

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f723t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Device Overview	
Memory Organization	
Resets	
Interrupts	
Low Dropout (LDO) Voltage Regulator	
I/O Ports	
Oscillator Module	
Device Configuration	
Analog-to-Digital Converter (ADC) Module	
Fixed Voltage Reference	
Timer0 Module	
Timer1 Module with Gate Control	
Timer2 Module	
Capacitive Sensing Module	
Capture/Compare/PWM (CCP) Module	
Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	
SSP Module Overview	159
Program Memory Read	
Power-Down Mode (Sleep)	
In-Circuit Serial Programming [™] (ICSP [™])	
Instruction Set Summary	
Development Support	
Electrical Specifications	
DC and AC Characteristics Graphs and Charts	
Packaging Information	
Appendix A: Data Sheet Revision History	
Appendix B: Migrating From Other PIC® Devices	
The Microchip Website	
Customer Change Notification Service	
Customer Support	
Product Identification System	279

IADLL	ABLE 5-1. STATUS BITS AND THEIR SIGNIFICANCE							
POR	BOR	то	PD	Condition				
0	x	1	1	Power-on Reset or LDO Reset				
0	x	0	x	Illegal, TO is set on POR				
0	x	x	0	legal, PD is set on POR				
1	0	1	1	Brown-out Reset				
1	1	0	1	VDT Reset				
1	1	0	0	VDT Wake-up				
1	1	u	u	MCLR Reset during normal operation				
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep				

TABLE 3-1: STATUS BITS AND THEIR SIGNIFICANCE

TABLE 3-2: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	0001 1xxx	0x
MCLR Reset during normal operation	0000h	000u uuuu	uu
MCLR Reset during Sleep	0000h	0001 Ouuu	uu
WDT Reset	0000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	0000h	0001 luuu	u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

4.5.4 PIR1 REGISTER

The PIR1 register contains the interrupt flag bits, as shown in Register 4-4.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	TMR1GIF: Timer1 Gate Interrupt Flag bit 1 = Timer1 Gate is inactive
	0 = Timer1 Gate is active
bit 6	ADIF: A/D Converter Interrupt Flag bit
	 1 = A/D conversion complete (must be cleared in software) 0 = A/D conversion has not completed or has not been started
bit 5	RCIF: USART Receive Interrupt Flag bit
	1 = The USART receive buffer is full (cleared by reading RCREG)0 = The USART receive buffer is not full
bit 4	TXIF: USART Transmit Interrupt Flag bit
	 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
	1 = The Transmission/Reception is complete (must be cleared in software)0 = Waiting to Transmit/Receive
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	Capture mode:
	 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred
	Compare mode:
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	<u>PWM mode</u> : Unused in this mode
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit
	1 = A Timer2 to PR2 match occurred (must be cleared in software)0 = No Timer2 to PR2 match occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	 1 = The TMR1 register overflowed (must be cleared in software) 0 = The TMR1 register did not overflow

6.2 PORTA and the TRISA Registers

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 6-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 6-1 shows how to initialize PORTA.

Reading the PORTA register (Register 6-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISA register (Register 6-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the

REGISTER 6-2: PORTA: PORTA REGISTER

TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSELA register must be initialized									
	to configure an analog channel as a digital									
	input. Pins configured as analog inputs									
	will read '0'.									

EXAMPLE 6-1:	INITIALIZING PORTA
BANKSEL PORTA CLRF PORTA BANKSEL ANSELA CLRF ANSELA BANKSEL TRISA MOVLW 0Ch MOVWF TRISA	; ;Init PORTA ; ;digital I/O ; ;Set RA<3:2> as inputs ;and set RA<7:4,1:0> ;as outputs

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	
bit 7								
l egend:								

Legena.			
R = Readable bit	t W = Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

RA<7:0>: PORTA I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 6-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0

bit 7-0

TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

6.5 **PORTD and TRISD Registers**

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 6-13). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-4 shows how to initialize PORTD.

Reading the PORTD register (Register 6-12) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

Note: PORTD is available on PIC16F724/LF724 and PIC16F727/LF727 only.

The TRISD register (Register 6-13) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 6-4: INITIALIZING PORTD

BANKSEL	PORTD	;
CLRF	PORTD	;Init PORTD
BANKSEL	ANSELD	
CLRF	ANSELD	;Make PORTD digital
BANKSEL	TRISD	;
MOVLW	B`00001100′	;Set RD<3:2> as inputs
MOVWF	TRISD	;and set RD<7:4,1:0>
		;as outputs

6.5.1 ANSELD REGISTER

The ANSELD register (Register 6-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELD register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

REGISTER 6-12: PORTD: PORTD REGISTER⁽¹⁾

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0		
bit 7 bit 0									

Legend:					
R = Readable bit	W = Writable bit	it U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 RD<7:0>: PORTD General Purpose I/O Pin bits

1 = Port pin is > VIH

0 = Port pin is < VIL

Note 1: PORTD is not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

PIC16(L)F722/3/4/6/7

REGISTER	19-2. ADCO		ITROL REG							
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0			
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable bi	t	U = Unimpleme	ented bit, read as	s 'O'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	wn			
bit 7	Unimplemente	ed: Read as '0'								
bit 6-4	ADCS<2:0>: A	/D Conversion C	lock Select bits							
	000 = Fosc/2									
	001 = Fosc/8									
	010 = Fosc/32	-								
	· · ·	ock supplied from	a dedicated RC	Coscillator)						
	100 = Fosc/4 101 = Fosc/16									
	101 = FOSC/10 110 = FOSC/64	-								
		, ock supplied from	a dedicated RC	coscillator)						
bit 3-2	Unimplemente	••		,						
bit 1-0	ADREF<1:0>:	Voltage Referend	e Configuration	bits						
	0x = VREF is connected to VDD									
	10 = VREF is c	connected to exte	rnal VREF (RA3	/AN3)						
			nal Fixed Voltag							

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

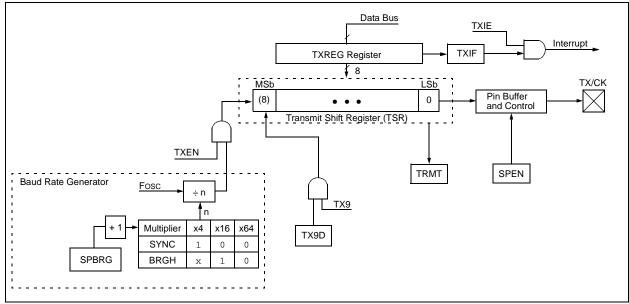
REGISTER 9-3: ADRES: ADC RESULT REGISTER

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **ADRES<7:0>**: ADC Result Register bits 8-bit conversion result.

16.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)


The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The AUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The AUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Sleep operation

Block diagrams of the AUSART transmitter and receiver are shown in Figure 16-1 and Figure 16-2.

FIGURE 16-1: AUSART TRANSMIT BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7				• •			bit (
Legend:						(a)				
R = Readable		W = Writable		-	mented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	lown			
bit 7	CDEN: Coriol	Port Enable b	:(1)							
				T and TX/CK n	ins as serial por	rt nine)				
		rt disabled (be			ins as senai poi	t pins)				
bit 6	RX9: 9-bit Re	ceive Enable b	oit							
	1 = Selects 9	-bit reception								
	0 = Selects 8	-bit reception								
bit 5	-	Receive Enal	ole bit							
	Asynchronous	<u>s mode</u> :								
	Don't care	mode - Maste	vr.							
	-	<u>Synchronous mode – Master</u> : 1 = Enables single receive								
		single receive								
		ared after rece	•	ete.						
	-	mode – Slave	<u>.</u>							
L:1 1	Don't care		Enchla hit							
bit 4		nuous Receive	Enable bit							
	Asynchronous mode: 1 = Enables receiver									
	0 = Disables									
	Synchronous	mode:								
		continuous rec continuous rec		ble bit CREN is	cleared (CREN	l overrides SRE	EN)			
bit 3										
DIL J	ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1):									
	1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set									
	0 = Disables	address detec	tion, all bytes		nd ninth bit can					
	<u>Asynchronous mode 8-bit (RX9 = 0)</u> :									
	Don't care Synchronous	modo:								
	Must be set to									
bit 2	FERR: Frami									
		-	updated by rea	adina RCREG I	edister and rec	eive next valid l	ovte)			
	 1 = Framing error (can be updated by reading RCREG register and receive next valid byte) 0 = No framing error 									
bit 1	OERR: Overr	un Error bit								
	1 = Overrun 0 = No overr		leared by clea	aring bit CREN)					
bit 0	RX9D: Ninth	bit of Received	l Data							
	This can be a	ddress/data bi	t or a parity bi	t and must be o	calculated by us	er firmware.				
	he AUSART m RISx = 1.	odule automa	tically change	es the pin fro	m tri-state to o	drive as neede	ed. Configur			

REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

17.2.2 START AND STOP CONDITIONS

During times of no data transfer (Idle time), both the clock line (SCL) and the data line (SDA) are pulled high through external pull-up resistors. The Start and Stop conditions determine the start and stop of data transmission. The Start condition is defined as a high-to-low transition of the SDA line while SCL is high. The Stop condition is defined as a low-to-high transition of the SDA line while SCL is high.

Figure 17-9 shows the Start and Stop conditions. A master device generates these conditions for starting and terminating data transfer. Due to the definition of the Start and Stop conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

17.2.3 ACKNOWLEDGE

After the valid reception of an address or data byte, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPBUF register with the received value currently in the SSPSR register. There are certain conditions that will cause the SSP module not to generate this ACK pulse. They include any or all of the following:

- The Buffer Full bit, BF of the SSPSTAT register, was set before the transfer was received.
- The SSP Overflow bit, SSPOV of the SSPCON register, was set before the transfer was received.
- The SSP Module is being operated in Firmware Master mode.

In such a case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF of the PIR1 register is set. Table 17-2 shows the results of when a data transfer byte is received, given the status of bits BF and SSPOV. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

FIGURE 17-9: START AND STOP CONDITIONS

Status Bits as Data Transfer is Received		$SSPSR \to SSPBUF$	Generate ACK	Set bit SSPIF (SSP Interrupt occurs	
BF	SSPOV		Pulse	if enabled)	
0	0	Yes	Yes	Yes	
1	0	No	No	Yes	
1	1	No	No	Yes	
0	1	No	No	Yes	

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

19.2 Wake-up Using Interrupts

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 19-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

: 1 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 02 03 04;01 	Q4. ~'
INT pin	!
INTF flag (INTCON reg.)	
GIE bit (INTCON reg.), Sleep	
PC V PC + 1 V PC + 2 V PC + 2 V PC + 2 V 0005h Instruction { Inst(PC) = Sleep Inst(PC + 1) Inst(PC + 2) Inst(0004h) Inst(0005h)	h)
Instruction Inst(PC - 1) Sleep Inst(PC + 1) Dummy Cycle Dummy Cycle Inst(0004	h)

Note 1: XT, HS or LP Oscillator mode assumed.

2: TOST = 1024 Tosc (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.

3: GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.

4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 0000	0000 0000
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	_	_	_	_	—	_	CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	_	_	—	—	—	—	CCP2IF	0	0

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

PIC16LF722/3/4/6/7 PIC16F722/3/4/6/7				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
D001	Vdd	Supply Voltage								
		PIC16LF722/3/4/6/7	1.8 1.8 2.3 2.5		3.6 3.6 3.6 3.6	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS			
D001		PIC16F722/3/4/6/7	1.8 1.8 2.3 2.5		5.5 5.5 5.5 5.5	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS			
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾								
		PIC16LF722/3/4/6/7	1.5		_	V	Device in Sleep mode			
D002*		PIC16F722/3/4/6/7	1.7	_	_	V	Device in Sleep mode			
	VPOR*	Power-on Reset Release Voltage	_	1.6	_	V				
	VPORR*	Power-on Reset Rearm Voltage								
		PIC16LF722/3/4/6/7	_	0.8	_	V	Device in Sleep mode			
		PIC16F722/3/4/6/7		1.7	_	V	Device in Sleep mode			
D003	Vfvr	Fixed Voltage Reference Voltage, Initial Accuracy	-8 -8 -8	 	6 6 6	% % %	$ \begin{array}{l} {\sf VFVR} = 1.024{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 2.048{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 4.096{\sf V}, {\sf VDD} \geq 4.75{\sf V}; \\ {\sf -40} \leq {\sf TA} \leq 85^{\circ}{\sf C} \end{array} $			
			-8 -8 -8		6 6 6	% % %	$ \begin{array}{l} V{\sf FVR} = 1.024V, \ V{\sf DD} \geq 2.5V \\ V{\sf FVR} = 2.048V, \ V{\sf DD} \geq 2.5V \\ V{\sf FVR} = 4.096V, \ V{\sf DD} \geq 4.75V; \\ -40 \leq {\sf TA} \leq 125^{\circ}{\sf C} \end{array} $			
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 3.2 "Power-on Reset (POR)" for details.			

23.1 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

23.4 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Continued)

		HARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature -40°C \leq TA \leq +85°C for industrial-40°C \leq TA \leq +125°C for extended						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D130	Eр	Cell Endurance	100	1k	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D131		VDD for Read	Vmin	—	_	V			
		Voltage on MCLR/VPP during Erase/Program	8.0	_	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
		VDD for Bulk Erase	2.7	3	_	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D132	VPEW	VDD for Write or Row Erase	2.7	_	—	V	VMIN = Minimum operating voltage VMAX = Maximum operating voltage		
	IPPPGM	Current on MCLR/VPP during Erase/Write	—	-	5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
	IDDPGM	Current on VDD during Erase/ Write	—		5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D133	TPEW	Erase/Write cycle time	-		2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
		VCAP Capacitor Charging	•	•					
D135		Charging current	—	200	_	μΑ			
D135A		Source/sink capability when charging complete	—	0.0	—	mA			

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

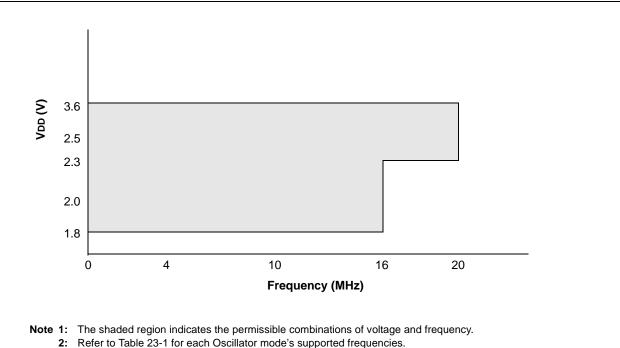
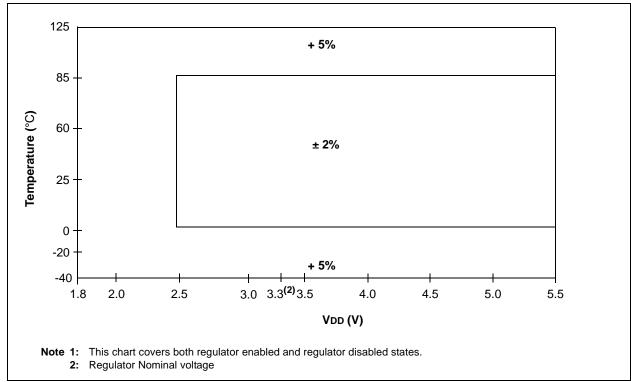
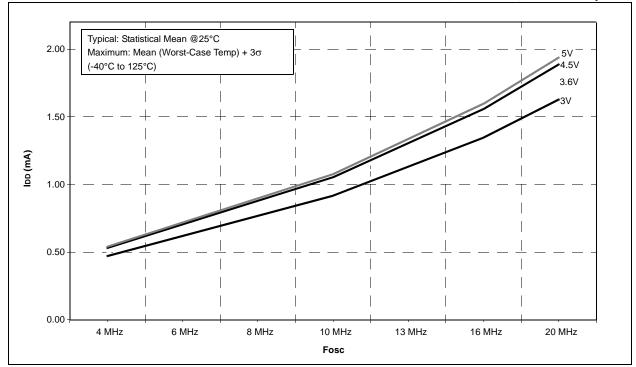
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

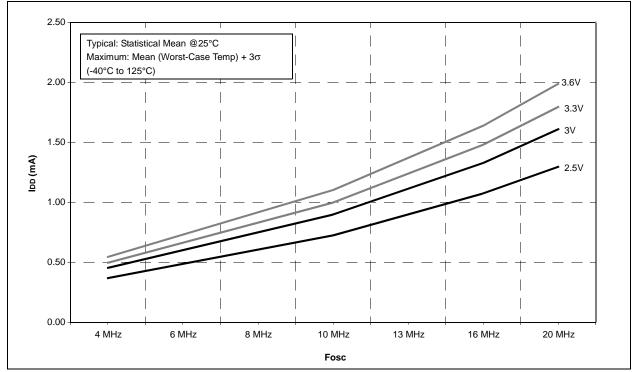
2: Negative current is defined as current sourced by the pin.

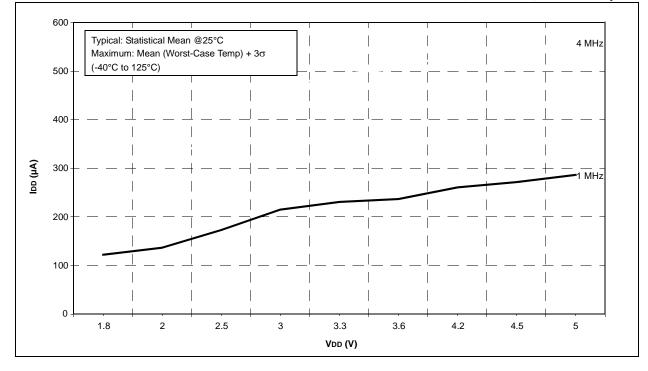
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

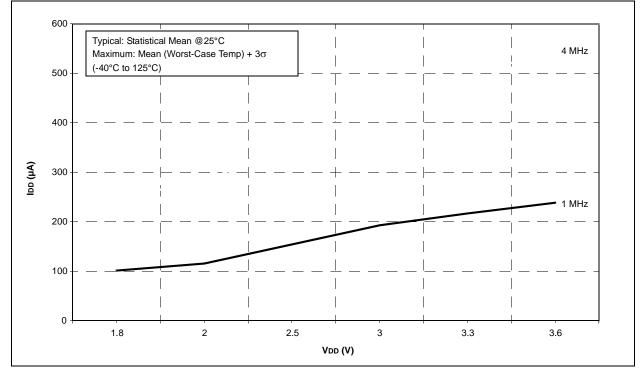
4: Including OSC2 in CLKOUT mode.

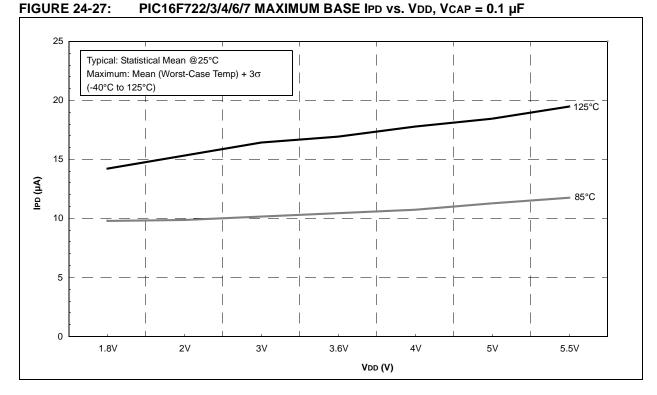
PIC16(L)F722/3/4/6/7

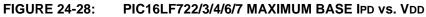




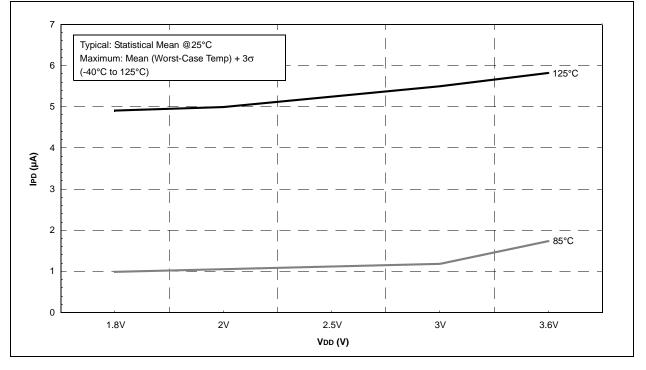

FIGURE 23-6: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

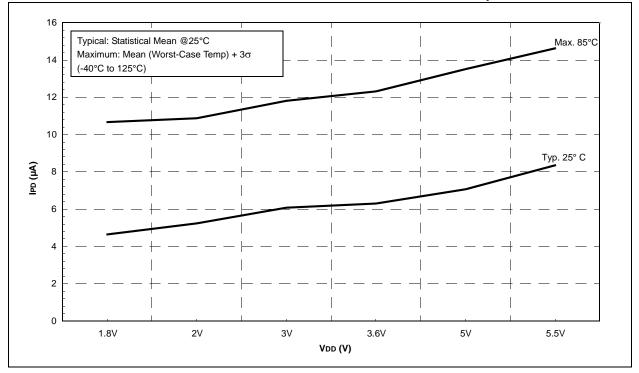


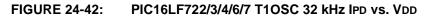


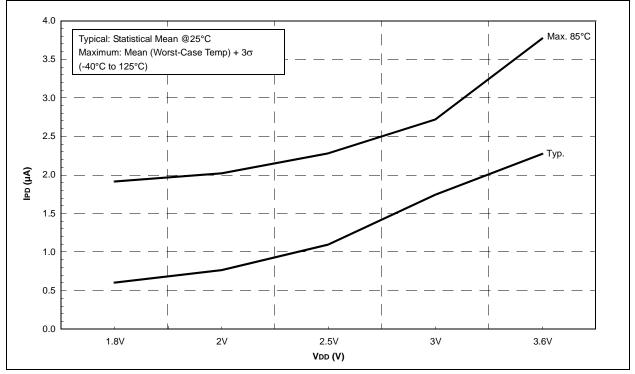


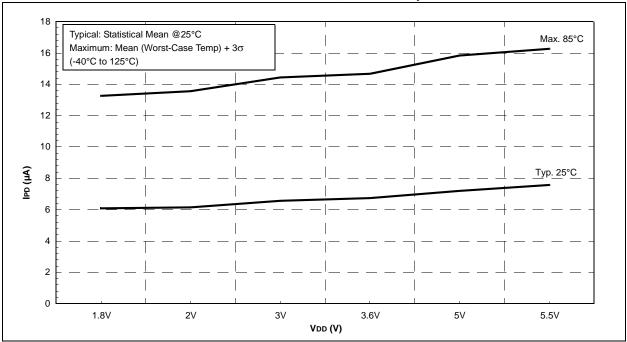


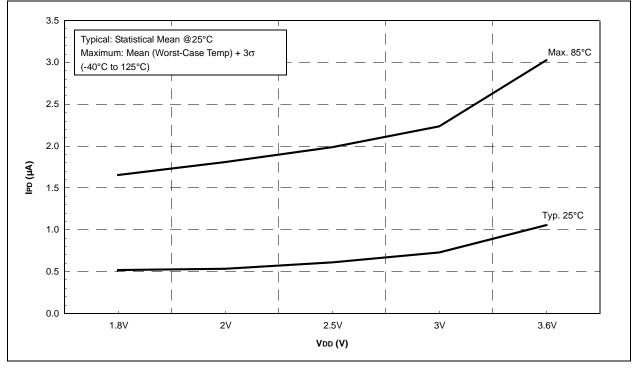

FIGURE 24-13: PIC16F722/3/4/6/7 MAXIMUM IDD vs. VDD OVER Fosc, XT MODE, VCAP = 0.1 µF








© 2007-2015 Microchip Technology Inc.



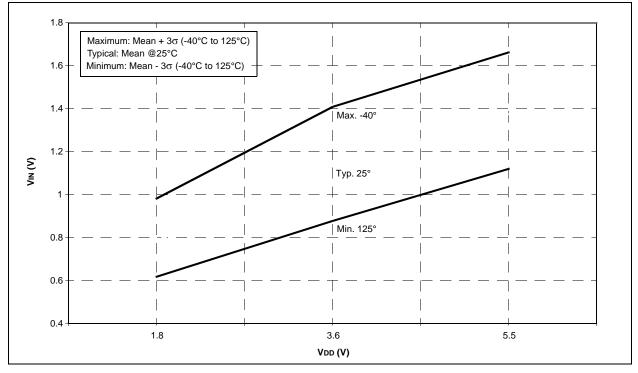
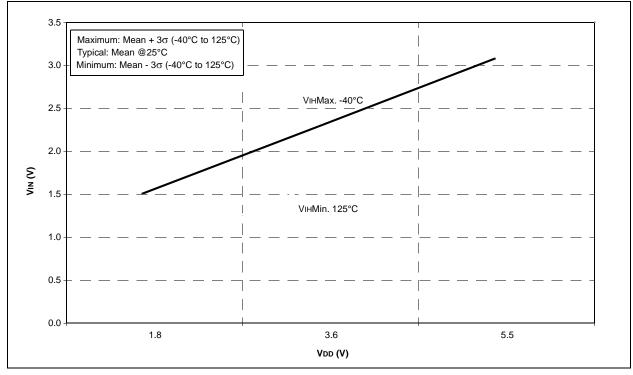
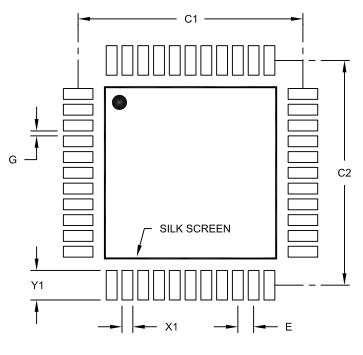


FIGURE 24-47: PIC16F722/3/4/6/7 WDT IPD vs. VDD, VCAP = 0.1 µF




FIGURE 24-49: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A