

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f723t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16(L)F722/3/4/6/7 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description		
RA0/AN0/SS/VCAP	RA0	TTL	CMOS	General purpose I/O.		
	AN0	AN		A/D Channel 0 input.		
	SS	ST	_	Slave Select input.		
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F72X only).		
RA1/AN1	RA1	TTL	CMOS	General purpose I/O.		
	AN1	AN	_	A/D Channel 1 input.		
RA2/AN2	RA2	TTL	CMOS	General purpose I/O.		
	AN2	AN	—	A/D Channel 2 input.		
RA3/AN3/Vref	RA3	TTL	CMOS	General purpose I/O.		
	AN3	AN	_	A/D Channel 3 input.		
	Vref	AN	—	A/D Voltage Reference input.		
RA4/CPS6/T0CKI	RA4	TTL	CMOS	General purpose I/O.		
	CPS6	AN	_	Capacitive sensing input 6.		
	T0CKI	ST	_	Timer0 clock input.		
RA5/AN4/CPS7/SS/VCAP	RA5	TTL	CMOS	General purpose I/O.		
	AN4	AN		A/D Channel 4 input.		
	CPS7	AN	—	Capacitive sensing input 7.		
	SS	ST	_	Slave Select input.		
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F72X only).		
RA6/OSC2/CLKOUT/VCAP	RA6	TTL	CMOS	General purpose I/O.		
	OSC2	—	XTAL	Crystal/Resonator (LP, XT, HS modes).		
	CLKOUT	_	CMOS	Fosc/4 output.		
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F72X only).		
RA7/OSC1/CLKIN	RA7	TTL	CMOS	General purpose I/O.		
	OSC1	XTAL	_	Crystal/Resonator (LP, XT, HS modes).		
	CLKIN	CMOS	_	External clock input (EC mode).		
	CLKIN	ST	_	RC oscillator connection (RC mode).		
RB0/AN12/CPS0/INT	RB0	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.		
	AN12	AN	_	A/D Channel 12 input.		
	CPS0	AN	_	Capacitive sensing input 0.		
	INT	ST	_	External interrupt.		
RB1/AN10/CPS1	RB1	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.		
	AN10	AN	—	A/D Channel 10 input.		
	CPS1	AN	—	Capacitive sensing input 1.		
RB2/AN8/CPS2	RB2	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.		
	AN8	AN	—	A/D Channel 8 input.		
	CPS2	AN		Capacitive sensing input 2.		
RB3/AN9/CPS3/CCP2	RB3	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.		
	AN9	AN		A/D Channel 9 input.		
	CPS3	AN	_	Capacitive sensing input 3.		
			CMOS	Capture/Compare/PWM2.		

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 0											
00h ⁽²⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	address data	memory (not	a physical re	gister)	xxxx xxxx	29,37
01h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	105,37
02h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	ant Byte					0000 0000	28,37
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	25,37
04h ⁽²⁾	FSR	Indirect Dat	a Memory Ad	dress Point	er					xxxx xxxx	29,37
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	51,37
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	60,37
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	70,37
08h ⁽³⁾	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	77,37
09h	PORTE	—	_	_	_	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	81,37
0Ah ^(1, 2)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the F	Program Cou	nter	0 0000	28,37
0Bh (2)	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	44,37
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	47,37
0Dh	PIR2	—	_	_	_	_	_	_	CCP2IF	0	48,37
0Eh	TMR1L	Holding Reg	gister for the	Least Signifi	cant Byte of t	he 16-bit TMI	R1 Register		•	XXXX XXXX	113,37
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	cant Byte of th	ne 16-bit TMR	R1 Register			XXXX XXXX	113,37
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	117,37
11h	TMR2	Timer2 Mod	ule Register							0000 0000	120,37
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	121,37
13h	SSPBUF	Synchronou	s Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	161,37
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	178,37
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	SB)					xxxx xxxx	130,37
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					xxxx xxxx	130,37
17h	CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	129,37
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	148,37
19h	TXREG	USART Tra	nsmit Data R	egister	•		•		•	0000 0000	147,37
1Ah	RCREG	USART Red	eive Data R	egister						0000 0000	145,37
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register 2 (LSB)					xxxx xxxx	130,37
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register 2 (MSB)					xxxx xxxx	130,37
1Dh	CCP2CON	_	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	129,37
1Eh	ADRES	A/D Result	Register						•	xxxx xxxx	100,37
1Fh	ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	99,37

TABLE 2-1: PIC16(L)F722/3/4/6/7 SPECIAL FUNCTION REGISTER SUMMARY

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter. These registers can be addressed from any bank. These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'. Accessible only when SSPM<3:0> = 1001. Accessible only when SSPM<3:0> \neq 1001. This bit is always '1' as RE3 is input-only. Note 1:

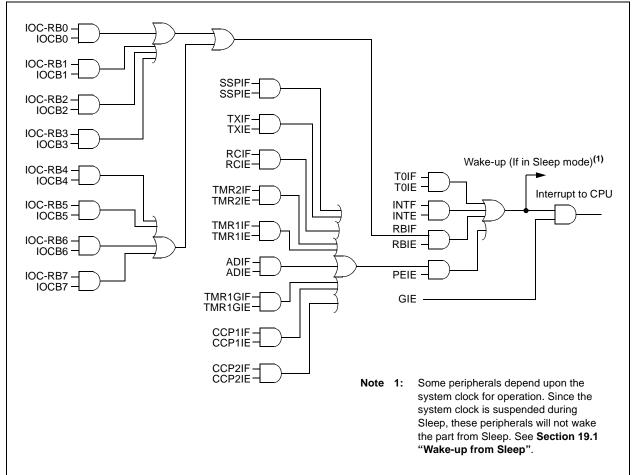
2:

3:

4:

5:

6:


4.0 INTERRUPTS

The PIC16(L)F722/3/4/6/7 device family features an interruptible core, allowing certain events to preempt normal program flow. An Interrupt Service Routine (ISR) is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

The PIC16(L)F722/3/4/6/7 device family has 12 interrupt sources, differentiated by corresponding interrupt enable and flag bits:

- Timer0 Overflow Interrupt
- External Edge Detect on INT Pin Interrupt
- PORTB Change Interrupt
- Timer1 Gate Interrupt
- A/D Conversion Complete Interrupt
- AUSART Receive Interrupt
- AUSART Transmit Interrupt
- SSP Event Interrupt
- CCP1 Event Interrupt
- · Timer2 Match with PR2 Interrupt
- Timer1 Overflow Interrupt
- CCP2 Event Interrupt

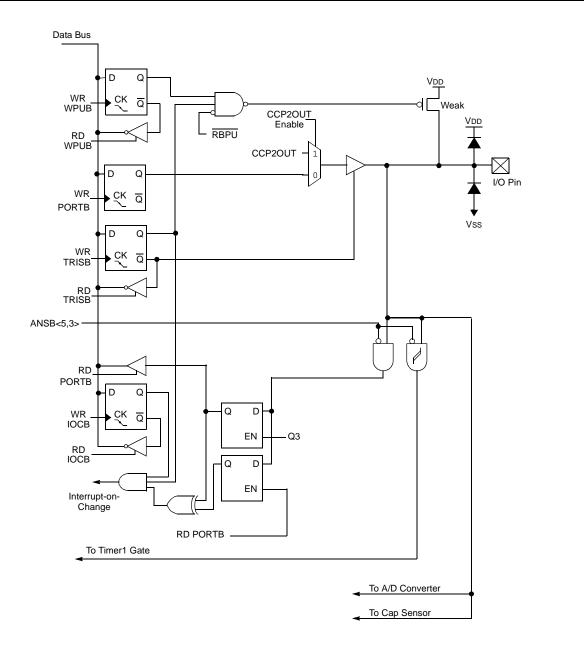
A block diagram of the interrupt logic is shown in Figure 4-1.

FIGURE 4-1: INTERRUPT LOGIC

5.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The PIC16F722/3/4/6/7 devices differ from the PIC16LF722/3/4/6/7 devices due to an internal Low Dropout (LDO) voltage regulator. The PIC16F722/3/4/6/7 devices contain an internal LDO, while the PIC16LF722/3/4/6/7 ones do not.

The lithography of the die allows a maximum operating voltage of 3.6V on the internal digital logic. In order to continue to support 5.0V designs, a LDO voltage regulator is integrated on the die. The LDO voltage regulator allows for the internal digital logic to operate at 3.2V, while I/O's operate at 5.0V (VDD).


The LDO voltage regulator requires an external bypass capacitor for stability. One of three pins, denoted as VCAP, can be configured for the external bypass capacitor. It is recommended that the capacitor be a ceramic cap between 0.1 to $1.0 \,\mu$ F. The VCAP pin is not intended to supply power to external loads. An external voltage regulator should be used if this functionality is required. In addition, external devices should not supply power to the VCAP pin.

On power-up, the external capacitor will look like a large load on the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information, refer to **Section 23.0 "Electrical Specifications"**.

See Configuration Word 2 register (Register 8-2) for VCAP enable bits.

PIC16(L)F722/3/4/6/7

FIGURE 6-10: BLOCK DIAGRAM OF RB5

6.5.6 RD4/CPS12

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

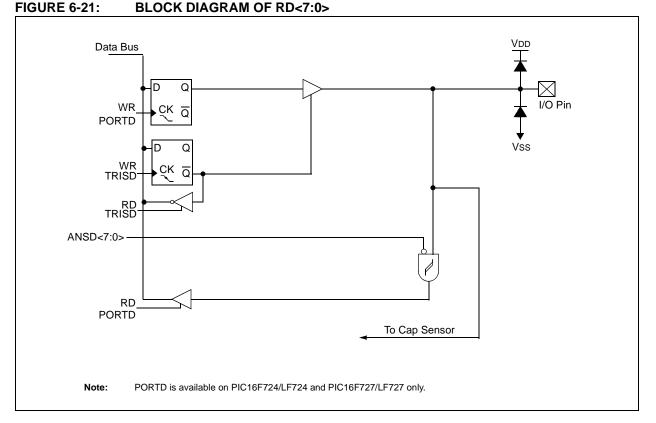
- a general purpose I/O
- · a capacitive sensing input

6.5.7 RD5/CPS13

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- a capacitive sensing input

6.5.8 RD6/CPS14


Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.9 RD7/CPS15

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

TABLE 6-4: SUMM	IARY OF REGISTERS ASSOCIATED WITH PORTD ⁽¹⁾
-----------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
CPSCON0	CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	0 0000	0 0000
CPSCON1		—	—	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	0000	0000
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	xxxx xxxx
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.**Note 1:**These registers are not implemented on the PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

© 2007-2015 Microchip Technology Inc.

DS40001341F-page 79

10.0 FIXED VOLTAGE REFERENCE

This device contains an internal voltage regulator. To provide a reference for the regulator, a band gap reference is provided. This band gap is also user accessible via an A/D converter channel.

User level band gap functions are controlled by the FVRCON register, which is shown in Register 10-1.

REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER

R-q	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
FVRRDY	FVREN	—	—	—	—	ADFVR1	ADFVR0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
q = Value depe	ends on condition	on					
q = Value depe	ends on condition	on					

bit 7	FVRRDY ⁽¹⁾ : Fixed Voltage Reference Ready Flag bit
	0 = Fixed Voltage Reference output is not active or stable
	1 = Fixed Voltage Reference output is ready for use
bit 6	FVREN ⁽²⁾ : Fixed Voltage Reference Enable bit
	0 = Fixed Voltage Reference is disabled
	1 = Fixed Voltage Reference is enabled
bit 5-2	Unimplemented: Read as '0'
bit 1-0	ADFVR<1:0>: A/D Converter Fixed Voltage Reference Selection bits
	00 = A/D Converter Fixed Voltage Reference Peripheral output is off.
	01 = A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)
	$10 = A/D$ Converter Fixed Voltage Reference Peripheral output is $2x (2.048V)^{(2)}$
	11 = A/D Converter Fixed Voltage Reference Peripheral output is $4x (4.096V)^{(2)}$
Note 1:	FVRRDY is always '1' for the PIC16F72X devices.

2: Fixed Voltage Reference output cannot exceed VDD.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7		ull-ups are dis	abled	dual port latch	values		
bit 6	•	errupt Edge Se on rising edge on falling edge	of INT pin				
bit 5	1 = Transition	Clock Source on T0CKI pin astruction cycle	or CPSOSC s				
bit 4		Source Edge t on high-to-lov t on low-to-hig	w transition or				
bit 3		er Assignmen is assigned to is assigned to	the WDT	nodule			
bit 2-0	PS<2:0>: Pre	escaler Rate S	elect bits				
	BIT	VALUE TMR0 R	ATE WDT RA	TE			
	0 0 1 1 1	00 1:2 01 1:4 10 1:8 11 1:1 00 1:3 01 1:6 10 1:1	1:2 1:4 1:8 1:16 4 1:32 28				
TABLE 11-1:			TERS ASSO		H TIMERO		

REGISTER 11-1: OPTION_REG: OPTION REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CPSCON0	CPSON				CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TMR0	Timer0 Mo	dule Register							XXXX XXXX	uuuu uuuu
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

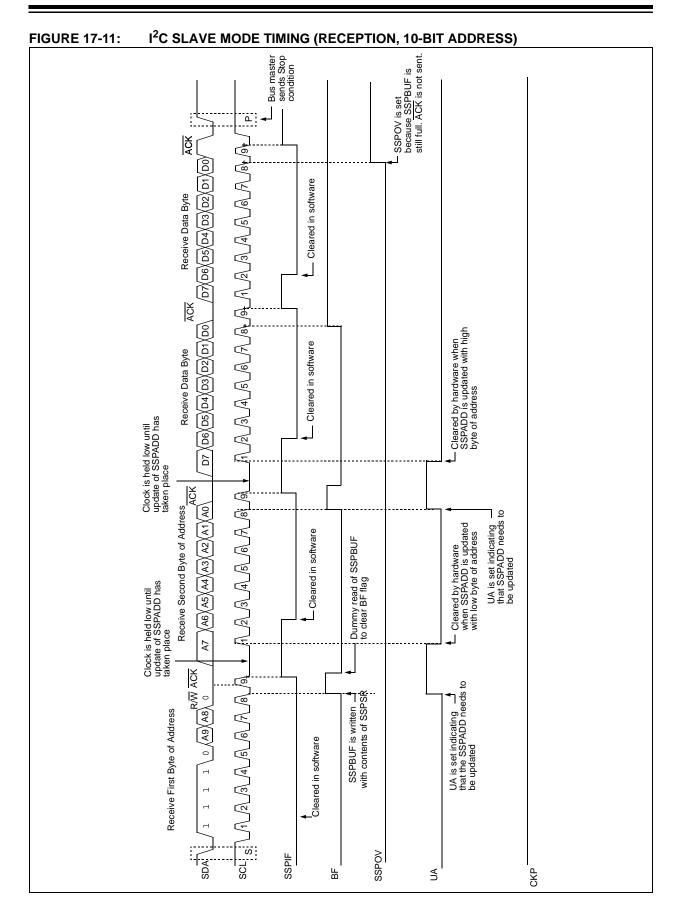
Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

12.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 12-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	TMR1CS<1:0>: Timer1 Clock Source Select bits
	11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)
	10 = Timer1 clock source is pin or oscillator:
	<u>If T1OSCEN = 0</u> : External clock from T1CKI pin (on the rising edge)
	$\frac{1}{10000000000000000000000000000000000$
	Crystal oscillator on T1OSI/T1OSO pins
	01 = Timer1 clock source is system clock (Fosc)
	00 = Timer1 clock source is instruction clock (Fosc/4)
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1:8 Prescale value
	10 = 1:4 Prescale value 01 = 1:2 Prescale value
	00 = 1:1 Prescale value
bit 3	T10SCEN: LP Oscillator Enable Control bit
	1 = Dedicated Timer1 oscillator circuit enabled
	0 = Dedicated Timer1 oscillator circuit disabled
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	$\underline{TMR1CS<1:0>} = \underline{1X}$
	 1 = Do not synchronize external clock input 0 = Synchronize external clock input with system clock (Fosc)
	0 = Synchronize external clock input with system clock (FOSC)
	<u>TMR1CS<1:0> = 0X</u>
	This bit is ignored. Timer1 uses the internal clock when $TMR1CS<1:0 > = 1X$.
bit 1	Unimplemented: Read as '0'
bit 0	TMR1ON: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1
	Clears Timer1 Gate flip-flop

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL	Capture/Con	npare/PWM R	egister X Lov	v Byte					XXXX XXXX	uuuu uuuu
CCPRxH	Capture/Con	npare/PWM R	egister X Hig	h Byte					XXXX XXXX	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	_			—			CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	—	-	-	—	-	—	CCP2IF	0	0
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	0000 0x00
TMR1L	1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	uuuu uuuu
TMR1H	Holding Regi	ister for the M	lost Significar	nt Byte of the	16-bit TMR1 F	Register			xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.

PIC16(L)F722/3/4/6/7

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7			1		1	1	bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7		•		it is still transr	nitting the previ	ous word (mus	t be cleared in
oit 6	0 = No collisi SSPOV: Rece	ion eive Overflow I					
		Fransmit mode.			holding the pre software in eith	vious byte. SSF ner mode.	OV is a "don't
bit 5	1 = Enables t	chronous Seria he serial port a serial port and	nd configures	the SDA and	SCL pins as se port pins	rial port pins ⁽²⁾	
bit 4	1 = Release o	Polarity Select b control of SCL ck low (clock st		to ensure data	a setup time.)		
bit 3-0	SSPM<3:0>: 0110 = I ² C S 0111 = I ² C S 1000 = Rese 1001 = Load 1010 = Rese	Synchronous S lave mode, 7-b lave mode, 10- rved SSPMSK regis rved irmware Contro rved	Serial Port Mo it address bit address ster at SSPAD	de Select bits D SFR Addres	_{SS} (1)		
	1110 = I ² C S	lave mode, 7-b			p bit interrupts top bit interrupts		
Note 1: \	When this mode is	selected, any r	eads or writes	to the SSPADD	SFR address a	ccesses the SSI	PMSK register.

REGISTER 17-3: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (I²C MODE)

- - 2: When enabled, these pins must be properly configured as input or output using the associated TRIS bit.

19.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If the Watchdog Timer is enabled:

- WDT will be cleared but keeps running.
- PD bit of the STATUS register is cleared.
- TO bit of the STATUS register is set.
- Oscillator driver is turned off.
- Timer1 oscillator is unaffected
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs, with no external circuitry drawing current from the I/O pin. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level when external $\overline{\text{MCLR}}$ is enabled.

Note: A Reset generated by a WDT time out does not drive MCLR pin low.

19.1 Wake-up from Sleep

The device can wake up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, PORTB change or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred.

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 Interrupt. Timer1 must be operating as an asynchronous counter.
- USART Receive Interrupt (Synchronous Slave mode only)
- 3. A/D conversion (when A/D clock source is RC)
- 4. Interrupt-on-change
- 5. External Interrupt from INT pin
- 6. Capture event on CCP1 or CCP2
- 7. SSP Interrupt in SPI or I²C Slave mode

Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from Sleep. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

PIC16(L)F722/3/4/6/7

RLF	Rotate Left f through Carry								
Syntax:	[<i>label</i>] RLF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	See description below								
Status Affected:	С								
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'. -C Register f								
Words:	1								
Cycles:	1								
Example:	RLF REG1,0								
	Before Instruction								
	REG1 = 1110 0110								
	C = 0								
	After Instruction								
	REG1 = 1110 0110								
	$W = 1100 \ 1100$								
	C = 1								

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					
	C Register f					

SUBLW	Subtract W from literal						
Syntax:	[<i>label</i>] SUBLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \text{ - } (W) \to (V)$	V)					
Status Affected:	C, DC, Z						
Description:	The W register is subtracted (2's complement method) from the 8-b literal 'k'. The result is placed in th W register.						
	C = 0	W > k					
	C = 1	$W \leq k$					

DC = 0

DC = 1

W<3:0> > k<3:0>

 $W < 3:0 > \le k < 3:0 >$

PIC16LF	PIC16LF722/3/4/6/7				$ \begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $						
PIC16F722/3/4/6/7				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Sym.	Characteristic	Characteristic Min. Typ† Max. Units		Conditions						
D001	Vdd	Supply Voltage									
		PIC16LF722/3/4/6/7	1.8 1.8 2.3 2.5		3.6 3.6 3.6 3.6	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS				
D001		PIC16F722/3/4/6/7	1.8 1.8 2.3 2.5		5.5 5.5 5.5 5.5	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS				
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾									
		PIC16LF722/3/4/6/7	1.5		_	V	Device in Sleep mode				
D002*		PIC16F722/3/4/6/7	1.7	_	_	V	Device in Sleep mode				
	VPOR*	Power-on Reset Release Voltage	_	1.6	_	V					
	VPORR*	Power-on Reset Rearm Voltage									
		PIC16LF722/3/4/6/7	_	0.8	_	V	Device in Sleep mode				
		PIC16F722/3/4/6/7		1.7	_	V	Device in Sleep mode				
D003	Vfvr	Fixed Voltage Reference Voltage, Initial Accuracy	-8 -8 -8	 	6 6 6	% % %	$ \begin{array}{l} {\sf VFVR} = 1.024{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 2.048{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 4.096{\sf V}, {\sf VDD} \geq 4.75{\sf V}; \\ {\sf -40} \leq {\sf TA} \leq 85^{\circ}{\sf C} \end{array} $				
			-8 -8 -8		6 6 6	% % %	$ \begin{array}{l} V{\sf FVR} = 1.024V, \ V{\sf DD} \geq 2.5V \\ V{\sf FVR} = 2.048V, \ V{\sf DD} \geq 2.5V \\ V{\sf FVR} = 4.096V, \ V{\sf DD} \geq 4.75V; \\ -40 \leq {\sf TA} \leq 125^{\circ}{\sf C} \end{array} $				
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 3.2 "Power-on Reset (POR)" for details.				

23.1 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

23.2 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended) (Continued)

PIC16LF7	722/3/4/6/7	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $							
PIC16F722/3/4/6/7			l Operati g tempera	ature -	$40^{\circ}\text{C} \le \text{T}$	ess otherwise stated) $\Delta \le +85^{\circ}$ C for industrial $\Delta \le +125^{\circ}$ C for extended			
Param	Device Min.		Тур†	Max.	Units		Conditions		
No.	Characteristics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Vdd	Note		
	Supply Current (IDD) ^{(1,}	2)							
D014		_	290	330	μA	1.8	Fosc = 4 MHz		
		_	460	500	μA	3.0	EC Oscillator mode		
D014			300	430	μA	1.8	Fosc = 4 MHz		
			450	655	μA	3.0	EC Oscillator mode (Note 5)		
		—	500	730	μΑ	5.0			
D015		_	100	130	μA	1.8	Fosc = 500 kHz		
		_	120	150	μA	3.0	MFINTOSC mode		
D015		_	115	195	μA	1.8	Fosc = 500 kHz		
		_	135	200	μΑ	3.0	MFINTOSC mode (Note 5)		
		—	150	220	μA	5.0			
D016		_	650	800	μΑ	1.8	Fosc = 8 MHz		
			1000	1200	μA	3.0	HFINTOSC mode		
D016		_	625	850	μA	1.8	Fosc = 8 MHz		
		_	1000	1200	μA	3.0	HFINTOSC mode (Note 5)		
		—	1100	1500	μA	5.0			
D017		_	1.0	1.2	mA	1.8	Fosc = 16 MHz		
			1.5	1.85	mA	3.0	HFINTOSC mode		
D017		_	1	1.2	mA	1.8	Fosc = 16 MHz		
		_	1.5	1.7	mA	3.0	HFINTOSC mode (Note 5)		
		—	1.7	2.1	mA	5.0			
D018		_	210	240	μA	1.8	Fosc = 4 MHz		
		_	340	380	μA	3.0	EXTRC mode (Note 3, Note 5)		
D018		_	225	320	μA	1.8	Fosc = 4 MHz		
			360	445	μA	3.0	EXTRC mode (Note 3, Note 5)		
		—	410	650	μA	5.0			
D019			1.6	1.9	mA	3.0	Fosc = 20 MHz		
			2.0	2.8	mA	3.6	HS Oscillator mode		
D019		_	1.6	2	mA	3.0	Fosc = 20 MHz		
		_	1.9	3.2	mA	5.0	HS Oscillator mode (Note 5)		

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

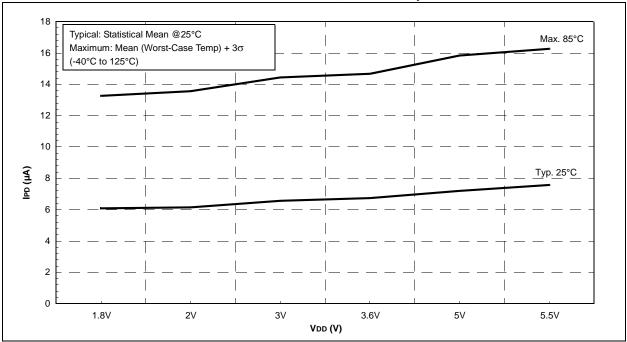
4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RA0).

23.3 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Power-Down) (Continued)

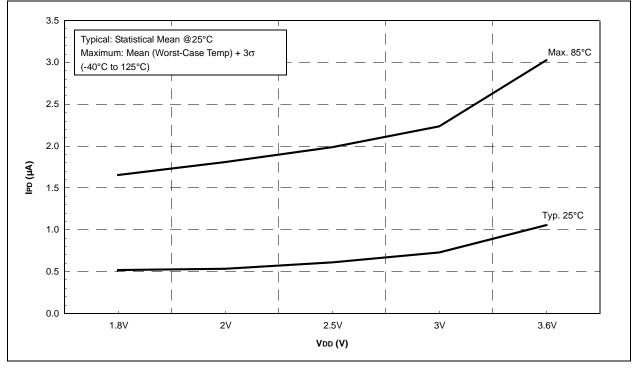
PIC16LF722/3/4/6/7				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$						
PIC16F722/3/4/6/7				rd Operations temperations temperations and temperations and temperations and the second seco		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Device Characteristics	Тур†	Max. +85°C	Max. +125°C	Units		Conditions			
NO.				+05 C	+125 C		Vdd	Note		
	Power-down Base Current	(IPD) ⁽²⁾	1	1	r					
D027			0.06	0.7	5.0	μA	1.8	A/D Current (Note 1, Note 4), no		
			0.08	1.0	5.5	μΑ	3.0	conversion in progress		
D027			6	10.7	18	μΑ	1.8	A/D Current (Note 1, Note 4), no		
			7	10.6	20	μΑ	3.0	conversion in progress		
		—	7.2	11.9	22	μΑ	5.0			
D027A		—	250	400	—	μA	1.8	A/D Current (Note 1, Note 4),		
		—	250	400	—	μΑ	3.0	conversion in progress		
D027A			280	430		μA	1.8	A/D Current (Note 1, Note 4,		
			280	430	_	μA	3.0	Note 5), conversion in progress		
			280	430		μA	5.0			
D028			2.2	3.2	14.4	μΑ	1.8	Cap Sense Low Power		
		—	3.3	4.4	15.6	μA	3.0	Oscillator mode		
D028		—	6.5	13	21	μΑ	1.8	Cap Sense Low Power		
		—	8	14	23	μΑ	3.0	Oscillator mode		
		—	8	14	25	μA	5.0			
D028A		—	4.2	6	17	μA	1.8	Cap Sense Medium Power		
		—	6	7	18	μA	3.0	Oscillator mode		
D028A		_	8.5	15.5	23	μA	1.8	Cap Sense Medium Power		
		—	11	17	24	μA	3.0	Oscillator mode		
		—	11	18	27	μA	5.0			
D028B		—	12	14	25	μA	1.8	Cap Sense High Power		
		—	32	35	44	μA	3.0	Oscillator mode		
D028B		—	16	20	31	μΑ	1.8	Cap Sense High Power		
		_	36	41	50	μΑ	3.0	Oscillator mode		
		_	42	49	58	μA	5.0			

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

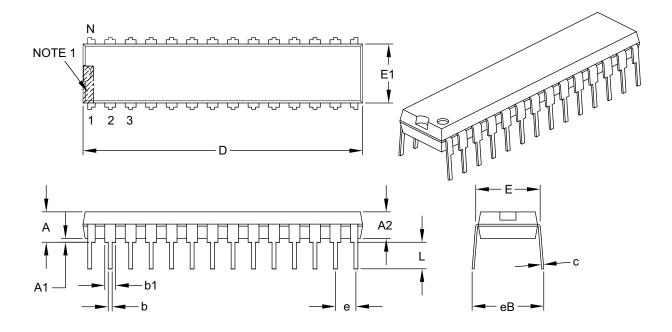
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled


4: A/D oscillator source is FRC

5: 0.1 μ F capacitor on VCAP (RA0).

FIGURE 24-47: PIC16F722/3/4/6/7 WDT IPD vs. VDD, VCAP = 0.1 µF



25.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES					
	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		.100 BSC				
Top to Seating Plane	А	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	-	.430			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15