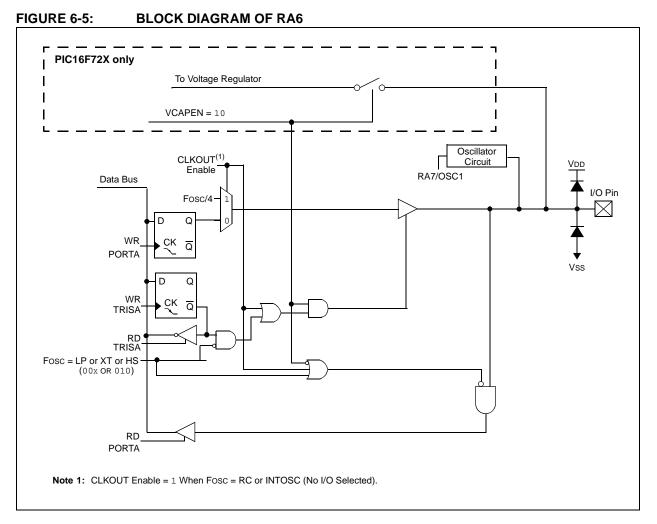


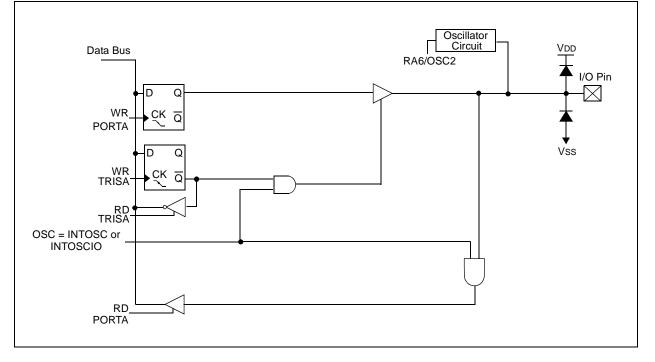
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f727-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.6.1 RE0/AN5⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

• a general purpose I/O

• an analog input for the ADC

Note 1:	RE0/AN5 is available on
	PIC16F724/LF724 and
	PIC16F727/LF727 only.

6.6.2 RE1/AN6⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

Note 1:	RE0/AN5 is available on
	PIC16F724/LF724 and
	PIC16F727/LF727 only.

6.6.3 RE2/AN7⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

Note 1: RE0/AN5 is available on PIC16F724/LF724 and PIC16F727/LF727 only.

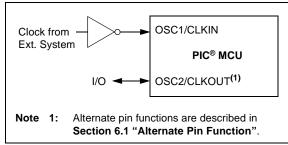
6.6.4 RE3/MCLR/VPP

Figure 6-23 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset with weak pull-up
- · a programming voltage reference input

7.6 External Clock Modes

7.6.1 OSCILLATOR START-UP TIMER (OST)


If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations on the OSC1 pin before the device is released from Reset. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

7.6.2 EC MODE

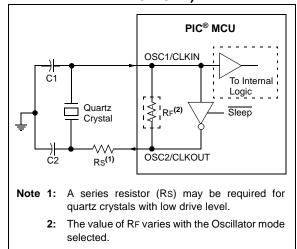
The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 7-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

7.6.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 7-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, Basic PIC[®] Oscillator Design (DS00849)
 - AN943, Practical PIC[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949).

REGISTER 8-1: CONFIG1: CONFIGURATION WORD REGISTER 1 (CONTINUED)

- bit 4 **PWRTE:** Power-up Timer Enable bit 1 = PWRT disabled
 - 1 = PWRT disabled0 = PWRT enabled
- bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled
 - 1 = WDT enabled0 = WDT disabled
- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN
 - 110 = RCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN
 - 101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN
 - 100 = INTOSCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN
 - 011 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN
 - 010 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN
 - 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN
 - 000 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN

Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.

- 2: The entire program memory will be erased when the code protection is turned off.
- 3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.
- 4: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

REGISTER 8-2: CONFIG2: CONFIGURATION WORD REGISTER 2

	U-1 ⁽¹⁾ U-1 ⁽¹⁾		U-1 ⁽¹⁾	U-1 ⁽¹⁾	U-1 ⁽¹⁾	U-1 ⁽¹⁾
			_	—	—	—
bit 15						bit 8

U-1 ⁽¹⁾	U-1 ⁽¹⁾	R/P-1	R/P-1	U-1 ⁽¹⁾	U-1 ⁽¹⁾	U-1 ⁽¹⁾ U-1 ⁽¹⁾	
—	—	VCAPEN1	VCAPEN0	—	—	_	—
bit 7							bit 0

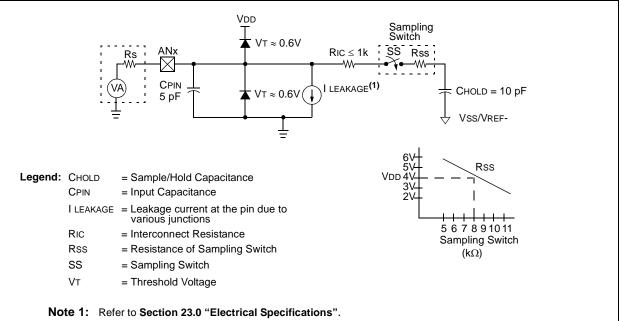
Legend:	P = Programmable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 13-6 Unimplemented: Read as '1'

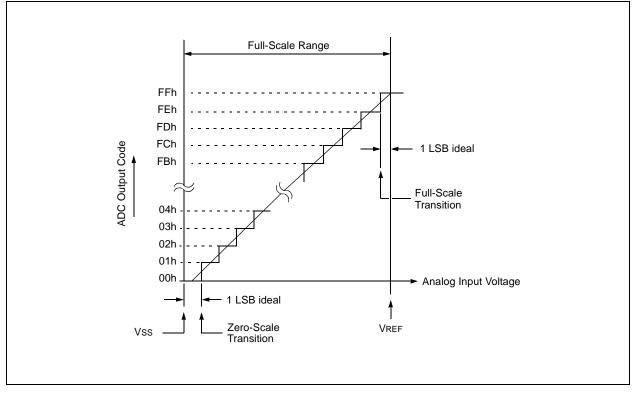
bit 5-4 VCAPEN<1:0>: Voltage Regulator Capacitor Enable bits For the PIC16LF72X: These bits are ignored. All VCAP pin functions are disabled. For the PIC16F72X: 00 = VCAP functionality is enabled on RA0 01 = VCAP functionality is enabled on RA5 10 = VCAP functionality is enabled on RA6 11 = All VCAP functions are disabled (not recommended) bit 3-0 Unimplemented: Read as '1'

Note 1: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

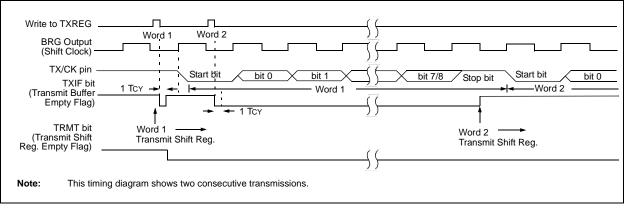
8.2 Code Protection


If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using $ICSP^{TM}$ for verification purposes.

Note:	The entire Flash program memory will be										
	erased when the code protection is turned										
	off. See the "PIC16(L)F72X Memory										
	Programming Specification" (DS41332)										
	for more information.										


8.3 User ID

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are reported when using MPLAB IDE. See the "*PIC16(L)F72X Memory Programming Specification*" (DS41332) for more information.


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-3	TOUTPS<3:0	>: Timer2 Out	out Postscaler	Select bits							
	0000 = 1:1 P	-									
	0001 = 1:2 P	ostscaler									
	0010 = 1:3 P	ostscaler									
		0011 = 1:4 Postscaler									
	0100 = 1:5 Postscaler										
	0101 = 1:6 P										
	0110 = 1:7 P 0111 = 1:8 P										
	1000 = 1:9 P										
	1000 = 1.31										
	1010 = 1:11										
	1011 = 1:12	Postscaler									
	1100 = 1:13	Postscaler									
	1101 = 1:14										
	1110 = 1:15										
	1111 = 1:16										
bit 2	TMR2ON: Timer2 On bit										
	1 = Timer2 is										
	0 = Timer2 is	s off									
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Sel	ect bits							
	00 = Prescale										
	01 = Prescale	-									
	1x = Prescale	er is 16									
TABLE 13-1:	SUMMAR		FRS ASSO	CIATED WITH	H TIMER2						

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

IADEE	ABLE 19-1. COMMANY OF REGISTERS ASSOCIATED WITH IMPERZ												
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets			
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x			
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000			
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000			
PR2	Timer2 Mod		1111 1111	1111 1111									
TMR2	Holding Re		0000 0000	0000 0000									
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000			

x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module. Legend:

TABLE 16-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	AUSART TI		0000 0000	0000 0000						
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Asynchronous Transmission.

16.2 AUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit timer that is dedicated to the support of both the asynchronous and synchronous AUSART operation.

The SPBRG register determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by the BRGH bit of the TXSTA register. In Synchronous mode, the BRGH bit is ignored.

Table 16-3 contains the formulas for determining the baud rate. Example 16-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 16-3. It may be advantageous to use the high baud rate (BRGH = 1), to reduce the baud rate error.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, and Asynchronous mode with SYNC = 0 and BRGH = 0 (as seen in Table 16-3):

Desired Baud Rate =
$$\frac{FOSC}{64(SPBRG+1)}$$

Solving for SPBRG:

$$SPBRG = \left(\frac{FOSC}{64(Desired Baud Rate)}\right) - 1$$
$$= \left(\frac{16000000}{64(9600)}\right) - 1$$
$$= [25.042] = 25$$
$$Actual Baud Rate = \frac{16000000}{64(25+1)}$$
$$= 9615$$
% Error = $\left(\frac{Actual Baud Rate - Desired Baud Rate}{Desired Baud Rate}\right) 100$
$$= \left(\frac{9615 - 9600}{9600}\right) 100 = 0.16\%$$

Configur	ation Bits		Baud Rate Formula		
SYNC	BRGH	AUSART Mode	Baud Rate Formula		
0	0	Asynchronous	Fosc/[64 (n+1)]		
0	1	Asynchronous	Fosc/[16 (n+1)]		
1	x	Synchronous	Fosc/[4 (n+1)]		

TABLE 16-3:BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRG register

TABLE 16-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the Baud Rate Generator.

16.3.2.3 AUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 16.3.1.4 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE interrupt enable bit of the PIE1 register is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

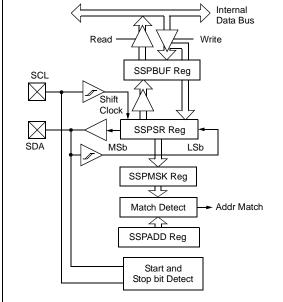
- 16.3.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 5. Set the CREN bit to enable reception.
- The RCIF bit of the PIR1 register will be set when reception is complete. An interrupt will be generated if the RCIE bit of the PIE1 register was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART R	eceive Data	a Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000X	0000 000X
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

17.2 I²C Mode


The SSP module, in I^2C mode, implements all slave functions, except general call support. It provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the I^2C Standard mode specifications:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- Start and Stop bit interrupts enabled to support firmware Master mode
- Address masking

Two pins are used for data transfer; the SCL pin (clock line) and the SDA pin (data line). The user must configure the two pin's data direction bits as inputs in the appropriate TRIS register. Upon enabling I^2C mode, the I^2C slew rate limiters in the I/O pads are controlled by the SMP bit of SSPSTAT register. The SSP module functions are enabled by setting the SSPEN bit of SSPCON register.

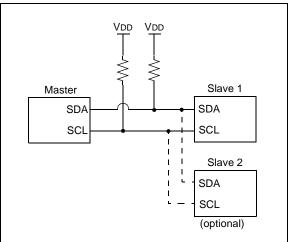

Data is sampled on the rising edge and shifted out on the falling edge of the clock. This ensures that the SDA signal is valid during the SCL high time. The SCL clock input must have minimum high and low times for proper operation. Refer to **Section 23.0** "**Electrical Specifications**".

FIGURE 17-7: I²C MODE BLOCK DIAGRAM

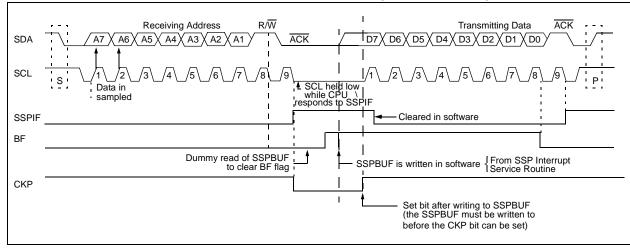
FIGURE 17-8: TYPICAL I²C

CONNECTIONS

The SSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. They are:

- SSP Control (SSPCON) register
- SSP Status (SSPSTAT) register
- Serial Receive/Transmit Buffer (SSPBUF) register
- SSP Shift Register (SSPSR), not directly accessible
- SSP Address (SSPADD) register
- SSP Address Mask (SSPMSK) register

17.2.1 HARDWARE SETUP


Selection of I^2C mode, with the SSPEN bit of the SSPCON register set, forces the SCL and SDA pins to be open drain, provided these pins are programmed as inputs by setting the appropriate TRISC bits. The SSP module will override the input state with the output data, when required, such as for Acknowledge and slave-transmitter sequences.

Note: Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module

17.2.6 TRANSMISSION

When the R/W bit of the received address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set and the slave will respond to the master by reading out data. After the address match, an ACK pulse is generated by the slave hardware and the SCL pin is held low (clock is automatically stretched) until the slave is ready to respond. See **Section 17.2.7 "Clock Stretching"**. The data the slave will transmit must be loaded into the SSPBUF register, which sets the BF bit. The SCL line is released by setting the CKP bit of the SSPCON register.

An SSP interrupt is generated for each transferred data byte. The SSPIF flag bit of the PIR1 register initiates an SSP interrupt, and must be cleared by software before the next byte is transmitted. The BF bit of the SSPSTAT register is cleared on the falling edge of the eighth received clock pulse. The SSPIF flag bit is set on the falling edge of the ninth clock pulse. Following the eighth falling clock edge, control of the SDA line is released back to the master so that the master can acknowledge or not acknowledge the response. If the master sends a not acknowledge, the slave's transmission is complete and the slave must monitor for the next Start condition. If the master acknowledges, control of the bus is returned to the slave to transmit another byte of data. Just as with the previous byte, the clock is stretched by the slave, data must be loaded into the SSPBUF and CKP must be set to release the clock line (SCL).

FIGURE 17-12: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

MOVF	Move f					
Syntax:	[<i>label</i>] MOVF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f) \rightarrow (dest)$					
Status Affected:	Z					
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.					
Words:	1					
Cycles:	1					
Example:	MOVF FSR, 0					
	After Instruction W = value in FSR register Z = 1					

MOVWF	Move W to f					
Syntax:	[label] MOVWF f					
Operands:	$0 \le f \le 127$					
Operation:	$(W) \to (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					
Words:	1					
Cycles:	1					
Example:	MOVW OPTION F					
	Before Instruction OPTION = 0xFF W = 0x4F					
	After Instruction OPTION = 0x4F					
	W = 0x4F					

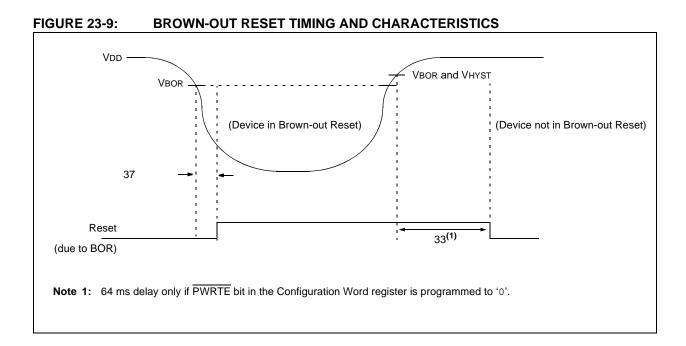
MOVLW	Move literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.					
Words:	1					
Cycles:	1					
Example:	MOVLW 0x5A					
	After Instruction W = 0x5A					

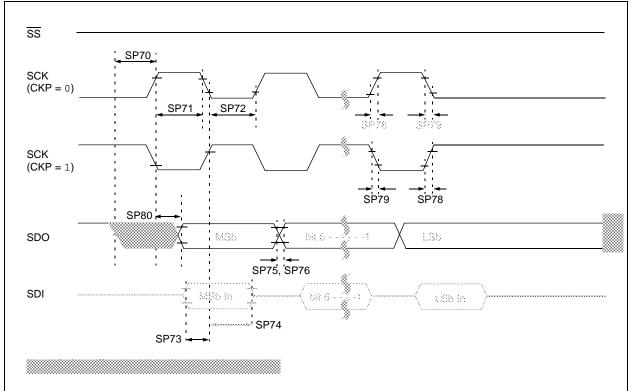
NOP	No Operation				
Syntax:	[label] NOP				
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Description:	No operation.				
Words:	1				
Cycles:	1				
Example:	NOP				

RLF	Rotate Left f through Carry						
Syntax:	[<i>label</i>] RLF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	See description below						
Status Affected:	С						
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	RLF REG1,0						
	Before Instruction						
	REG1 = 1110 0110						
	C = 0						
	After Instruction						
	REG1 = 1110 0110						
	$W = 1100 \ 1100$						
	C = 1						

SLEEP	Enter Sleep mode			
Syntax:	[label] SLEEP			
Operands:	None			
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \text{PD} \end{array}$			
Status Affected:	TO, PD			
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.			

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	See description below					
Status Affected:	С					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					
	C Register f					


SUBLW	Subtract W from literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	$0 \le k \le 255$					
Operation:	$k \text{ - } (W) \to (W)$					
Status Affected:	C, DC, Z					
Description:	complemen	ster is subtracted (2's t method) from the 8-bit e result is placed in the				
	C = 0	W > k				
	C = 1	$W \leq k$				


DC = 0

DC = 1

W<3:0> > k<3:0>

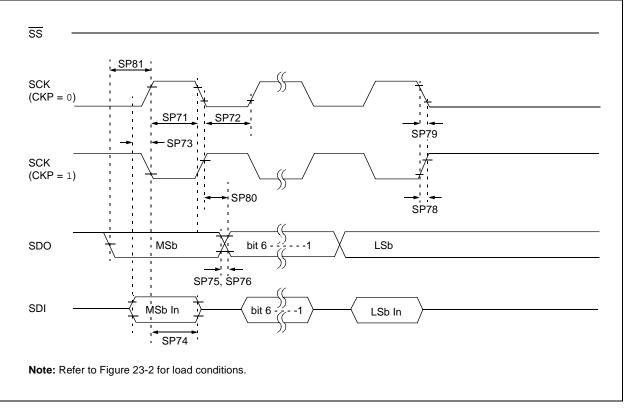
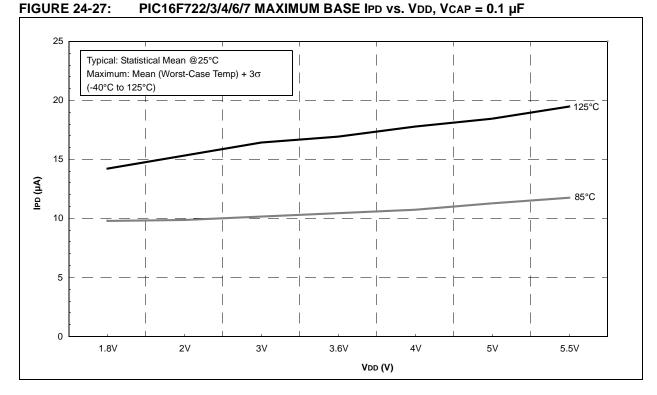
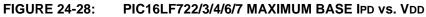
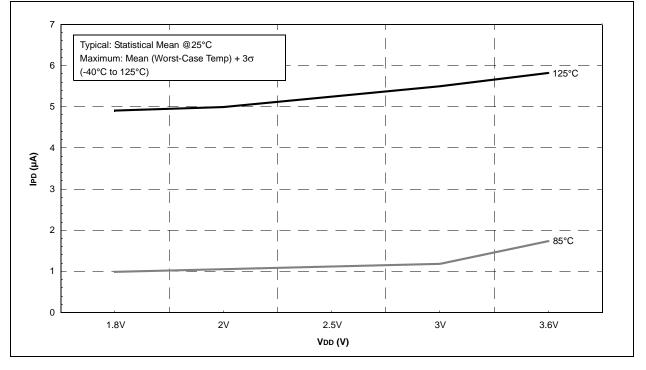

 $W < 3:0 > \le k < 3:0 >$

FIGURE 23-16: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

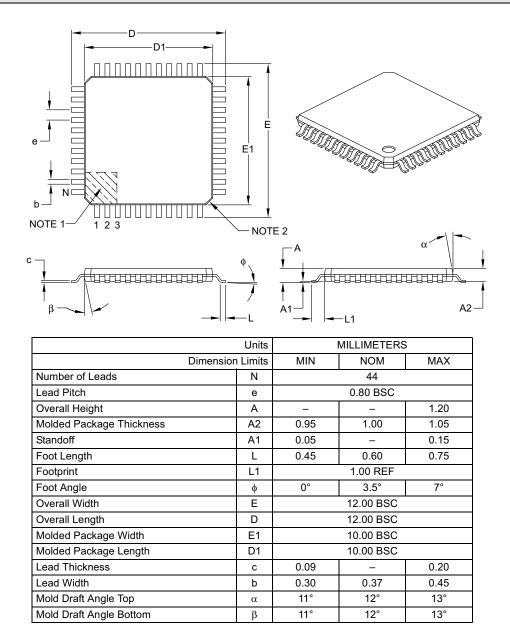

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
SP100* Thigh		Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy	_		
SP101* TLOW		Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy	_		
SP102* Tr	SDA and SCL rise time	100 kHz mode	—	1000	ns		
		400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF	
SP103* TF	SDA and SCL fall time	100 kHz mode	—	250	ns		
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μs	-
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)
			400 kHz mode	100		ns	-
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	_		ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
SP111	Св	Bus capacitive loading		—	400	pF	


TABLE 23-13: I²C BUS DATA REQUIREMENTS


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.



© 2007-2015 Microchip Technology Inc.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

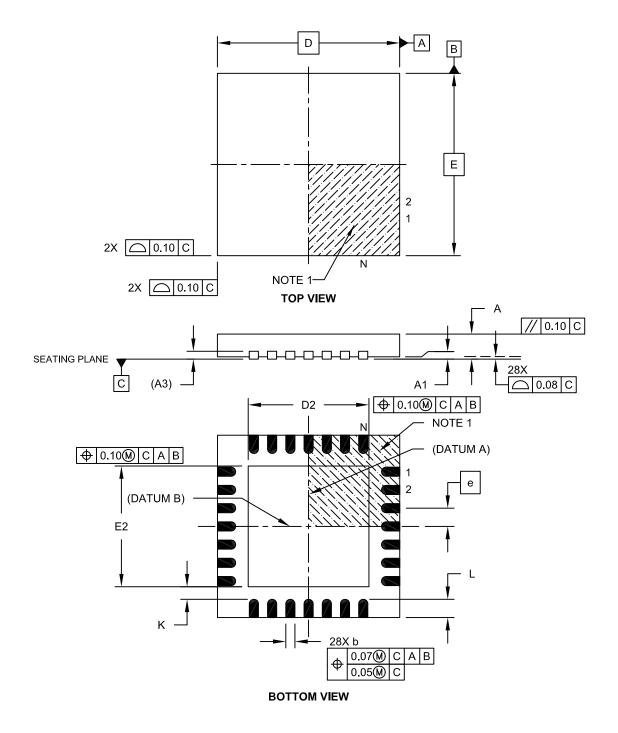
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2