




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 20MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 36                                                                       |
| Program Memory Size        | 7KB (4K x 14)                                                            |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 192 x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                              |
| Data Converters            | A/D 14x8b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 40-UFQFN Exposed Pad                                                     |
| Supplier Device Package    | 40-UQFN (5x5)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f724-e-mv |
|                            |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.0 DEVICE OVERVIEW

The PIC16(L)F722/3/4/6/7 devices are covered by this data sheet. They are available in 28/40/44-pin packages. Figure 1-1 shows a block diagram of the PIC16F722/723/726/PIC16LF722/723/726 devices and Figure 1-2 shows a block diagram of the PIC16F724/727/PIC16LF724/727 devices. Table 1-1 shows the pinout descriptions.

## TABLE 1-1: PIC16(L)F722/3/4/6/7 PINOUT DESCRIPTION

| Name                 | Function | Input<br>Type | Output<br>Type | Description                                                                                          |
|----------------------|----------|---------------|----------------|------------------------------------------------------------------------------------------------------|
| RA0/AN0/SS/VCAP      | RA0      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | AN0      | AN            |                | A/D Channel 0 input.                                                                                 |
|                      | SS       | ST            | _              | Slave Select input.                                                                                  |
|                      | VCAP     | Power         | Power          | Filter capacitor for Voltage Regulator (PIC16F72X only).                                             |
| RA1/AN1              | RA1      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | AN1      | AN            | _              | A/D Channel 1 input.                                                                                 |
| RA2/AN2              | RA2      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | AN2      | AN            | —              | A/D Channel 2 input.                                                                                 |
| RA3/AN3/Vref         | RA3      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | AN3      | AN            | _              | A/D Channel 3 input.                                                                                 |
|                      | Vref     | AN            | —              | A/D Voltage Reference input.                                                                         |
| RA4/CPS6/T0CKI       | RA4      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | CPS6     | AN            | _              | Capacitive sensing input 6.                                                                          |
|                      | T0CKI    | ST            | _              | Timer0 clock input.                                                                                  |
| RA5/AN4/CPS7/SS/VCAP | RA5      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | AN4      | AN            |                | A/D Channel 4 input.                                                                                 |
|                      | CPS7     | AN            | —              | Capacitive sensing input 7.                                                                          |
|                      | SS       | ST            | _              | Slave Select input.                                                                                  |
|                      | VCAP     | Power         | Power          | Filter capacitor for Voltage Regulator (PIC16F72X only).                                             |
| RA6/OSC2/CLKOUT/VCAP | RA6      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | OSC2     | —             | XTAL           | Crystal/Resonator (LP, XT, HS modes).                                                                |
|                      | CLKOUT   | _             | CMOS           | Fosc/4 output.                                                                                       |
|                      | VCAP     | Power         | Power          | Filter capacitor for Voltage Regulator (PIC16F72X only).                                             |
| RA7/OSC1/CLKIN       | RA7      | TTL           | CMOS           | General purpose I/O.                                                                                 |
|                      | OSC1     | XTAL          | _              | Crystal/Resonator (LP, XT, HS modes).                                                                |
|                      | CLKIN    | CMOS          | _              | External clock input (EC mode).                                                                      |
|                      | CLKIN    | ST            | _              | RC oscillator connection (RC mode).                                                                  |
| RB0/AN12/CPS0/INT    | RB0      | TTL           | CMOS           | General purpose I/O. Individually controlled inter-<br>rupt-on-change. Individually enabled pull-up. |
|                      | AN12     | AN            | _              | A/D Channel 12 input.                                                                                |
|                      | CPS0     | AN            | _              | Capacitive sensing input 0.                                                                          |
|                      | INT      | ST            | _              | External interrupt.                                                                                  |
| RB1/AN10/CPS1        | RB1      | TTL           | CMOS           | General purpose I/O. Individually controlled inter-<br>rupt-on-change. Individually enabled pull-up. |
|                      | AN10     | AN            | —              | A/D Channel 10 input.                                                                                |
|                      | CPS1     | AN            | —              | Capacitive sensing input 1.                                                                          |
| RB2/AN8/CPS2         | RB2      | TTL           | CMOS           | General purpose I/O. Individually controlled inter-<br>rupt-on-change. Individually enabled pull-up. |
|                      | AN8      | AN            | —              | A/D Channel 8 input.                                                                                 |
|                      | CPS2     | AN            |                | Capacitive sensing input 2.                                                                          |
| RB3/AN9/CPS3/CCP2    | RB3      | TTL           | CMOS           | General purpose I/O. Individually controlled inter-<br>rupt-on-change. Individually enabled pull-up. |
|                      | AN9      | AN            |                | A/D Channel 9 input.                                                                                 |
|                      | CPS3     | AN            | _              | Capacitive sensing input 3.                                                                          |
|                      |          |               | CMOS           | Capture/Compare/PWM2.                                                                                |

#### FIGURE 2-4:

## PIC16F722/LF722 SPECIAL FUNCTION REGISTERS

| Indirect addr. <sup>(*)</sup> | 00h     | Indirect addr. <sup>(*)</sup> | 80h      | Indirect addr. <sup>(*)</sup> | 100h | Indirect addr.(*) | 180h |
|-------------------------------|---------|-------------------------------|----------|-------------------------------|------|-------------------|------|
| TMR0                          | 01h     | OPTION                        | 81h      | TMR0                          | 101h | OPTION            | 181h |
| PCL                           | 02h     | PCL                           | 82h      | PCL                           | 102h | PCL               | 182h |
| STATUS                        | 03h     | STATUS                        | 83h      | STATUS                        | 103h | STATUS            | 183h |
| FSR                           | 04h     | FSR                           | 84h      | FSR                           | 104h | FSR               | 184h |
| PORTA                         | 05h     | TRISA                         | 85h      |                               | 105h | ANSELA            | 185h |
| PORTB                         | 06h     | TRISB                         | 86h      |                               | 106h | ANSELB            | 186h |
| PORTC                         | 07h     | TRISC                         | 87h      |                               | 107h |                   | 187h |
|                               | 08h     | -                             | 88h      | CPSCON0                       | 108h |                   | 188h |
| PORTE                         | 09h     | TRISE                         | 89h      | CPSCON1                       | 109h |                   | 189h |
| PCLATH                        | 0Ah     | PCLATH                        | 8Ah      | PCLATH                        | 10Ah | PCLATH            | 18Ah |
| INTCON                        | 0Bh     | INTCON                        | 8Bh      | INTCON                        | 10Bh | INTCON            | 18Bh |
| PIR1                          | 0Ch     | PIE1                          | 8Ch      | PMDATL                        | 10Ch | PMCON1            | 18Ch |
| PIR2                          | 0Dh     | PIE2                          | 8Dh      | PMADRL                        | 10Dh | Reserved          | 18Dh |
| TMR1L                         | 0Eh     | PCON                          | 8Eh      | PMDATH                        | 10Eh | Reserved          | 18Eh |
| TMR1H                         | 0Fh     | T1GCON                        | 8Fh      | PMADRH                        | 10Fh | Reserved          | 18Fh |
| T1CON                         | 10h     | OSCCON                        | 90h      |                               | 110h |                   | 190h |
| TMR2                          | 11h     | OSCTUNE                       | 91h      |                               | 111h |                   | 191h |
| T2CON                         | 12h     | PR2                           | 92h      |                               | 112h |                   | 192h |
| SSPBUF                        | 13h     | SSPADD/SSPMSK                 | 93h      |                               | 113h |                   | 193h |
| SSPCON                        | 14h     | SSPSTAT                       | 94h      |                               | 114h |                   | 194h |
| CCPR1L                        | 15h     | WPUB                          | 95h      |                               | 115h |                   | 195h |
| CCPR1H                        | 16h     | IOCB                          | 96h      |                               | 116h |                   | 196h |
| CCP1CON                       | 17h     | -                             | 97h      |                               | 117h |                   | 197h |
| RCSTA                         | 18h     | TXSTA                         | 98h      |                               | 118h |                   | 198h |
| TXREG                         | 19h     | SPBRG                         | 99h      |                               | 119h |                   | 199h |
| RCREG                         | 1Ah     |                               | 9Ah      |                               | 11Ah |                   | 19Ah |
| CCPR2L                        | 1Bh     |                               | 9Bh      |                               | 11Bh |                   | 19Bh |
| CCPR2H                        | 1Ch     | APFCON                        | 9Ch      |                               | 11Ch |                   | 19Ch |
| CCP2CON                       | 1Dh     | FVRCON                        | 9Dh      |                               | 11Dh |                   | 19Dh |
| ADRES                         | 1Eh     |                               | 9Eh      |                               | 11Eh |                   | 19Eh |
| ADCON0                        | 1Fh     | ADCON1                        | 9Fh      |                               | 11Fh |                   | 19Fh |
|                               | 20h     | -                             | A0h      |                               | 120h |                   | 1A0h |
|                               |         | General                       |          |                               |      |                   |      |
|                               |         | Purpose                       |          |                               |      |                   |      |
|                               |         | Register                      |          |                               |      |                   |      |
| General                       |         | 32 Bytes                      |          |                               |      |                   |      |
| Purpose                       |         |                               | BFh      |                               |      |                   |      |
| Register                      |         |                               | C0h      |                               |      |                   |      |
| 96 Bytes                      |         |                               | EFh      |                               | 16Fh |                   | 1EFh |
|                               |         |                               | F0h      |                               | 170h |                   | 1F0h |
|                               |         | Accesses                      |          | Accesses                      |      | Accesses          |      |
|                               |         | 70h-7Fh                       |          | 70h-7Fh                       |      | 70h-7Fh           |      |
|                               | 7Fh     |                               | FFh      |                               | 17Fh |                   | 1FFh |
| Bank 0                        | 1, 4, 1 | Bank 1                        |          | Bank 2                        |      | Bank 3            |      |
| Dalik U                       |         | Ddiik I                       |          | Dalik Z                       |      | Dalik J           |      |
| gend: = Un                    | implem  | ented data memory lo          | cations. | read as '0'.                  |      |                   |      |

## 6.2.2 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the A/D Converter (ADC), refer to the appropriate section in this data sheet.

## 6.2.2.1 RA0/AN0/SS/VCAP

Figure 6-1 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a slave select input for the SSP<sup>(1)</sup>
- a Voltage Regulator Capacitor pin (PIC16F72X only)

## **Note:** SS pin location may be selected as RA5 or RA0.

## 6.2.2.2 RA1/AN1

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

### 6.2.2.3 RA2/AN2

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

### 6.2.2.4 RA3/AN3/VREF

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- a voltage reference input for the ADC

## 6.2.2.5 RA4/CPS6/T0CKI

Figure 6-3 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input
- a clock input for Timer0

The Timer0 clock input function works independently of any TRIS register setting. Effectively, if TRISA4 = 0, the PORTA4 register bit will output to the pad and Clock Timer0 at the same time.

## 6.2.2.6 RA5/AN4/CPS7/SS/VCAP

Figure 6-4 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- a capacitive sensing input
- a slave select input for the SSP<sup>(1)</sup>
- a Voltage Regulator Capacitor pin (PIC16F72X only)

Note: SS pin location may be selected as RA5 or RA0.

## 6.2.2.7 RA6/OSC2/CLKOUT/VCAP

Figure 6-5 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- · a clock output
- a Voltage Regulator Capacitor pin (PIC16F72X only)

## 6.2.2.8 RA7/OSC1/CLKIN

Figure 6-6 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- a clock input

## TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

| Name                   | Bit 7  | Bit 6  | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|------------------------|--------|--------|---------|---------|---------|---------|---------|---------|----------------------|---------------------------------|
| ADCON0                 | _      | _      | CHS3    | CHS2    | CHS1    | CHS0    | GO/DONE | ADON    | 0000 0000            | 0000 0000                       |
| ADCON1                 | _      | ADCS2  | ADCS1   | ADCS0   | _       | _       | ADREF1  | ADREF0  | -00000               | -00000                          |
| ANSELA                 | _      | _      | ANSA5   | ANSA4   | ANSA3   | ANSA2   | ANSA1   | ANSA0   | 11 1111              | 11 1111                         |
| APFCON                 | _      | _      | _       | _       | _       | _       | SSSEL   | CCP2SEL | 00                   | 00                              |
| CPSCON0                | CPSON  | _      | _       | _       | CPSRNG1 | CPSRNG0 | CPSOUT  | TOXCS   | 0 0000               | 0 0000                          |
| CPSCON1                | _      | _      | _       | _       | CPSCH3  | CPSCH2  | CPSCH1  | CPSCH0  | 0000                 | 0000                            |
| CONFIG2 <sup>(1)</sup> | _      | _      | VCAPEN1 | VCAPEN0 | _       | _       | —       | _       | —                    | —                               |
| OPTION_REG             | RBPU   | INTEDG | TOCS    | T0SE    | PSA     | PS2     | PS1     | PS0     | 1111 1111            | 1111 1111                       |
| PORTA                  | RA7    | RA6    | RA5     | RA4     | RA3     | RA2     | RA1     | RA0     | xxxx xxxx            | xxxx xxxx                       |
| SSPCON                 | WCOL   | SSPOV  | SSPEN   | CKP     | SSPM3   | SSPM2   | SSPM1   | SSPM0   | 0000 0000            | 0000 0000                       |
| TRISA                  | TRISA7 | TRISA6 | TRISA5  | TRISA4  | TRISA3  | TRISA2  | TRISA1  | TRISA0  | 1111 1111            | 1111 1111                       |

 $\label{eq:Legend: x = unknown, u = unchanged, - = unimplemented locations read as `0'. Shaded cells are not used by PORTA.$ 

Note 1: PIC16F72X only.

#### **REGISTER 6-15: PORTE: PORTE REGISTER**

| U-0   | U-0 | U-0 | U-0 | R-x | R/W-x              | R/W-x              | R/W-x              |
|-------|-----|-----|-----|-----|--------------------|--------------------|--------------------|
| —     | —   | _   | _   | RE3 | RE2 <sup>(1)</sup> | RE1 <sup>(1)</sup> | RE0 <sup>(1)</sup> |
| bit 7 |     |     |     |     |                    |                    | bit 0              |
|       |     |     |     |     |                    |                    |                    |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| Unimplemented: Read as '0'                 |
|--------------------------------------------|
| RE<3:0>: PORTE I/O Pin bits <sup>(1)</sup> |
| 1 = Port pin is > VIH                      |
| 0 = Port pin is < VIL                      |
|                                            |

Note 1: RE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

### REGISTER 6-16: TRISE: PORTE TRI-STATE REGISTER

| U-0   | U-0 | U-0 | U-0 | R-1    | R/W-1                 | R/W-1                 | R/W-1                 |
|-------|-----|-----|-----|--------|-----------------------|-----------------------|-----------------------|
| _     | —   | _   | —   | TRISE3 | TRISE2 <sup>(1)</sup> | TRISE1 <sup>(1)</sup> | TRISE0 <sup>(1)</sup> |
| bit 7 |     |     |     |        |                       |                       | bit 0                 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 7-4Unimplemented: Read as '0'bit 3TRISE3: RE3 Port Tri-state Control bit

This bit is always '1' as RE3 is an input onlybit 2-0TRISE<2:0>: RE<2:0> Tri-State Control bits(1)1 = PORTE pin configured as an input (tri-stated)0 = PORTE pin configured as an output

Note 1: TRISE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

## 9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

#### REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

| U-0   | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 |
|-------|-----|-------|-------|-------|-------|---------|-------|
| —     | —   | CHS3  | CHS2  | CHS1  | CHS0  | GO/DONE | ADON  |
| bit 7 |     |       |       |       |       |         | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

#### bit 7-6 Unimplemented: Read as '0'

bit 5-2 CHS<3:0>: Analog Channel Select bits

|       | 0000 = ANO                                                                                                                                                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 0001 = AN1                                                                                                                                                                                               |
|       | 0010 = AN2                                                                                                                                                                                               |
|       | 0011 = AN3                                                                                                                                                                                               |
|       | 0100 = AN4                                                                                                                                                                                               |
|       | 0101 = AN5                                                                                                                                                                                               |
|       | 0110 = AN6                                                                                                                                                                                               |
|       | 0111 = AN7                                                                                                                                                                                               |
|       | 1000 = AN8                                                                                                                                                                                               |
|       | 1001 = AN9                                                                                                                                                                                               |
|       | 1010 = AN10                                                                                                                                                                                              |
|       | 1011 = AN11                                                                                                                                                                                              |
|       | 1100 = AN12                                                                                                                                                                                              |
|       | 1101 = AN13                                                                                                                                                                                              |
|       | 1110 = Reserved                                                                                                                                                                                          |
|       | 1111 = Fixed Voltage Reference (FVREF)                                                                                                                                                                   |
| bit 1 | GO/DONE: A/D Conversion Status bit                                                                                                                                                                       |
|       | <ul> <li>1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.</li> <li>This bit is automatically cleared by hardware when the A/D conversion has completed.</li> </ul> |
|       | 0 = A/D conversion completed/not in progress                                                                                                                                                             |
| bit 0 | ADON: ADC Enable bit                                                                                                                                                                                     |
|       | 1 = ADC is enabled                                                                                                                                                                                       |

0 = ADC is disabled and consumes no operating current

| R/W-0           | U-0                                                                                                                                                                                             | U-0                                               | U-0                                             | R/W-0                                    | R/W-0                                      | R-0             | R/W-0 |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------|-------|--|
| CPSON           | —                                                                                                                                                                                               | —                                                 | _                                               | CPSRNG1                                  | CPSRNG0                                    | CPSOUT          | TOXCS |  |
| bit 7           |                                                                                                                                                                                                 |                                                   |                                                 |                                          |                                            |                 | bit 0 |  |
|                 |                                                                                                                                                                                                 |                                                   |                                                 |                                          |                                            |                 |       |  |
| Legend:         |                                                                                                                                                                                                 |                                                   |                                                 |                                          |                                            |                 |       |  |
| R = Readable I  | bit                                                                                                                                                                                             | W = Writable I                                    | oit                                             | U = Unimpler                             | nented bit, read                           | l as '0'        |       |  |
| -n = Value at P | OR                                                                                                                                                                                              | '1' = Bit is set                                  |                                                 | '0' = Bit is cle                         | ared                                       | x = Bit is unkn | own   |  |
| bit 7           | 1 = Capacitiv                                                                                                                                                                                   | acitive Sensing<br>e sensing mod<br>e sensing mod | ule is operatii                                 | ng                                       | s no operating c                           | current         |       |  |
| bit 6-4         | Unimplement                                                                                                                                                                                     | ted: Read as 'd                                   | )'                                              |                                          |                                            |                 |       |  |
| bit 3-2         | •                                                                                                                                                                                               |                                                   |                                                 |                                          |                                            |                 |       |  |
| bit 1           | <b>CPSOUT:</b> Capacitive Sensing Oscillator Status bit<br>1 = Oscillator is sourcing current (Current flowing out the pin)<br>0 = Oscillator is sinking current (Current flowing into the pin) |                                                   |                                                 |                                          |                                            |                 |       |  |
| bit 0           | $\frac{\text{If TOCS} = 1}{\text{The TOXCS b}}$ $1 = \text{Timer0 C}$ $0 = \text{Timer0 C}$ $\frac{\text{If TOCS} = 0}{1 + 1 + 1 + 1 + 1 + 2}$                                                  | Clock Source is<br>Clock Source is                | h clock extern<br>the capacitiv<br>the T0CKI pi | nal to the core/<br>e sensing osci<br>in | Timer0 module<br>llator<br>dule and is Fos |                 | ):    |  |

## REGISTER 14-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

## REGISTER 14-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1

| U-0                                 | U-0 | U-0            | U-0 | R/W-0 <sup>(2)</sup> | R/W-0            | R/W-0    | R/W-0  |
|-------------------------------------|-----|----------------|-----|----------------------|------------------|----------|--------|
| —                                   | —   | —              | _   | CPSCH3               | CPSCH2           | CPSCH1   | CPSCH0 |
| bit 7                               |     |                |     |                      |                  |          | bit 0  |
| Legend:                             |     |                |     |                      |                  |          |        |
| R = Readable bit $W = Writable bit$ |     |                |     |                      |                  |          |        |
| R = Readable                        | bit | W = Writable I | oit | U = Unimplen         | nented bit, read | l as '0' |        |

| bit 7-4 | Unimplemented: Read as '0'                         |  |  |  |  |  |  |  |
|---------|----------------------------------------------------|--|--|--|--|--|--|--|
| bit 3-0 | CPSCH<3:0>: Capacitive Sensing Channel Select bits |  |  |  |  |  |  |  |
|         | If CPSON = 0:                                      |  |  |  |  |  |  |  |
|         | These bits are ignored. No channel is selected.    |  |  |  |  |  |  |  |
|         | <u>If CPSON = 1</u> :                              |  |  |  |  |  |  |  |
|         | 0000 = channel 0, (CPS0)                           |  |  |  |  |  |  |  |
|         | 0001 = channel 1, (CPS1)                           |  |  |  |  |  |  |  |
|         | 0010 = channel 2, (CPS2)                           |  |  |  |  |  |  |  |
|         | 0011 = channel 3, (CPS3)                           |  |  |  |  |  |  |  |
|         | 0100 = channel 4, (CPS4)                           |  |  |  |  |  |  |  |
|         | 0101 = channel 5, (CPS5)                           |  |  |  |  |  |  |  |
|         | 0110 = channel 6, (CPS6)                           |  |  |  |  |  |  |  |
|         | 0111 = channel 7, (CPS7)                           |  |  |  |  |  |  |  |
|         | 1000 = channel 8, (CPS8 <sup>(1)</sup> )           |  |  |  |  |  |  |  |
|         | 1001 = channel 9, (CPS9 <sup>(1)</sup> )           |  |  |  |  |  |  |  |
|         | 1010 = channel 10, (CPS10 <sup>(1)</sup> )         |  |  |  |  |  |  |  |
|         | 1011 = channel 11, (CPS11 <sup>(1)</sup> )         |  |  |  |  |  |  |  |
|         | 1100 = channel 12, (CPS12 <sup>(1)</sup> )         |  |  |  |  |  |  |  |
|         | $1101 = \text{ channel } 13, (CPS13^{(1)})$        |  |  |  |  |  |  |  |
|         | 1110 = channel 14, (CPS14(1))                      |  |  |  |  |  |  |  |
|         | 1111 = channel 15, (CPS15 <sup>(1)</sup> )         |  |  |  |  |  |  |  |

**Note 1:** These channels are not implemented on the PIC16F722/723/726/PIC16LF722/723/726.

2: This bit is not implemented on PIC16F722/723/726/PIC16LF722/723/726, Read as '0'

| TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSIN | G |
|--------------------------------------------------------------------|---|
|--------------------------------------------------------------------|---|

| Name       | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1   | Bit 0   | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|------------|---------|---------|---------|---------|---------|--------|---------|---------|----------------------|---------------------------------|
| ANSELA     | _       | _       | ANSA5   | ANSA4   | ANSA3   | ANSA2  | ANSA1   | ANSA0   | 11 1111              | 11 1111                         |
| ANSELB     | _       | _       | ANSB5   | ANSB4   | ANSB3   | ANSB2  | ANSB1   | ANSB0   | 11 1111              | 11 1111                         |
| ANSELD     | ANSD7   | ANSD6   | ANSD5   | ANSD4   | ANSD3   | ANSD2  | ANSD1   | ANSD0   | 1111 1111            | 1111 1111                       |
| OPTION_REG | RBPU    | INTEDG  | TOCS    | T0SE    | PSA     | PS2    | PS1     | PS0     | 1111 1111            | 1111 1111                       |
| PIE1       | TMR1GIE | ADIE    | RCIE    | TXIE    | SSPIE   | CCP1IE | TMR2IE  | TMR1IE  | 0000 0000            | 0000 0000                       |
| PIR1       | TMR1GIF | ADIF    | RCIF    | TXIF    | SSPIF   | CCP1IF | TMR2IF  | TMR1IF  | 0000 0000            | 0000 0000                       |
| T1CON      | TMR1CS1 | TMR1CS0 | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | _       | TMR10N  | 0000 00-0            | 0000 00-0                       |
| T2CON      |         | TOUTPS3 | TOUTPS2 | TOUTPS1 | TOUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | -000 0000            | -000 0000                       |
| TRISA      | TRISA7  | TRISA6  | TRISA5  | TRISA4  | TRISA3  | TRISA2 | TRISA1  | TRISA0  | 1111 1111            | 1111 1111                       |
| TRISB      | TRISB7  | TRISB6  | TRISB5  | TRISB4  | TRISB3  | TRISB2 | TRISB1  | TRISB0  | 1111 1111            | 1111 1111                       |
| TRISD      | TRISD7  | TRISD6  | TRISD5  | TRISD4  | TRISD3  | TRISD2 | TRISD1  | TRISD0  | 1111 1111            | 1111 1111                       |

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the capacitive sensing module.

## 15.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a pulse-width modulated signal of varying frequency and duty cycle.

The timer resources used by the module are shown in Table 15-1.

Additional information on CCP modules is available in the Application Note AN594, *Using the CCP Modules* (DS00594).

## TABLE 15-1: CCP MODE – TIMER RESOURCES REQUIRED

| CCP Mode | Timer Resource |  |  |  |  |
|----------|----------------|--|--|--|--|
| Capture  | Timer1         |  |  |  |  |
| Compare  | Timer1         |  |  |  |  |
| PWM      | Timer2         |  |  |  |  |

| CCP1 Mode | CCP2 Mode | Interaction                                                                                                  |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------|
| Capture   | Capture   | Same TMR1 time base                                                                                          |
| Capture   | Compare   | Same TMR1 time base <sup>(1, 2)</sup>                                                                        |
| Compare   | Compare   | Same TMR1 time base <sup>(1, 2)</sup>                                                                        |
| PWM       | PWM       | The PWMs will have the same frequency and update rate (TMR2 interrupt).<br>The rising edges will be aligned. |
| PWM       | Capture   | None                                                                                                         |
| PWM       | Compare   | None                                                                                                         |

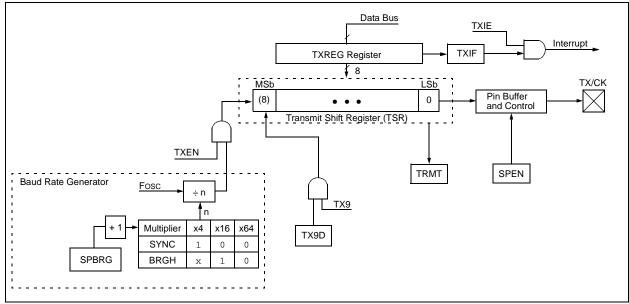
## TABLE 15-2: INTERACTION OF TWO CCP MODULES

Note 1: If CCP2 is configured as a Special Event Trigger, CCP1 will clear Timer1, affecting the value captured on the CCP2 pin.

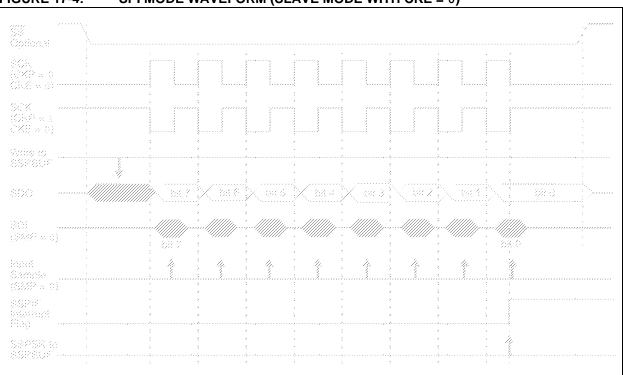
**2:** If CCP1 is in Capture mode and CCP2 is configured as a Special Event Trigger, CCP2 will clear Timer1, affecting the value captured on the CCP1 pin.

| Note: | CCPRx                                | and | CCPx | throughout | this |  |  |  |  |
|-------|--------------------------------------|-----|------|------------|------|--|--|--|--|
|       | document refer to CCPR1 or CCPR2 and |     |      |            |      |  |  |  |  |
|       | CCP1 or CCP2, respectively           |     |      |            |      |  |  |  |  |

## 16.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)


The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The AUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The AUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Sleep operation

Block diagrams of the AUSART transmitter and receiver are shown in Figure 16-1 and Figure 16-2.

## FIGURE 16-1: AUSART TRANSMIT BLOCK DIAGRAM



# PIC16(L)F722/3/4/6/7



## FIGURE 17-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

#### SS SCK (CKP = 0 $\dot{C}KE = 1)$ SCK (CKP = 1 CKE = 1) Write to SSPBUF bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 SDO bit '7 bit 3 ï SDI (SMP = 0)I bit 0 bit 7 Input Sample (SMP = 0)SSPIF Interrupt Flag SSPSR to SSPBUF 1 . i . . . .

## FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

## 23.0 ELECTRICAL SPECIFICATIONS

## Absolute Maximum Ratings<sup>(†)</sup>

| Ambient temperature under bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40°C to +125°C                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Storage temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65°C to +150°C                        |
| Voltage on VDD with respect to Vss, PIC16F72X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3V to +6.5V                         |
| Voltage on VCAP pin with respect to Vss, PIC16F72X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.3V to +4.0V                        |
| Voltage on VDD with respect to Vss, PIC16LF72X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.3V to +4.0V                        |
| Voltage on MCLR with respect to Vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.3V to +9.0V                        |
| Voltage on all other pins with respect to Vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3V to (VDD + 0.3V)                  |
| Total power dissipation <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 800 mW                                |
| Maximum current out of Vss pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95 mA                                 |
| Maximum current into VDD pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 mA                                 |
| Clamp current, Ik (VPIN < 0 or VPIN > VDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ± 20 mA                               |
| Maximum output current sunk by any I/O pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 mA                                 |
| Maximum output current sourced by any I/O pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 mA                                 |
| Maximum current sunk by all ports (2), -40°C $\leq$ TA $\leq$ +85°C for industrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| Maximum current sunk by all ports (2), -40°C $\leq$ TA $\leq$ +125°C for extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90 mA                                 |
| Maximum current sourced by all ports <sup>(2)</sup> , $40^{\circ}C \le TA \le +85^{\circ}C$ for industrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140 mA                                |
| Maximum current sourced by all ports <sup>(2)</sup> , -40°C $\leq$ TA $\leq$ +125°C for extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65 mA                                 |
| <b>Note 1:</b> Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + $\sum$ {(VDD $-\sum$ IOH} + $\sum$ {(VD $-\sum$ IOH} + \sum {(VD $-\sum$ IOH} + $\sum$ {(VD $-\sum$ IOH} + \sum | – VOH) x IOH} + $\Sigma$ (VOI x IOL). |

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

## 23.3 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Power-Down)

| PIC16LF722/3/4/6/7 |                         |          | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |                                                      |                |       |     | °C for industrial                  |  |
|--------------------|-------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------|-------|-----|------------------------------------|--|
| PIC16F722/3/4/6/7  |                         |          |                                                                                                                                                                                         | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                |       |     |                                    |  |
| Param<br>No.       | Device Characteristics  | Min.     | Тур†                                                                                                                                                                                    | Max.<br>+85°C                                        | Max.<br>+125°C | Units | Vdd | Conditions                         |  |
| -                  | Power-down Base Current | (IPD)(2) |                                                                                                                                                                                         |                                                      |                |       | VDD | Note                               |  |
| D020               | rower-down base current | (IFD)    | 0.02                                                                                                                                                                                    | 0.7                                                  | 3.9            | μA    | 1.8 | WDT, BOR, FVR, and T1OSC           |  |
| 0020               |                         | _        | 0.02                                                                                                                                                                                    | 1.0                                                  | 4.3            | μΑ    | 3.0 | disabled, all Peripherals Inactive |  |
| D020               |                         |          | 4.3                                                                                                                                                                                     | 10.2                                                 | 17             | μΑ    | 1.8 | WDT, BOR, FVR, and T1OSC           |  |
|                    |                         | _        | 5                                                                                                                                                                                       | 10.5                                                 | 18             | μΑ    | 3.0 | disabled, all Peripherals Inactive |  |
|                    |                         | _        | 5.5                                                                                                                                                                                     | 11.8                                                 | 21             | μA    | 5.0 |                                    |  |
| D021               |                         |          | 0.5                                                                                                                                                                                     | 1.7                                                  | 4.1            | μΑ    | 1.8 | LPWDT Current (Note 1)             |  |
|                    |                         | _        | 0.8                                                                                                                                                                                     | 2.5                                                  | 4.8            | μA    | 3.0 |                                    |  |
| D021               |                         | _        | 6                                                                                                                                                                                       | 13.5                                                 | 18             | μA    | 1.8 | LPWDT Current (Note 1)             |  |
|                    |                         |          | 6.5                                                                                                                                                                                     | 14.5                                                 | 19             | μΑ    | 3.0 |                                    |  |
|                    |                         | _        | 7.5                                                                                                                                                                                     | 16                                                   | 22             | μΑ    | 5.0 |                                    |  |
| D021A              |                         | _        | 8.5                                                                                                                                                                                     | 14                                                   | 19             | μΑ    | 1.8 | FVR current (Note 1. Note 3)       |  |
|                    |                         |          | 8.5                                                                                                                                                                                     | 14                                                   | 20             | μA    | 3.0 |                                    |  |
| D021A              |                         | _        | 23                                                                                                                                                                                      | 44                                                   | 48             | μΑ    | 1.8 | FVR current (Note 1, Note 3,       |  |
|                    |                         |          | 25                                                                                                                                                                                      | 45                                                   | 55             | μA    | 3.0 | Note 5)                            |  |
|                    |                         |          | 26                                                                                                                                                                                      | 60                                                   | 70             | μA    | 5.0 |                                    |  |
| D022               |                         | _        | —                                                                                                                                                                                       | _                                                    | _              | μΑ    | 1.8 | BOR Current (Note 1, Note 3)       |  |
|                    |                         | —        | 7.5                                                                                                                                                                                     | 12                                                   | 22             | μΑ    | 3.0 |                                    |  |
| D022               |                         |          |                                                                                                                                                                                         |                                                      | —              | μA    | 1.8 | BOR Current (Note 1, Note 3,       |  |
|                    |                         |          | 23                                                                                                                                                                                      | 42                                                   | 49             | μΑ    | 3.0 | Note 5)                            |  |
|                    |                         | —        | 25                                                                                                                                                                                      | 46                                                   | 50             | μΑ    | 5.0 |                                    |  |
| D026               |                         | _        | 0.6                                                                                                                                                                                     | 2                                                    | —              | μΑ    | 1.8 | T1OSC Current (Note 1)             |  |
|                    |                         | _        | 1.8                                                                                                                                                                                     | 3.0                                                  |                | μΑ    | 3.0 |                                    |  |
| D026               |                         |          | 4.5                                                                                                                                                                                     | 11.1                                                 | —              | μΑ    | 1.8 | T1OSC Current (Note 1)             |  |
|                    |                         |          | 6                                                                                                                                                                                       | 12.5                                                 | —              | μΑ    | 3.0 | _                                  |  |
|                    |                         | —        | 7                                                                                                                                                                                       | 13.5                                                 | —              | μΑ    | 5.0 |                                    |  |

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

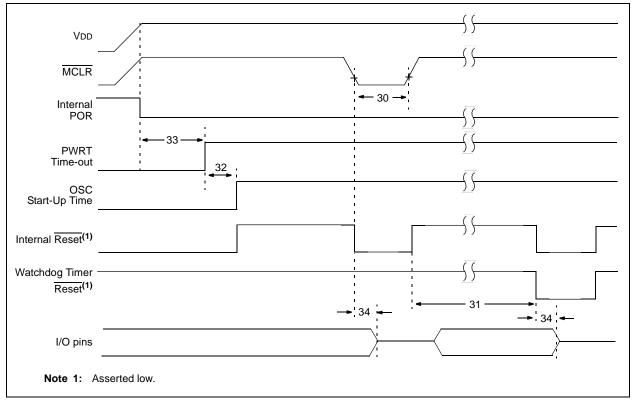
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled

4: A/D oscillator source is FRC

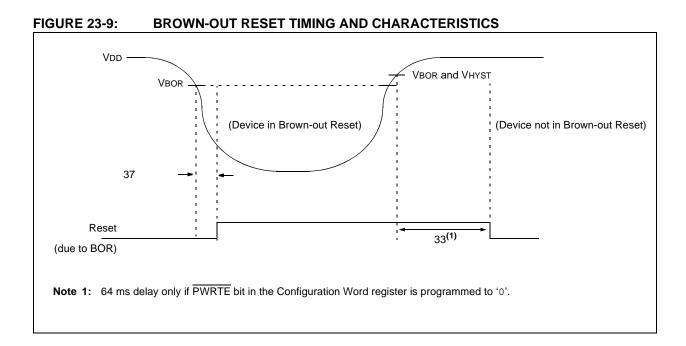
5: 0.1 µF capacitor on VCAP (RA0).

| Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |          |                                                              |               |          |          |       |                              |  |
|----------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|---------------|----------|----------|-------|------------------------------|--|
| Param<br>No.                                                                                                         | Sym.     | Characteristic                                               | Min.          | Тур†     | Max.     | Units | Conditions                   |  |
| OS11                                                                                                                 | TosH2ckL | Fosc↑ to CLKOUT↓ <sup>(1)</sup>                              | _             | _        | 70       | ns    | VDD = 3.3-5.0V               |  |
| OS12                                                                                                                 | TosH2ckH | Fosc↑ to CLKOUT↑ <sup>(1)</sup>                              | —             | _        | 72       | ns    | VDD = 3.3-5.0V               |  |
| OS13                                                                                                                 | TckL2ioV | CLKOUT↓ to Port out valid <sup>(1)</sup>                     | —             | _        | 20       | ns    |                              |  |
| OS14                                                                                                                 | TioV2ckH | Port input valid before CLKOUT <sup>(1)</sup>                | Tosc + 200 ns | _        | _        | ns    |                              |  |
| OS15                                                                                                                 | TosH2ioV | Fosc↑ (Q1 cycle) to Port out valid                           | —             | 50       | 70*      | ns    | VDD = 3.3-5.0V               |  |
| OS16                                                                                                                 | TosH2iol | Fosc↑ (Q2 cycle) to Port input invalid<br>(I/O in hold time) | 50            | —        | —        | ns    | VDD = 3.3-5.0V               |  |
| OS17                                                                                                                 | TioV2osH | Port input valid to Fosc↑ (Q2 cycle)<br>(I/O in setup time)  | 20            | _        | _        | ns    |                              |  |
| OS18                                                                                                                 | TioR     | Port output rise time <sup>(2)</sup>                         |               | 40<br>15 | 72<br>32 | ns    | VDD = 2.0V<br>VDD = 3.3-5.0V |  |
| OS19                                                                                                                 | TioF     | Port output fall time <sup>(2)</sup>                         |               | 28<br>15 | 55<br>30 | ns    | VDD = 2.0V<br>VDD = 3.3-5.0V |  |
| OS20*                                                                                                                | Tinp     | INT pin input high or low time                               | 25            |          | —        | ns    |                              |  |
| OS21*                                                                                                                | Trbp     | PORTB interrupt-on-change new input level time               | Тсү           | —        | —        | ns    |                              |  |

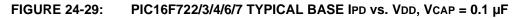
### TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS

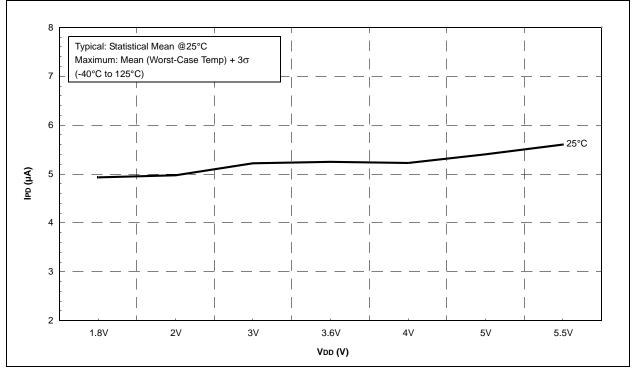

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

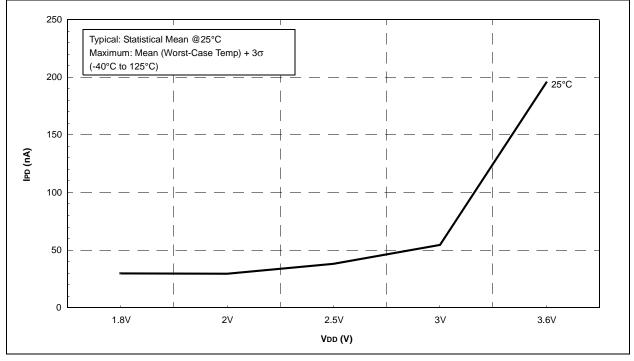

**Note 1:** Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.


## FIGURE 23-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING




# PIC16(L)F722/3/4/6/7



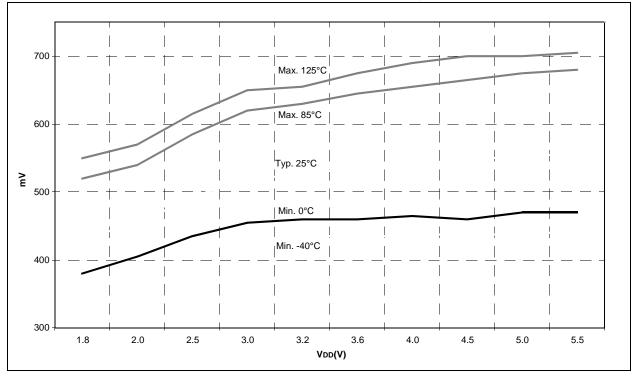
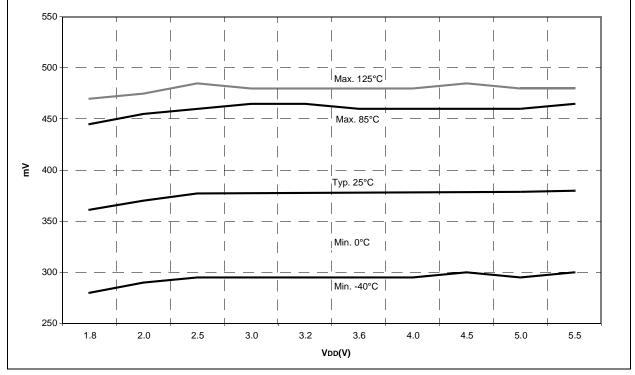

# PIC16(L)F722/3/4/6/7

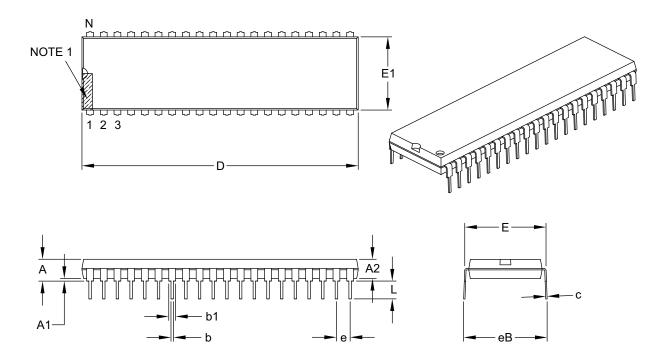










FIGURE 24-65: PIC16F722/3/4/6/7 CAP SENSOR HYSTERESIS, POWER MODE = HIGH





## 40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



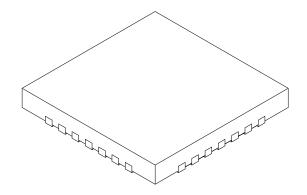
|                            | Units    |       |          |       |
|----------------------------|----------|-------|----------|-------|
| Dimensior                  | n Limits | MIN   | NOM      | MAX   |
| Number of Pins             | Ν        |       | 40       |       |
| Pitch                      | е        |       | .100 BSC |       |
| Top to Seating Plane       | Α        | -     | -        | .250  |
| Molded Package Thickness   | A2       | .125  | -        | .195  |
| Base to Seating Plane      | A1       | .015  | -        | -     |
| Shoulder to Shoulder Width | E        | .590  | -        | .625  |
| Molded Package Width       | E1       | .485  | -        | .580  |
| Overall Length             | D        | 1.980 | -        | 2.095 |
| Tip to Seating Plane       | L        | .115  | -        | .200  |
| Lead Thickness             | С        | .008  | -        | .015  |
| Upper Lead Width           | b1       | .030  | -        | .070  |
| Lower Lead Width           | b        | .014  | -        | .023  |
| Overall Row Spacing §      | eB       | _     | _        | .700  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

## 28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Units                  |    | MILLIMETERS |      |      |
|------------------------|----|-------------|------|------|
| Dimension Limits       |    | MIN         | NOM  | MAX  |
| Number of Pins         | Ν  | 28          |      |      |
| Pitch                  | е  | 0.40 BSC    |      |      |
| Overall Height         | Α  | 0.45        | 0.50 | 0.55 |
| Standoff               | A1 | 0.00        | 0.02 | 0.05 |
| Contact Thickness      | A3 | 0.127 REF   |      |      |
| Overall Width          | E  | 4.00 BSC    |      |      |
| Exposed Pad Width      | E2 | 2.55        | 2.65 | 2.75 |
| Overall Length         | D  | 4.00 BSC    |      |      |
| Exposed Pad Length     | D2 | 2.55        | 2.65 | 2.75 |
| Contact Width          | b  | 0.15        | 0.20 | 0.25 |
| Contact Length         | L  | 0.30        | 0.40 | 0.50 |
| Contact-to-Exposed Pad | K  | 0.20        | -    | -    |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
    - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2