

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f727-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

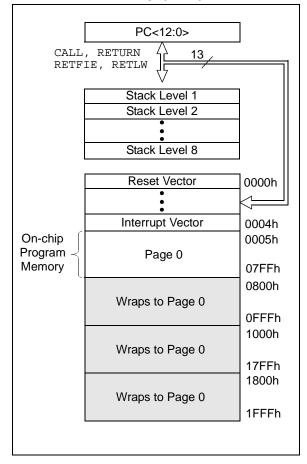
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System


Register on our website at www.microchip.com to receive the most current information on all of our products.

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

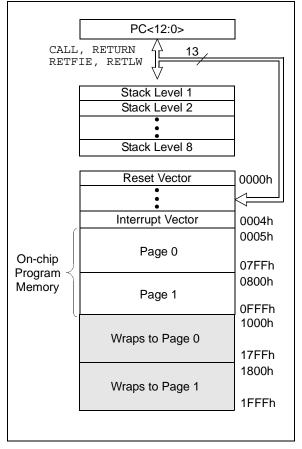

The PIC16(L)F722/3/4/6/7 has a 13-bit program counter capable of addressing a 2K x 14 program memory space for the PIC16F722/LF722 (0000h-07FFh), a 4K x 14 program memory space for PIC16F723/LF723 and PIC16F724/LF724 the (0000h-0FFFh) and an 8K x 14 program memory space for the PIC16F726/LF726 and PIC16F727/LF727 (0000h-1FFFh). Accessing a location above the memory boundaries for the PIC16F722/LF722 will cause a wrap-around within the first 2K x 14 program memory space. Accessing a location above the memory boundaries for the PIC16F723/LF723 and PIC16F724/LF724 will cause a wrap-around within the first 4K x 14 program memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16F722/LF722

FIGURE 2-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F723/LF723 AND PIC16F724/LF724

4.5.3 PIE2 REGISTER

Γ.

bit 0

The PIE2 register contains the interrupt enable bits, as shown in Register 4-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 4-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—		CCP2IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt

0 = Disables the CCP2 interrupt

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	-00000	-00000
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CPSCON0	CPSON	_	_	_	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	0 0000	0 0000
CPSCON1	_	_	_	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	0000	0000
CONFIG2 ⁽¹⁾	_	_	VCAPEN1	VCAPEN0	_	_	—	_	—	—
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	xxxx xxxx
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

 $\label{eq:Legend: x = unknown, u = unchanged, - = unimplemented locations read as `0'. Shaded cells are not used by PORTA.$

Note 1: PIC16F72X only.

6.6.1 RE0/AN5⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

• a general purpose I/O

• an analog input for the ADC

Note 1:	RE0/AN5 is available on
	PIC16F724/LF724 and
	PIC16F727/LF727 only.

6.6.2 RE1/AN6⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

Note 1:	RE0/AN5 is available on
	PIC16F724/LF724 and
	PIC16F727/LF727 only.

6.6.3 RE2/AN7⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

Note 1: RE0/AN5 is available on PIC16F724/LF724 and PIC16F727/LF727 only.

6.6.4 RE3/MCLR/VPP

Figure 6-23 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset with weak pull-up
- · a programming voltage reference input

7.2 Clock Source Modes

Clock source modes can be classified as external or internal.

- Internal clock source (INTOSC) is contained within the oscillator module and derived from a 500 kHz high precision oscillator. The oscillator module has eight selectable output frequencies, with a maximum internal frequency of 16 MHz.
- External clock modes rely on external circuitry for the clock source. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

The system clock can be selected between external or internal clock sources via the FOSC bits of the Configuration Word 1.

7.3 Internal Clock Modes

The oscillator module has eight output frequencies derived from a 500 kHz high precision oscillator. The IRCF bits of the OSCCON register select the postscaler applied to the clock source dividing the frequency by 1, 2, 4 or 8. Setting the PLLEN bit of the Configuration Word 1 locks the internal clock source to 16 MHz before the postscaler is selected by the IRCF bits. The PLLEN bit must be set or cleared at the time of programming; therefore, only the upper or low four clock source frequencies are selectable in software.

7.3.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the CONFIG1 register. See **Section 8.0** "**Device Configuration**" for more information.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O.

7.3.2 FREQUENCY SELECT BITS (IRCF)

The output of the 500 kHz INTOSC and 16 MHz INTOSC, with Phase-Locked Loop enabled, connect to a postscaler and multiplexer (see Figure 7-1). The Internal Oscillator Frequency Select bits (IRCF) of the OSCCON register select the frequency output of the internal oscillator. Depending upon the PLLEN bit, one of four frequencies of two frequency sets can be selected via software:

If PLLEN = 1, frequency selection is as follows:

- 16 MHz
- 8 MHz (default after Reset)
- 4 MHz
- 2 MHz
- If PLLEN = 0, frequency selection is as follows:
- 500 kHz
- 250 kHz (default after Reset)
- 125 kHz
- 62.5 kHz

Note: Following any Reset, the IRCF<1:0> bits of the OSCCON register are set to '10' and the frequency selection is set to 8 MHz or 250 kHz. The user can modify the IRCF bits to select a different frequency.

There is no start-up delay before a new frequency selected in the IRCF bits takes effect. This is because the old and new frequencies are derived from INTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in the Table 23-2 in Section 23.0 "Electrical Specifications".

REGISTER	19-2. ADCO		ITROL REG				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable bi	t	U = Unimpleme	ented bit, read as	s 'O'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	wn
bit 7	Unimplemente	ed: Read as '0'					
bit 6-4	ADCS<2:0>: A	/D Conversion C	lock Select bits				
	000 = Fosc/2						
	001 = Fosc/8						
	010 = Fosc/32	-					
	· · ·	ock supplied from	a dedicated RC	Coscillator)			
	100 = Fosc/4 101 = Fosc/16						
	101 = FOSC/10 110 = FOSC/64	-					
		, ock supplied from	a dedicated RC	coscillator)			
bit 3-2	Unimplemente	••		,			
bit 1-0	ADREF<1:0>:	Voltage Referend	e Configuration	bits			
		connected to VDD	0				
	10 = VREF is c	connected to exte	rnal VREF (RA3	/AN3)			
			nal Fixed Voltag				

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

REGISTER 9-3: ADRES: ADC RESULT REGISTER

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

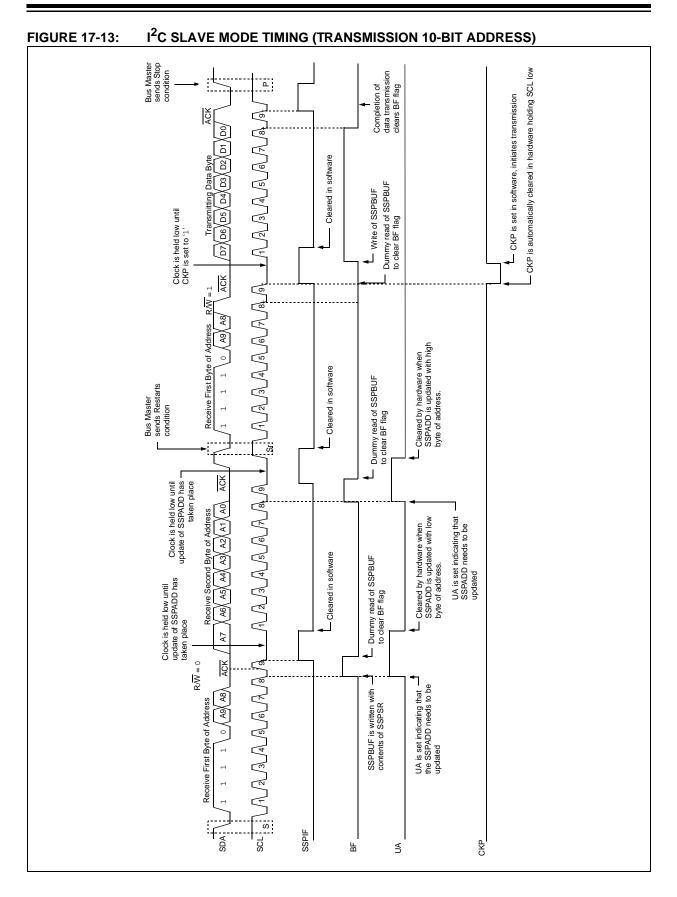
bit 7-0 **ADRES<7:0>**: ADC Result Register bits 8-bit conversion result.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7		ull-ups are dis	abled	dual port latch	values		
bit 6	•	errupt Edge Se on rising edge on falling edge	of INT pin				
bit 5	1 = Transition	Clock Source on T0CKI pin astruction cycle	or CPSOSC s				
bit 4		Source Edge t on high-to-lov t on low-to-hig	w transition or				
bit 3		er Assignmen is assigned to is assigned to	the WDT	nodule			
bit 2-0	PS<2:0>: Pre	escaler Rate S	elect bits				
	BIT	VALUE TMR0 R	ATE WDT RA	TE			
	0 0 1 1 1	00 1:2 01 1:4 10 1:8 11 1:1 00 1:3 01 1:6 10 1:1	1:2 1:4 1:8 1:16 4 1:32 28				
TABLE 11-1:			TERS ASSO		H TIMERO		

REGISTER 11-1: OPTION_REG: OPTION REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CPSCON0	CPSON				CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TMR0	Timer0 Module Register								xxxx xxxx	uuuu uuuu
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.


17.2.5 RECEPTION

When the R/\overline{W} bit of the received address byte is clear, the master will write data to the slave. If an address match occurs, the received address is loaded into the SSPBUF register. An address byte overflow will occur if that loaded address is not read from the SSPBUF before the next complete byte is received.

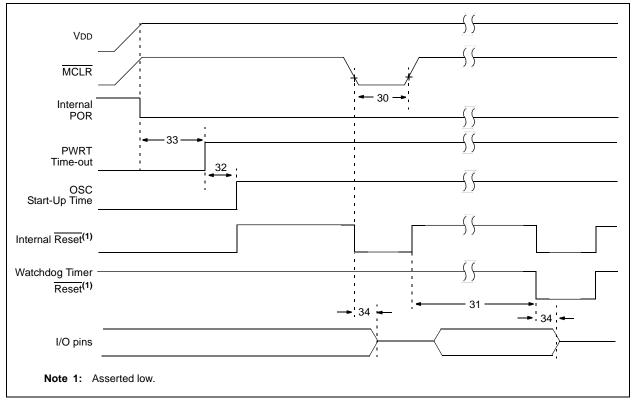
An SSP interrupt is generated for each data transfer byte. The BF, R/\overline{W} and D/\overline{A} bits of the SSPSTAT register are used to determine the status of the last received byte.

FIGURE 17-10: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

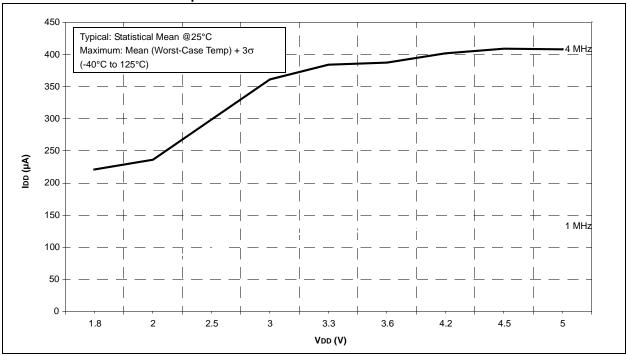
R/ Receiving Address	$\overline{W} = 0$ $\overline{\Delta C K}$ Receiving Data $\overline{\Delta C K}$ Receiving Data	
SDA 1 A7XA6XA5XA4XA3XA2XA1	ACK Receiving Data ACK Receiving Data /D7/D6/D5/D4/D3/D2/D1/D0//D7/D6/D5/D4/D3/	
	3, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5,	/6_/7_/8 _ /9_/ [!] ₽ [!] I
SSPIF	Cleared in software	Bus Master sends Stop
BF	 SSPBUF register is read 	condition
SSPOV		
	Bit SSPOV is set because the SSPBUF register is	s still full. 🗕
		s not sent.

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	VDD = 3.3-5.0V				
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-5.0V				
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	_	_	20	ns					
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	—		ns					
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V				
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.3-5.0V				
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20		_	ns					
OS18	TioR	Port output rise time ⁽²⁾		40 15	72 32	ns	VDD = 2.0V VDD = 3.3-5.0V				
OS19	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 3.3-5.0V				
OS20*	Tinp	INT pin input high or low time	25	—	—	ns					
OS21*	Trbp	PORTB interrupt-on-change new input level time	Тсү	—	_	ns					

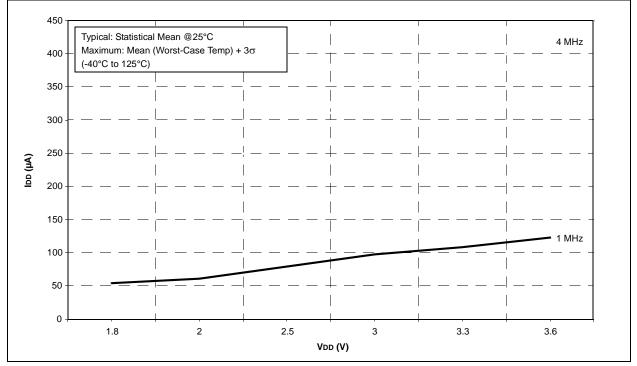
TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.


Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.


FIGURE 23-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

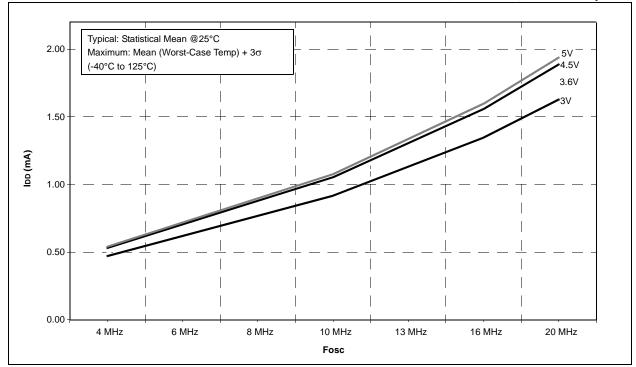
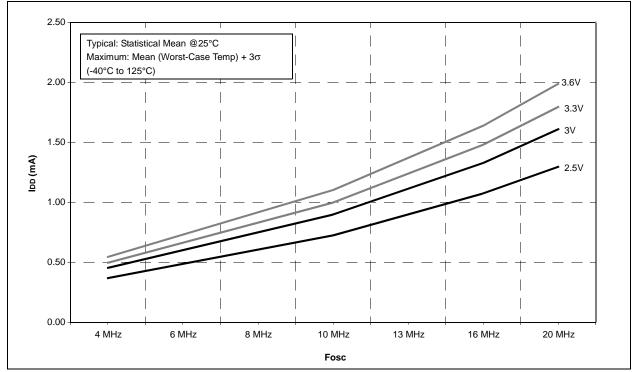
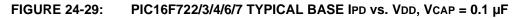
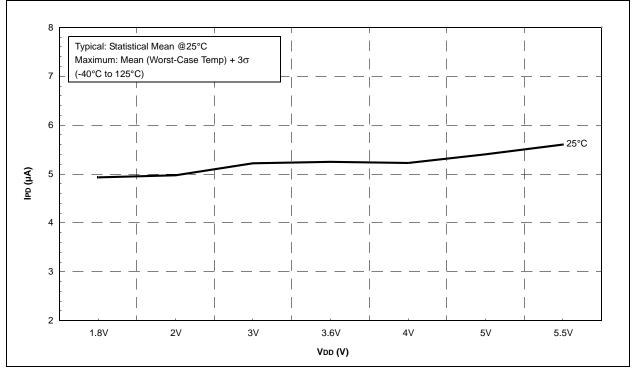
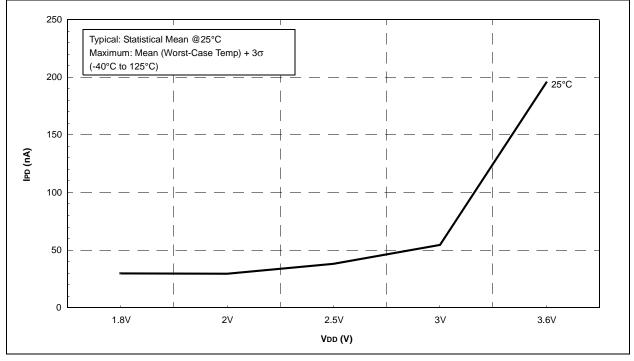


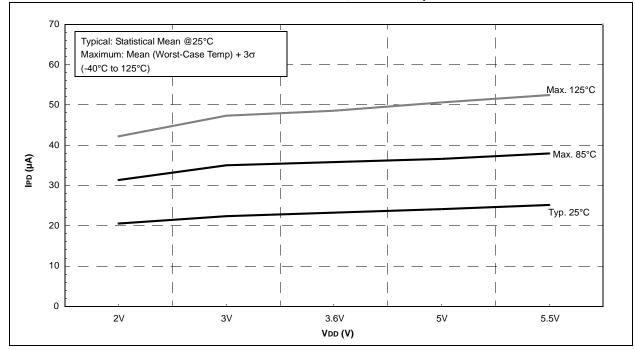
FIGURE 24-7: PIC16F722/3/4/6/7 TYPICAL IDD vs. VDD OVER Fosc, EXTRC MODE, VCAP = 0.1μ F

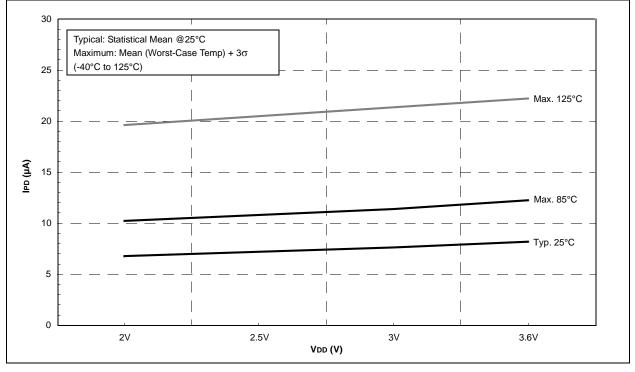












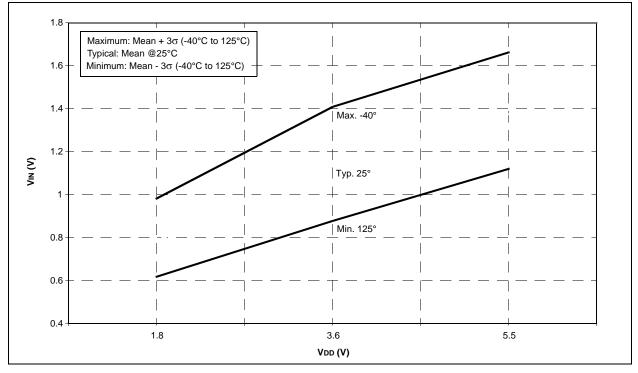
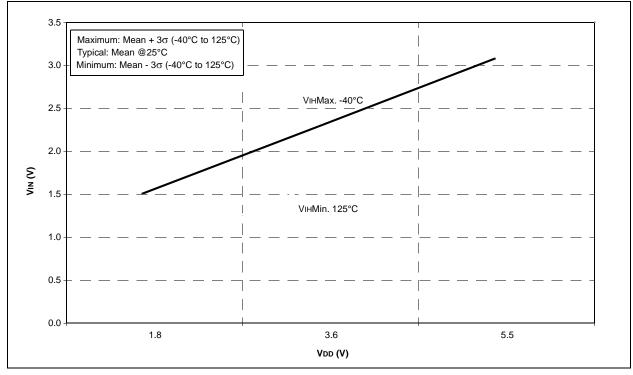
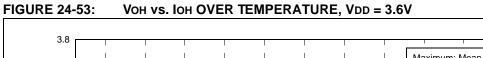


FIGURE 24-33: PIC16F722/3/4/6/7 BOR IPD vs. VDD, VCAP = 0.1 µF





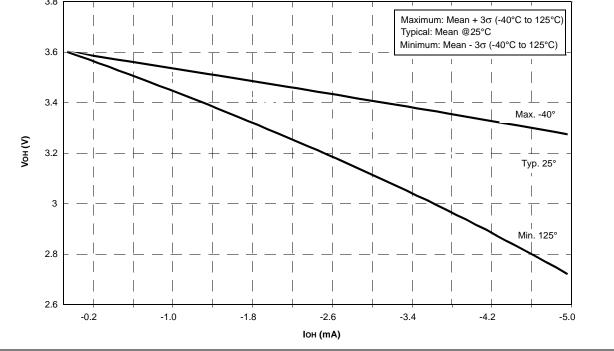
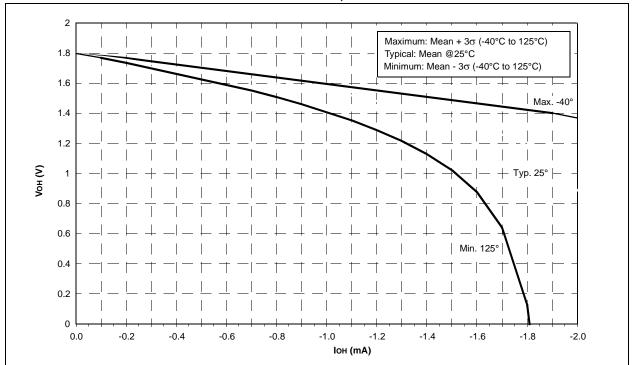
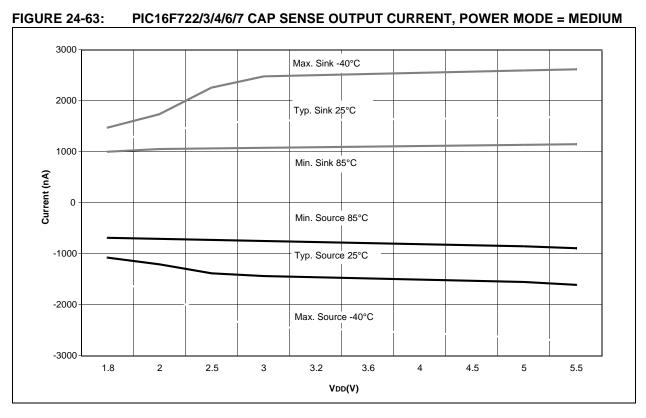
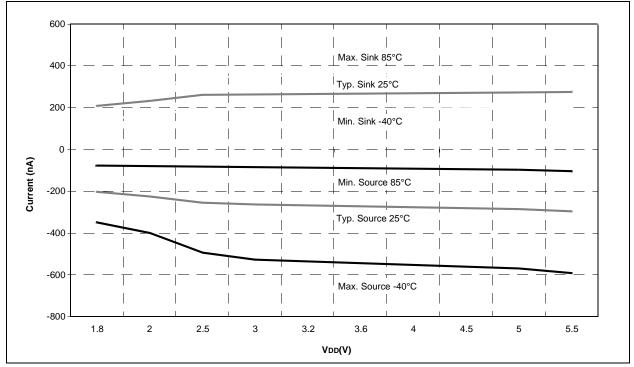
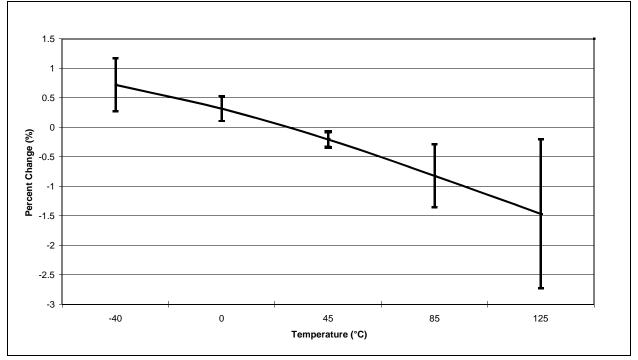


FIGURE 24-49: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE


FIGURE 24-54: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>[X]</u> (1)	¥	<u>/xx</u>	<u>xxx</u>	Exam	ples:
Device	Tape and Reel Option	Temperature Range	Package	Pattern	b) F	IC16F722-E/SP 301 = Extended Temp., kinny PDIP package, QTP pattern #301 IC16F722-I/SO = Industrial Temp., SOIC ackage
Device:	PIC16F722, PIC16 PIC16F723, PIC16 PIC16F724, PIC16 PIC16F726, PIC16 PIC16F726, PIC16 PIC16F727, PIC16	LF723, PIC16F723 LF724, PIC16F724 LF726, PIC16F726	T, PIC16LF72 T, PIC16LF72 T, PIC16LF72	23T ⁽¹⁾ 24T ⁽¹⁾ 26T ⁽¹⁾		uonugo
Tape and Reel Option:	$I = -40^{\circ}C \text{ to}$ $E = -40^{\circ}C \text{ to}$ $MV = \text{Micro Le}$					
Temperature Range:		o +85°C (Indus o +125°C (Exten			Note 1	 Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and
Package:	P = Plastic IPT = TQFP (1SO = SOIC	ead Frame (QFN) DIP Thin Quad Flatpack Plastic DIP)			is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.