



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 20MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 36                                                                       |
| Program Memory Size        | 7KB (4K x 14)                                                            |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 192 x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                              |
| Data Converters            | A/D 14x8b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 44-VQFN Exposed Pad                                                      |
| Supplier Device Package    | 44-QFN (8x8)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f724-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





#### FIGURE 2-4:

#### PIC16F722/LF722 SPECIAL FUNCTION REGISTERS

|                   | _   |                   | _   |                   | _        |                   |      |
|-------------------|-----|-------------------|-----|-------------------|----------|-------------------|------|
| Indirect addr.(*) | 00h | Indirect addr.(*) | 80h | Indirect addr.(*) | 100h     | Indirect addr.(*) | 180h |
| TMR0              | 01h | OPTION            | 81h | TMR0              | 101h     | OPTION            | 181h |
| PCL               | 02h | PCL               | 82h | PCL               | 102h     | PCL               | 182h |
| STATUS            | 03h | STATUS            | 83h | STATUS            | 103h     | STATUS            | 183h |
| FSR               | 04h | FSR               | 84h | FSR               | 104h     | FSR               | 184h |
| PORTA             | 05h | TRISA             | 85h |                   | 105h     | ANSELA            | 185h |
| PORTB             | 06h | TRISB             | 86h |                   | 106h     | ANSELB            | 186h |
| PORTC             | 07h | TRISC             | 87h |                   | 107h     |                   | 187h |
|                   | 08h |                   | 88h | CPSCON0           | 108h     |                   | 188h |
| PORTE             | 09h | TRISE             | 89h | CPSCON1           | 109h     |                   | 189h |
| PCLATH            | 0Ah | PCLATH            | 8Ah | PCLATH            | 10Ah     | PCLATH            | 18Ah |
| INTCON            | 0Bh | INTCON            | 8Bh | INTCON            | 10Bh     | INTCON            | 18Bh |
| PIR1              | 0Ch | PIE1              | 8Ch | PMDATL            | 10Ch     | PMCON1            | 18Ch |
| PIR2              | 0Dh | PIE2              | 8Dh | PMADRL            | 10Dh     | Reserved          | 18Dh |
| TMR1L             | 0Eh | PCON              | 8Eh | PMDATH            | 10Eh     | Reserved          | 18Eh |
| TMR1H             | 0Fh | T1GCON            | 8Fh | PMADRH            | 10Fh     | Reserved          | 18Fh |
| T1CON             | 10h | OSCCON            | 90h |                   | 110h     |                   | 190h |
| TMR2              | 11h | OSCTUNE           | 91h |                   | 111h     |                   | 191h |
| T2CON             | 12h | PR2               | 92h |                   | 112h     |                   | 192h |
| SSPBUF            | 13h | SSPADD/SSPMSK     | 93h |                   | 113h     |                   | 193h |
| SSPCON            | 14h | SSPSTAT           | 94h |                   | 114h     |                   | 194h |
| CCPR1L            | 15h | WPUB              | 95h |                   | 115h     |                   | 195h |
| CCPR1H            | 16h | IOCB              | 96h |                   | 116h     |                   | 196h |
| CCP1CON           | 17h |                   | 97h |                   | 117h     |                   | 197h |
| RCSTA             | 18h | TXSTA             | 98h |                   | 118h     |                   | 198h |
| TXREG             | 19h | SPBRG             | 99h |                   | 119h     |                   | 199h |
| RCREG             | 1Ah |                   | 9Ah |                   | 11Ah     |                   | 19Ah |
| CCPR2L            | 1Bh |                   | 9Bh |                   | 11Bh     |                   | 19Bh |
| CCPR2H            | 1Ch | APFCON            | 9Ch |                   | 11Ch     |                   | 19Ch |
| CCP2CON           | 1Dh | FVRCON            | 9Dh |                   | 11Dh     |                   | 19Dh |
| ADRES             | 1Eh |                   | 9Eh |                   | 11Eh     |                   | 19Eh |
| ADCON0            | 1Fh | ADCON1            | 9Fh |                   | 11Fh     |                   | 19Fh |
|                   | 20h |                   | A0h |                   | 120h     |                   | 1A0h |
|                   |     | General           |     |                   |          |                   |      |
|                   |     | Purpose           |     |                   |          |                   |      |
|                   |     | Register          |     |                   |          |                   |      |
| General           |     | 32 Bytes          |     |                   |          |                   |      |
| Purpose           |     |                   | BFh |                   |          |                   |      |
| Register          |     |                   | C0h |                   |          |                   |      |
| 96 Bytes          |     |                   | EFh |                   | 16Fh     |                   | 1EFh |
|                   |     |                   | F0h |                   | 170h     |                   | 1F0h |
|                   |     | Accesses          |     | Accesses          |          | Accesses          |      |
|                   |     | 70h-7Fh           |     | 70h-7Fh           |          | 70h-7Fh           |      |
|                   | 7Fh |                   | FFh |                   | 17Fh     |                   | 1FFh |
| Bank 0            | ]   | Bank 1            | ]   | Bank 2            | <b>_</b> | Bank 3            | Ц,   |
|                   |     |                   |     | E di in E         |          | Lanko             |      |

| FIGURE 2-5: | PIC16F723/LF723 AND PIC16F724/LF724 SPECIAL FUNCTION REGISTERS |
|-------------|----------------------------------------------------------------|
|             |                                                                |

|                      | 1   |                               | 1   |                               | 1    |                       | File Addres |
|----------------------|-----|-------------------------------|-----|-------------------------------|------|-----------------------|-------------|
| Indirect addr.(*)    | 00h | Indirect addr. <sup>(*)</sup> | 80h | Indirect addr. <sup>(*)</sup> | 100h | Indirect addr.(*)     | 180h        |
| TMR0                 | 01h | OPTION                        | 81h | TMR0                          | 101h | OPTION                | 181h        |
| PCL                  | 02h | PCL                           | 82h | PCL                           | 102h | PCL                   | 182h        |
| STATUS               | 03h | STATUS                        | 83h | STATUS                        | 103h | STATUS                | 183h        |
| FSR                  | 04h | FSR                           | 84h | FSR                           | 104h | FSR                   | 184h        |
| PORTA                | 05h | TRISA                         | 85h |                               | 105h | ANSELA                | 185h        |
| PORTB                | 06h | TRISB                         | 86h |                               | 106h | ANSELB                | 186h        |
| PORTC                | 07h | TRISC                         | 87h |                               | 107h |                       | 187h        |
| PORTD <sup>(1)</sup> | 08h | TRISD <sup>(1)</sup>          | 88h | CPSCON0                       | 108h | ANSELD <sup>(1)</sup> | 188h        |
| PORTE                | 09h | TRISE                         | 89h | CPSCON1                       | 109h | ANSELE <sup>(1)</sup> | 189h        |
| PCLATH               | 0Ah | PCLATH                        | 8Ah | PCLATH                        | 10Ah | PCLATH                | 18Ah        |
| INTCON               | 0Bh | INTCON                        | 8Bh | INTCON                        | 10Bh | INTCON                | 18Bh        |
| PIR1                 | 0Ch | PIE1                          | 8Ch | PMDATL                        | 10Ch | PMCON1                | 18Ch        |
| PIR2                 | 0Dh | PIE2                          | 8Dh | PMADRL                        | 10Dh | Reserved              | 18Dh        |
| TMR1L                | 0Eh | PCON                          | 8Eh | PMDATH                        | 10Eh | Reserved              | 18Eh        |
| TMR1H                | 0Fh | T1GCON                        | 8Fh | PMADRH                        | 10Fh | Reserved              | 18Fh        |
| T1CON                | 10h | OSCCON                        | 90h |                               | 110h |                       | 190h        |
| TMR2                 | 11h | OSCTUNE                       | 91h |                               | 111h |                       | 191h        |
| T2CON                | 12h | PR2                           | 92h |                               | 112h |                       | 192h        |
| SSPBUF               | 13h | SSPADD/SSPMSK                 | 93h |                               | 113h |                       | 193h        |
| SSPCON               | 14h | SSPSTAT                       | 94h |                               | 114h |                       | 194h        |
| CCPR1L               | 15h | WPUB                          | 95h |                               | 115h |                       | 195h        |
| CCPR1H               | 16h | IOCB                          | 96h |                               | 116h |                       | 196h        |
| CCP1CON              | 17h |                               | 97h |                               | 117h |                       | 197h        |
| RCSTA                | 18h | TXSTA                         | 98h |                               | 118h |                       | 198h        |
| TXREG                | 19h | SPBRG                         | 99h |                               | 119h |                       | 199h        |
| RCREG                | 1Ah |                               | 9Ah |                               | 11Ah |                       | 19Ah        |
| CCPR2L               | 1Bh |                               | 9Bh |                               | 11Bh |                       | 19Bh        |
| CCPR2H               | 1Ch | APFCON                        | 9Ch |                               | 11Ch |                       | 19Ch        |
| CCP2CON              | 1Dh | FVRCON                        | 9Dh |                               | 11Dh |                       | 19Dh        |
| ADRES                | 1Eh |                               | 9Eh |                               | 11Eh |                       | 19Eh        |
| ADCON0               | 1Fh | ADCON1                        | 9Fh |                               | 11Fh |                       | 19Fh        |
|                      | 20h |                               | A0h | General Purpose               | 120h |                       | 1A0h        |
|                      |     | General                       |     | Register                      |      |                       |             |
|                      |     | Purpose                       |     | 16 Bytes                      | 12Fh |                       |             |
| General              |     | Register                      |     |                               | 130h |                       |             |
| Purpose              |     | 80 Bytes                      |     |                               |      |                       |             |
| Register<br>96 Bytes |     |                               | EFh |                               | 16Fh |                       | 1EFh        |
| 00 29100             |     | Accesses                      | F0h | Accesses                      | 170h | Accesses              | 1F0h        |
|                      |     | 70h-7Fh                       |     | 70h-7Fh                       |      | 70h-7Fh               |             |
|                      | 7Fh |                               | FFh |                               | 17Fh |                       | 1FFh        |
| Bank 0               | J   | Bank 1                        | 1   | Bank 2                        | L    | Bank 3                | _1          |
|                      |     |                               |     |                               |      |                       |             |

| Address                | Name       | Bit 7                                              | Bit 6                                         | Bit 5         | Bit 4          | Bit 3         | Bit 2           | Bit 1         | Bit 0   | Value on:<br>POR, BOR | Page   |
|------------------------|------------|----------------------------------------------------|-----------------------------------------------|---------------|----------------|---------------|-----------------|---------------|---------|-----------------------|--------|
| Bank 2                 |            |                                                    |                                               |               |                |               |                 |               |         |                       |        |
| 100h <sup>(2)</sup>    | INDF       | Addressing                                         | this location                                 | uses conten   | ts of FSR to a | ddress data   | memory (not     | a physical re | gister) | xxxx xxxx             | 29,37  |
| 101h                   | TMR0       | Timer0 Mod                                         | ule Register                                  |               |                |               |                 |               |         | xxxx xxxx             | 105,37 |
| 102h <sup>(2)</sup>    | PCL        | Program Co                                         | unter's (PC)                                  | Least Signif  | icant Byte     |               |                 |               |         | 0000 0000             | 28,37  |
| 103h <sup>(2)</sup>    | STATUS     | IRP                                                | RP1                                           | RP0           | TO             | PD            | Z               | DC            | С       | 0001 1xxx             | 25,37  |
| 104h <sup>(2)</sup>    | FSR        | Indirect Data                                      | a Memory Ac                                   | dress Point   | er             |               |                 |               |         | xxxx xxxx             | 29,37  |
| 105h                   | _          | Unimplemen                                         | nted                                          |               |                |               |                 |               |         | _                     | _      |
| 106h                   | _          | Unimplemen                                         | nted                                          |               |                |               |                 |               |         | _                     | _      |
| 107h                   | —          | Unimplemen                                         | nted                                          |               |                |               |                 |               |         |                       | _      |
| 108h                   | CPSCON0    | CPSON                                              | _                                             | _             | _              | CPSRNG1       | CPSRNG0         | CPSOUT        | TOXCS   | 0 0000                | 126,38 |
| 109h                   | CPSCON1    | —                                                  | _                                             | _             | _              | CPSCH3        | CPSCH2          | CPSCH1        | CPSCH0  | 0000                  | 127,38 |
| 10Ah <sup>(1, 2)</sup> | PCLATH     | —                                                  | _                                             | _             | Write Buffer   | for the upper | 5 bits of the F | Program Cou   | nter    | 0 0000                | 28,37  |
| 10Bh <sup>(2)</sup>    | INTCON     | GIE                                                | PEIE                                          | TOIE          | INTE           | RBIE          | T0IF            | INTF          | RBIF    | 0000 000x             | 44,37  |
| 10Ch                   | PMDATL     | Program Me                                         | mory Read                                     | Data Registe  | er Low Byte    |               |                 |               |         | XXXX XXXX             | 181,38 |
| 10Dh                   | PMADRL     | Program Me                                         | mory Read                                     | Address Reg   | gister Low Byt | е             |                 |               |         | XXXX XXXX             | 181,38 |
| 10Eh                   | PMDATH     | —                                                  | — Program Memory Read Data Register High Byte |               |                |               |                 |               |         | xx xxxx               | 181,38 |
| 10Fh                   | PMADRH     | — — Program Memory Read Address Register High Byte |                                               |               |                |               |                 |               | 1       | x xxxx                | 181,38 |
| Bank 3                 |            |                                                    |                                               |               |                |               |                 |               |         |                       |        |
| 180h <sup>(2)</sup>    | INDF       | Addressing                                         | this location                                 | uses conten   | ts of FSR to a | ddress data   | memory (not     | a physical re | gister) | XXXX XXXX             | 29,37  |
| 181h                   | OPTION_REG | RBPU                                               | INTEDG                                        | TOCS          | T0SE           | PSA           | PS2             | PS1           | PS0     | 1111 1111             | 26,37  |
| 182h <sup>(2)</sup>    | PCL        | Program Co                                         | unter (PC) L                                  | east Signific | ant Byte       |               |                 |               |         | 0000 0000             | 28,37  |
| 183h <sup>(2)</sup>    | STATUS     | IRP                                                | RP1                                           | RP0           | TO             | PD            | Z               | DC            | С       | 0001 1xxx             | 25,37  |
| 184h <sup>(2)</sup>    | FSR        | Indirect Data                                      | a Memory Ac                                   | dress Point   | er             |               |                 |               |         | XXXX XXXX             | 29,37  |
| 185h                   | ANSELA     | —                                                  | _                                             | ANSA5         | ANSA4          | ANSA3         | ANSA2           | ANSA1         | ANSA0   | 11 1111               | 52,38  |
| 186h                   | ANSELB     |                                                    | _                                             | ANSB5         | ANSB4          | ANSB3         | ANSB2           | ANSB1         | ANSB0   | 11 1111               | 61,38  |
| 187h                   | —          | Unimplemen                                         | nted                                          |               |                |               |                 |               |         |                       | _      |
| 188h                   | ANSELD     | ANSD7                                              | ANSD6                                         | ANSD5         | ANSD4          | ANSD3         | ANSD2           | ANSD1         | ANSD0   | 1111 1111             | 78,38  |
| 189h <sup>(3)</sup>    | ANSELE     | —                                                  | _                                             | _             | _              | —             | ANSE2           | ANSE1         | ANSE0   | 111                   | 82,38  |
| 18Ah <sup>(1, 2)</sup> | PCLATH     | —                                                  | _                                             | _             | Write Buffer   | for the upper | 5 bits of the F | Program Cou   | nter    | 0 0000                | 28,37  |
| 18Bh <sup>(2)</sup>    | INTCON     | GIE                                                | PEIE                                          | TOIE          | INTE           | RBIE          | T0IF            | INTF          | RBIF    | 0000 000x             | 44,37  |
| 18Ch                   | PMCON1     | Reserved                                           | _                                             | —             | —              | —             | —               | —             | RD      | 10                    | 182,38 |
| 18Dh                   | —          | Unimplemen                                         | nted                                          |               |                |               |                 |               |         | -                     | -      |
| 18Eh                   | —          | Unimplemen                                         | nted                                          |               |                |               |                 |               |         | -                     | -      |
| 18Fh                   | —          | Unimplemen                                         | nted                                          |               |                |               |                 |               |         | _                     | _      |

#### **TABLE 2-1:** PIC16(L)F722/3/4/6/7 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter. Note 1:

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'. Accessible only when SSPM<3:0> = 1001. Accessible only when SSPM<3:0>  $\neq$  1001. This bit is always '1' as RE3 is input-only. 3:

4:

5:

6:

### TABLE 3-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

| Condition                          | Program<br>Counter    | STATUS<br>Register | PCON<br>Register |
|------------------------------------|-----------------------|--------------------|------------------|
| Power-on Reset                     | 0000h                 | 0001 1xxx          | 0x               |
| MCLR Reset during normal operation | 0000h                 | 000u uuuu          | uu               |
| MCLR Reset during Sleep            | 0000h                 | 0001 Ouuu          | uu               |
| WDT Reset                          | 0000h                 | 0000 uuuu          | uu               |
| WDT Wake-up                        | PC + 1                | uuu0 0uuu          | uu               |
| Brown-out Reset                    | 0000h                 | 0001 1xxx          | 10               |
| Interrupt Wake-up from Sleep       | PC + 1 <sup>(1)</sup> | uuul Ouuu          | uu               |

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

**Note 1:** When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

#### TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

| Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on POR,<br>BOR | Value on<br>all other<br>Resets <sup>(1)</sup> |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------|------------------------------------------------|
| STATUS | IRP   | RP1   | RP0   | TO    | PD    | Z     | DC    | С     | 0001 1xxx            | 000q quuu                                      |
| PCON   | —     | —     | —     | —     | —     | —     | POR   | BOR   | dd                   | uu                                             |

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by Resets.

**Note 1:** Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

#### 4.5.5 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 4-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

#### REGISTER 4-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0  |
|-------|-----|-----|-----|-----|-----|-----|--------|
| _     | —   | —   | —   | —   | —   | —   | CCP2IF |
| bit 7 |     |     |     |     |     |     | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

#### bit 7-1 Unimplemented: Read as '0'

### bit 0 CCP2IF: CCP2 Interrupt Flag bit

Capture Mode:

1 = A TMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

#### Compare Mode:

1 = A TMR1 register compare match occurred (must be cleared in software)

0 = No TMR1 register compare match occurred

#### PWM mode:

Unused in this mode

#### TABLE 4-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

| Name       | Bit 7   | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|------------|---------|--------|-------|-------|-------|--------|--------|--------|----------------------|---------------------------------|
| INTCON     | GIE     | PEIE   | T0IE  | INTE  | RBIE  | T0IF   | INTF   | RBIF   | 0000 000x            | 0000 000x                       |
| OPTION_REG | RBPU    | INTEDG | TOCS  | T0SE  | PSA   | PS2    | PS1    | PS0    | 1111 1111            | 1111 1111                       |
| PIE1       | TMR1GIE | ADIE   | RCIE  | TXIE  | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 0000            | 0000 0000                       |
| PIE2       | —       |        | —     |       | —     |        | —      | CCP2IE | 0                    | 0                               |
| PIR1       | TMR1GIF | ADIF   | RCIF  | TXIF  | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000            | 0000 0000                       |
| PIR2       | —       | -      | —     | -     | —     | -      | —      | CCP2IF | 0                    | 0                               |

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM.

#### 6.3.4 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTB pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the SSP,  $l^2C$  or interrupts, refer to the appropriate section in this data sheet.

### 6.3.4.1 RB0/AN12/CPS0/INT

Figure 6-7 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input
- an external edge triggered interrupt

#### 6.3.4.2 RB1/AN10/CPS1

Figure 6-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input

#### 6.3.4.3 RB2/AN8/CPS2

Figure 6-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input

#### 6.3.4.4 RB3/AN9/CPS3/CCP2

Figure 6-9 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a capacitive sensing input
- a Capture 2 input, Compare 2 output, and PWM2 output

| Note: | CCP2 pin location may be selected as |
|-------|--------------------------------------|
|       | RB3 or RC1.                          |

#### 6.3.4.5 RB4/AN11/CPS4

Figure 6-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input

#### 6.3.4.6 RB5/AN13/CPS5/T1G

Figure 6-10 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a capacitive sensing input
- a Timer1 gate input

#### 6.3.4.7 RB6/ICSPCLK

Figure 6-11 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- In-Circuit Serial Programming clock

#### 6.3.4.8 RB7/ICSPDAT

Figure 6-12 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- In-Circuit Serial Programming data







## 9.1 ADC Configuration

When configuring and using the ADC, the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

### 9.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 6.0 "I/O Ports"** for more information.

**Note:** Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

### 9.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2 "ADC Operation"** for more information.

### 9.1.3 ADC VOLTAGE REFERENCE

The ADREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be either VDD, an external voltage source or the internal Fixed Voltage Reference. The negative voltage reference is always connected to the ground reference. See **Section 10.0** "**Fixed Voltage Reference**" for more details on the Fixed Voltage Reference.

### 9.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 8-bit conversion requires 10 TAD periods as shown in Figure 9-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 23.0** "**Electrical Specifications**" for more information. Table 9-1 gives examples of appropriate ADC clock selections.

**Note:** Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

### 15.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCPx pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPRxL
- CCPxCON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin.

Figure 15-3 shows a simplified block diagram of PWM operation.

Figure 15-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, refer to **Section 15.3.8** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM



The PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 15-4: CCP PWM OUTPUT



### 15.3.1 CCPx PIN CONFIGURATION

In PWM mode, the CCPx pin is multiplexed with the PORT data latch. The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note: Clearing the CCPxCON register will relinquish CCPx control of the CCPx pin.





#### TABLE 16-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

| Name   | Bit 7    | Bit 6       | Bit 5  | Bit 4     | Bit 3     | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|--------|----------|-------------|--------|-----------|-----------|--------|--------|--------|----------------------|---------------------------------|
| INTCON | GIE      | PEIE        | T0IE   | INTE      | RBIE      | T0IF   | INTF   | RBIF   | 0000 000x            | 0000 000x                       |
| PIE1   | TMR1GIE  | ADIE        | RCIE   | TXIE      | SSPIE     | CCP1IE | TMR2IE | TMR1IE | 0000 0000            | 0000 0000                       |
| PIR1   | TMR1GIF  | ADIF        | RCIF   | TXIF      | SSPIF     | CCP1IF | TMR2IF | TMR1IF | 0000 0000            | 0000 0000                       |
| RCSTA  | SPEN     | RX9         | SREN   | CREN      | ADDEN     | FERR   | OERR   | RX9D   | 0000 000x            | 0000 000x                       |
| SPBRG  | BRG7     | BRG6        | BRG5   | BRG4      | BRG3      | BRG2   | BRG1   | BRG0   | 0000 0000            | 0000 0000                       |
| TRISC  | TRISC7   | TRISC6      | TRISC5 | TRISC4    | TRISC3    | TRISC2 | TRISC1 | TRISC0 | 1111 1111            | 1111 1111                       |
| TXREG  | AUSART T | ransmit Dat |        | 0000 0000 | 0000 0000 |        |        |        |                      |                                 |
| TXSTA  | CSRC     | TX9         | TXEN   | SYNC      | —         | BRGH   | TRMT   | TX9D   | 0000 -010            | 0000 -010                       |

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Asynchronous Transmission.

| R/W-             | 0 R/W-0                                                                                      | R/W-0                                                                                                                                                                                      | R/W-0                                                                                      | R/W-0                                                                           | R/W-0                                                                       | R/W-0                                                                    | R/W-0                                                                |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
| WCO              | L SSPOV                                                                                      | SSPEN                                                                                                                                                                                      | СКР                                                                                        | SSPM3                                                                           | SSPM2                                                                       | SSPM1                                                                    | SSPM0                                                                |  |  |  |  |  |
| bit 7            | ·                                                                                            | •                                                                                                                                                                                          | •                                                                                          | ·                                                                               | •                                                                           | •                                                                        | bit 0                                                                |  |  |  |  |  |
| Levent           |                                                                                              |                                                                                                                                                                                            |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
| Legend:          |                                                                                              | M = M/ritabla bit                                                                                                                                                                          |                                                                                            | LL - Unimplemented bit, read as '0'                                             |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
| R = Reduable bit |                                                                                              | '1' - Bit is set                                                                                                                                                                           |                                                                                            | $0^{\circ}$ - Bit is cleared x - Bit is unknown                                 |                                                                             |                                                                          | 2014/2                                                               |  |  |  |  |  |
|                  |                                                                                              | 1 - Dit 13 36t                                                                                                                                                                             |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
| bit 7            | WCOL: Write                                                                                  | Collision Dete                                                                                                                                                                             | ct bit                                                                                     |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
|                  | 1 = The SSP<br>software)                                                                     | <ul> <li>1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in<br/>software)</li> </ul>                                                  |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
|                  | 0 = No collisi                                                                               | 0 = No collision                                                                                                                                                                           |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
| bit 6            | SSPOV: Receive Overflow Indicator bit                                                        |                                                                                                                                                                                            |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
|                  | 1 = A new by<br>overflow,<br>the SSP<br>overflow<br>SSPBUF<br>0 = No overfl                  | yte is received<br>the data in SS<br>BUF, even if o<br>bit is not set s<br>register.                                                                                                       | while the SS<br>PSR is lost. (<br>only transmitt<br>ince each ne                           | PBUF register<br>Overflow can or<br>ing data, to a<br>w reception (a            | is still holding<br>hly occur in Slav<br>void setting ov<br>nd transmission | the previous da<br>ve mode. The u<br>erflow. In Mas<br>) is initiated by | ata. In case of<br>user must read<br>ter mode, the<br>writing to the |  |  |  |  |  |
| bit 5            | SSPEN: Synchronous Serial Port Enable bit                                                    |                                                                                                                                                                                            |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
|                  | 1 = Enables s<br>0 = Disables s                                                              | <ul> <li>1 = Enables serial port and configures SCK, SDO and SDI as serial port pins<sup>(1)</sup></li> <li>0 = Disables serial port and configures these pins as I/O port pins</li> </ul> |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
| bit 4            | CKP: Clock Polarity Select bit                                                               |                                                                                                                                                                                            |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
|                  | 1 = Idle state<br>0 = Idle state                                                             | <ul> <li>1 = Idle state for clock is a high level</li> <li>0 = Idle state for clock is a low level</li> </ul>                                                                              |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
| bit 3-0          | SSPM<3:0>: Synchronous Serial Port Mode Select bits                                          |                                                                                                                                                                                            |                                                                                            |                                                                                 |                                                                             |                                                                          |                                                                      |  |  |  |  |  |
|                  | 0000 = SPI M<br>0001 = SPI M<br>0010 = SPI M<br>0011 = SPI M<br>0100 = SPI S<br>0101 = SPI S | Master mode, cl<br>Master mode, cl<br>Master mode, cl<br>Master mode, cl<br>Slave mode, clo<br>Slave mode, clo                                                                             | ock = Fosc/4<br>ock = Fosc/1<br>ock = Fosc/6<br>ock = TMR2<br>ck = SCK pin<br>ck = SCK pin | 4<br>6<br>64<br>0 <u>utput/2</u><br>1. <u>SS</u> pin contro<br>1. SS pin contro | l enabled<br>I disabled. SS c                                               | an be used as                                                            | I/O pin.                                                             |  |  |  |  |  |
| Note 1:          | When enabled, the                                                                            | ese pins must b                                                                                                                                                                            | e properly co                                                                              | onfigured as inp                                                                | out or output.                                                              |                                                                          |                                                                      |  |  |  |  |  |

### REGISTER 17-1: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (SPI MODE)



#### FIGURE 23-1: POR AND POR REARM WITH SLOW RISING VDD



























FIGURE 24-51: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE











FIGURE 24-54: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V



FIGURE 24-68: TYPICAL FVR (X1 AND X2) VS. SUPPLY VOLTAGE (V) NORMALIZED AT 3.0V



### 44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | MILLIMETERS |      |          |      |  |  |
|----------------------------|-------------|------|----------|------|--|--|
| Dimension                  | MIN         | NOM  | MAX      |      |  |  |
| Contact Pitch              | E           |      | 0.65 BSC |      |  |  |
| Optional Center Pad Width  | W2          |      |          | 6.80 |  |  |
| Optional Center Pad Length | T2          |      |          | 6.80 |  |  |
| Contact Pad Spacing        | C1          |      | 8.00     |      |  |  |
| Contact Pad Spacing        | C2          |      | 8.00     |      |  |  |
| Contact Pad Width (X44)    | X1          |      |          | 0.35 |  |  |
| Contact Pad Length (X44)   | Y1          |      |          | 0.80 |  |  |
| Distance Between Pads      | G           | 0.25 |          |      |  |  |

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A