |
| Status Affected: | None          |  |  |  |  |  |
| Description:     | No operation. |  |  |  |  |  |
| Words:           | 1             |  |  |  |  |  |
| Cycles:          | 1             |  |  |  |  |  |
| Example:         | NOP           |  |  |  |  |  |

#### 23.2 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended)

| PIC16LF722/3/4/6/7                     |                 | $\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$ |      |      |       |     |                                                                                 |  |  |  |  |
|----------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-----|---------------------------------------------------------------------------------|--|--|--|--|
| PIC16F7                                | 22/3/4/6/7      | $ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $  |      |      |       |     |                                                                                 |  |  |  |  |
| Param                                  | Device          | Min                                                                                                                                                                                                                                                           | Tynt | Max  | Unite |     | Conditions                                                                      |  |  |  |  |
| No.                                    | Characteristics |                                                                                                                                                                                                                                                               | iypi | max. | Onto  | Vdd | Note                                                                            |  |  |  |  |
| Supply Current (IDD) <sup>(1, 2)</sup> |                 |                                                                                                                                                                                                                                                               |      |      |       |     |                                                                                 |  |  |  |  |
| D009                                   | LDO Regulator   | -                                                                                                                                                                                                                                                             | 350  | _    | μA    | _   | HS, EC OR INTOSC/INTOSCIO (8-16 MHz)<br>Clock modes with all VCAP pins disabled |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 50   |      | μA    |     | All VCAP pins disabled                                                          |  |  |  |  |
|                                        |                 | —                                                                                                                                                                                                                                                             | 30   |      | μA    |     | VCAP enabled on RA0, RA5 or RA6                                                 |  |  |  |  |
|                                        |                 | —                                                                                                                                                                                                                                                             | 5    | —    | μΑ    | —   | LP Clock mode and Sleep (requires FVR and BOR to be disabled)                   |  |  |  |  |
| D010                                   |                 | _                                                                                                                                                                                                                                                             | 7.0  | 12   | μA    | 1.8 | Fosc = 32 kHz                                                                   |  |  |  |  |
|                                        |                 | —                                                                                                                                                                                                                                                             | 9.0  | 14   | μΑ    | 3.0 | LP Oscillator mode (Note 4),<br>-40°C $\leq$ TA $\leq$ +85°C                    |  |  |  |  |
| D010                                   |                 | _                                                                                                                                                                                                                                                             | 11   | 20   | μΑ    | 1.8 | Fosc = 32 kHz                                                                   |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 14   | 22   | μA    | 3.0 | LP Oscillator mode (Note 4),<br>$-40^{\circ}C < T_A < +85^{\circ}C$             |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 15   | 24   | μΑ    | 5.0 |                                                                                 |  |  |  |  |
| D011                                   |                 | —                                                                                                                                                                                                                                                             | 7.0  | 12   | μA    | 1.8 | Fosc = 32 kHz                                                                   |  |  |  |  |
|                                        |                 | _                                                                                                                                                                                                                                                             | 9.0  | 18   | μΑ    | 3.0 | LP Oscillator mode<br>-40°C $\leq$ TA $\leq$ +125°C                             |  |  |  |  |
| D011                                   |                 |                                                                                                                                                                                                                                                               | 11   | 21   | μA    | 1.8 | Fosc = 32 kHz                                                                   |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 14   | 25   | μΑ    | 3.0 | LP Oscillator mode (Note 4)<br>$-40^{\circ}C < T_A < +125^{\circ}C$             |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 15   | 27   | μA    | 5.0 |                                                                                 |  |  |  |  |
| D011                                   |                 | _                                                                                                                                                                                                                                                             | 110  | 150  | μΑ    | 1.8 | Fosc = 1 MHz                                                                    |  |  |  |  |
|                                        |                 | -                                                                                                                                                                                                                                                             | 150  | 215  | μΑ    | 3.0 | X1 Oscillator mode                                                              |  |  |  |  |
| D011                                   |                 |                                                                                                                                                                                                                                                               | 120  | 175  | μA    | 1.8 | Fosc = 1 MHz                                                                    |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 180  | 250  | μΑ    | 3.0 |                                                                                 |  |  |  |  |
| <b>D</b> 040                           |                 | _                                                                                                                                                                                                                                                             | 240  | 300  | μA    | 5.0 |                                                                                 |  |  |  |  |
| D012                                   |                 |                                                                                                                                                                                                                                                               | 230  | 300  | μA    | 1.8 | FOSC = 4 MHz<br>XT Oscillator mode                                              |  |  |  |  |
| Data                                   |                 | -                                                                                                                                                                                                                                                             | 400  | 600  | μA    | 3.0 |                                                                                 |  |  |  |  |
| D012                                   |                 |                                                                                                                                                                                                                                                               | 250  | 350  | μΑ    | 1.8 | XT Oscillator mode (Note 5)                                                     |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 420  | 750  | μΑ    | 3.0 | ,                                                                               |  |  |  |  |
| D013                                   |                 | -                                                                                                                                                                                                                                                             | 125  | 180  | μΑ    | 1.9 | Eose - 1 MHz                                                                    |  |  |  |  |
| 0013                                   |                 |                                                                                                                                                                                                                                                               | 230  | 270  | μΑ    | 3.0 | EC Oscillator mode                                                              |  |  |  |  |
| D013                                   |                 |                                                                                                                                                                                                                                                               | 150  | 205  | μΑ    | 1.8 | Fosc = 1 MHz                                                                    |  |  |  |  |
| 2010                                   |                 |                                                                                                                                                                                                                                                               | 225  | 320  | μΑ    | 3.0 | EC Oscillator mode (Note 5)                                                     |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 250  | 410  | μΑ    | 5.0 |                                                                                 |  |  |  |  |
|                                        |                 |                                                                                                                                                                                                                                                               | 200  | 410  | μΛ    | 0.0 |                                                                                 |  |  |  |  |

**Note 1:** The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

**3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RA0).





#### FIGURE 24-33: PIC16F722/3/4/6/7 BOR IPD vs. VDD, VCAP = 0.1 µF















FIGURE 24-65: PIC16F722/3/4/6/7 CAP SENSOR HYSTERESIS, POWER MODE = HIGH





#### 28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | Units         | MILLIMETERS |      |      |  |  |
|------------------------|---------------|-------------|------|------|--|--|
| Dim                    | ension Limits | MIN         | NOM  | MAX  |  |  |
| Number of Pins         | N             | 28          |      |      |  |  |
| Pitch                  | е             | 0.40 BSC    |      |      |  |  |
| Overall Height         | А             | 0.45        | 0.50 | 0.55 |  |  |
| Standoff               | A1            | 0.00        | 0.02 | 0.05 |  |  |
| Contact Thickness      | A3            | 0.127 REF   |      |      |  |  |
| Overall Width          | E             | 4.00 BSC    |      |      |  |  |
| Exposed Pad Width      | E2            | 2.55        | 2.65 | 2.75 |  |  |
| Overall Length         | D             | 4.00 BSC    |      |      |  |  |
| Exposed Pad Length     | D2            | 2.55        | 2.65 | 2.75 |  |  |
| Contact Width          | b             | 0.15        | 0.20 | 0.25 |  |  |
| Contact Length         | L             | 0.30        | 0.40 | 0.50 |  |  |
| Contact-to-Exposed Pad | K             | 0.20        | -    | -    |  |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
    - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2