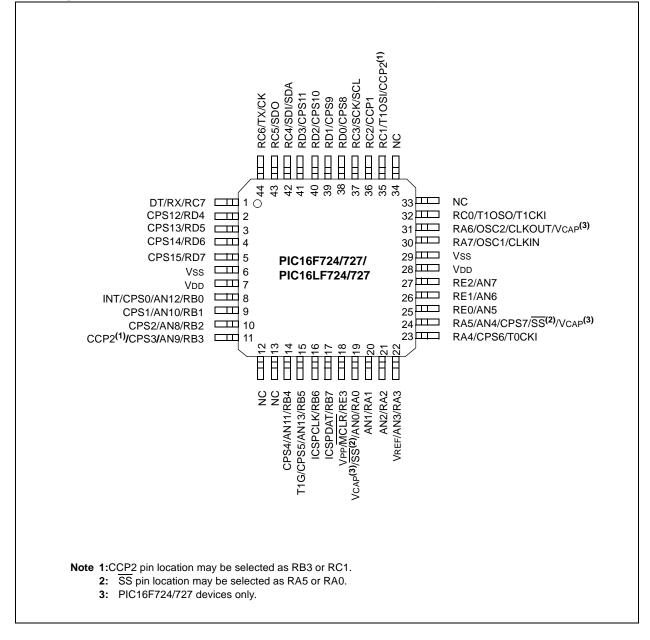


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f727-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams – 44-PIN TQFP (PIC16F724/727/PIC16LF724/727)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

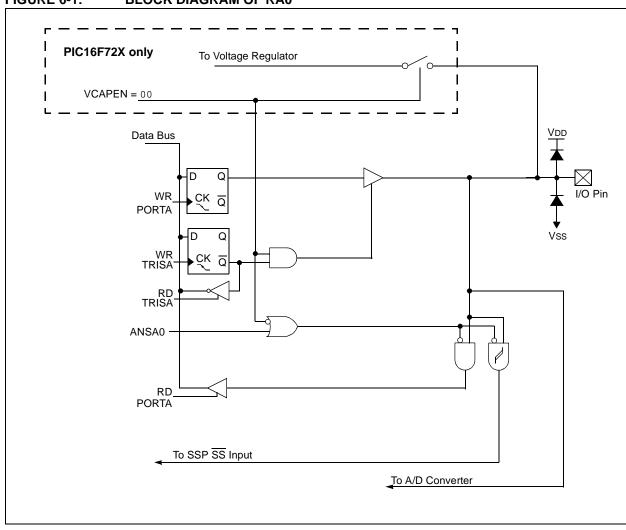
Register on our website at www.microchip.com to receive the most current information on all of our products.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 1											
80h ⁽²⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	ddress data	memory (not	a physical re	gister)	xxxx xxxx	29,37
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	26,37
82h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	ant Byte	•	•		•	0000 0000	28,37
83h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	25,37
84h ⁽²⁾	FSR	Indirect Data	a Memory Ad	dress Point	er	•	•		•	xxxx xxxx	29,37
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	51,37
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	60,37
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	70,37
88h ⁽³⁾	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	78,37
89h	TRISE	_	_	_	_	TRISE3 ⁽⁶⁾	TRISE2 ⁽³⁾	TRISE1 ⁽³⁾	TRISE0 ⁽³⁾	1111	81,37
8Ah ^(1, 2)	PCLATH	_	_	_	Write Buffer	for the upper	5 bits of the F	Program Cou	nter	0 0000	28,37
8Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	44,37
8Ch	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	45,37
8Dh	PIE2	_	—	—	_	—	_	_	CCP2IE	0	46,37
8Eh	PCON	_	_	_	_	_	_	POR	BOR	qq	27,38
8Fh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	118,38
90h	OSCCON	_	_	IRCF1	IRCF0	ICSL	ICSS	_	_	10 qq	87,38
91h	OSCTUNE	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	88,38
92h	PR2	Timer2 Perio	od Register							1111 1111	120,38
93h	SSPADD ⁽⁵⁾	Synchronou	Synchronous Serial Port (I ² C mode) Address Register						0000 0000	169,38	
93h	SSPMSK ⁽⁴⁾	Synchronou	s Serial Port	(I ² C mode)	Address Mas	k Register				1111 1111	180,38
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	179,38
95h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	61,38
96h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	61,38
97h	—	Unimplemer	nted							_	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	147,38
99h	SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	149,38
9Ah	_	Unimplemer	nted							—	—
9Bh	_	Unimplemer	nted							—	—
9Ch	APFCON	_	—	—	_	—	—	SSSEL	CCP2SEL	00	50,38
9Dh	FVRCON	FVRRDY	FVREN	—	—	—	—	ADFVR1	ADFVR0	q000	104,38
9Eh	_	Unimplemer	nted							—	—
9Fh	ADCON1	_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	000000	100,38

TABLE 2-1: PIC16(L)F722/3/4/6/7 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.


Note The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are 1: transferred to the upper byte of the program counter.

2:

These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'. 3:

Accessible only when SSPM<3:0> \pm 1001. Accessible only when SSPM<3:0> \pm 1001. This bit is always '1' as RE3 is input-only. 4:

5: 6:

FIGURE 6-1: BLOCK DIAGRAM OF RA0

6.4.1 RC0/T1OSO/T1CKI

Figure 6-13 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a Timer1 oscillator output
- a Timer1 clock input

6.4.2 RC1/T1OSI/CCP2

Figure 6-14 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a Timer1 oscillator input
- a Capture 2 input, Compare 2 output, and PWM2 output

Note: CCP2 pin location may be selected as RB3 or RC1.

6.4.3 RC2/CCP1

Figure 6-15 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a Capture 1 input, Compare 1 output, and PWM1 output

6.4.4 RC3/SCK/SCL

Figure 6-16 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a SPI clock
- an I²C clock

6.4.5 RC4/SDI/SDA

Figure 6-17 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a SPI data input
- an I²C data I/O

6.4.6 RC5/SDO

Figure 6-18 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a SPI data output

6.4.7 RC6/TX/CK

Figure 6-19 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O

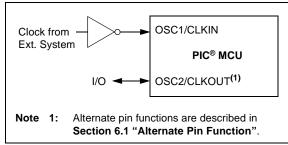
6.4.8 RC7/RX/DT

Figure 6-20 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- · an asynchronous serial input
- a synchronous serial data I/O

7.6 External Clock Modes

7.6.1 OSCILLATOR START-UP TIMER (OST)


If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations on the OSC1 pin before the device is released from Reset. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

7.6.2 EC MODE

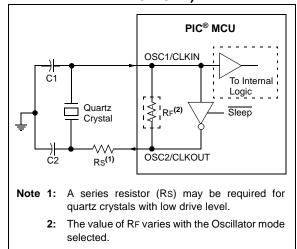
The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 7-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

7.6.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

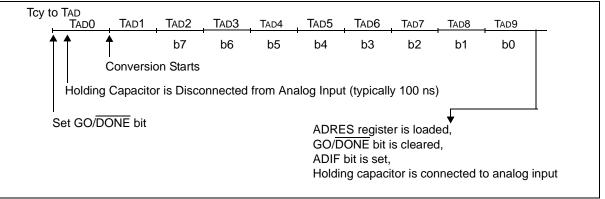
Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 7-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, Basic PIC[®] Oscillator Design (DS00849)
 - AN943, Practical PIC[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949).

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES


ADC Clock Period (TAD)		Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/8	001	400 ns ⁽²⁾	0.5 μs (2)	1.0 μs	2.0 μs	8.0 μs (3)		
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾		
FRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs (1,4)	1.0-6.0 μs ^(1,4)		

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μs for VDD.

- 2: These values violate the minimum required TAD time.
- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

FIGURE 9-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

11.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

Note:	When the prescaler is assigned to WDT, a
	CLRWDT instruction will clear the prescaler
	along with the WDT.

11.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit can only be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

11.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 23.0** "**Electrical Specifications**".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART R	eceive Data	a Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Asynchronous Reception.

16.4 AUSART Operation During Sleep

The AUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

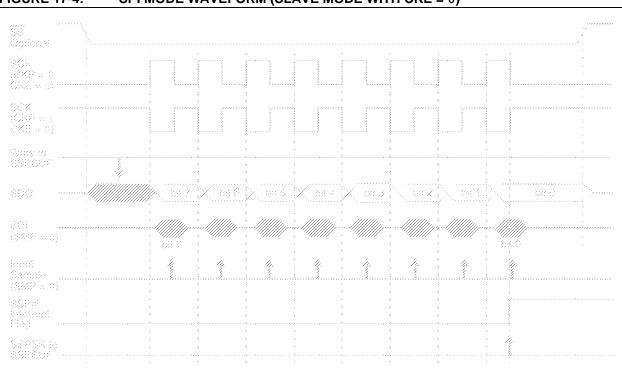
16.4.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (refer to Section 16.3.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 0004h will be called.


16.4.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (refer to Section 16.3.2.2 "Synchronous Slave Transmission Setup:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit is also set then the Interrupt Service Routine at address 0004h will be called.

FIGURE 17-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

SS SCK (CKP = 0 $\dot{C}KE = 1)$ SCK (CKP = 1 CKE = 1) Write to SSPBUF bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 SDO bit '7 bit 3 ï SDI (SMP = 0)I bit 0 bit 7 Input Sample (SMP = 0)SSPIF Interrupt Flag SSPSR to SSPBUF 1 . i

FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
APFCON	—	—	_	—	_	_	SSSEL	CCP2SEL	00	00
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2	Timer2 Peri	iod Register	•	•				•	1111 1111	1111 1111
SSPBUF	Synchronou	us Serial Port	Receive But	fer/Transmit	Register				XXXX XXXX	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

17.2.5 RECEPTION

When the R/\overline{W} bit of the received address byte is clear, the master will write data to the slave. If an address match occurs, the received address is loaded into the SSPBUF register. An address byte overflow will occur if that loaded address is not read from the SSPBUF before the next complete byte is received.

An SSP interrupt is generated for each data transfer byte. The BF, R/\overline{W} and D/\overline{A} bits of the SSPSTAT register are used to determine the status of the last received byte.

FIGURE 17-10: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

R/ Receiving Address	$\overline{W} = 0$ $\overline{\Delta C K}$ Receiving Data $\overline{\Delta C K}$ Receiving Data	
SDA 1 A7XA6XA5XA4XA3XA2XA1	ACK Receiving Data ACK Receiving Data /D7/D6/D5/D4/D3/D2/D1/D0//D7/D6/D5/D4/D3/	
	3_91_2_3_4_5_6_7_8_9_1_2_3_4_5_	/6_/7_/8 _ _/9_/ [!] ₽ [!] I
SSPIF	Cleared in software	Bus Master sends Stop
BF	 SSPBUF register is read 	condition
SSPOV		
	Bit SSPOV is set because the SSPBUF register is	s still full. 🗕
		s not sent.

SUBWF	Subtract W	from f			
Syntax:	[label] SU	JBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	ation: (f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	W register f '0', the resu register. If 'o	s complement method) rom register 'f'. If 'd' is It is stored in the W d' is '1', the result is in register 'f.			
	C = 0	W > f			
	C = 1	W≤f			

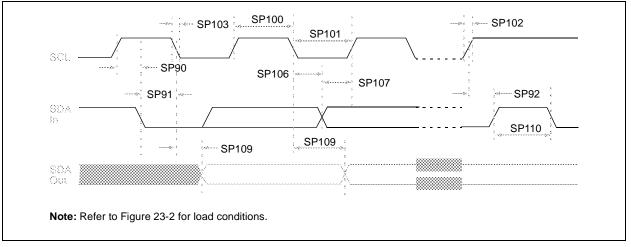
 $\overline{DC} = 0$

DC = 1

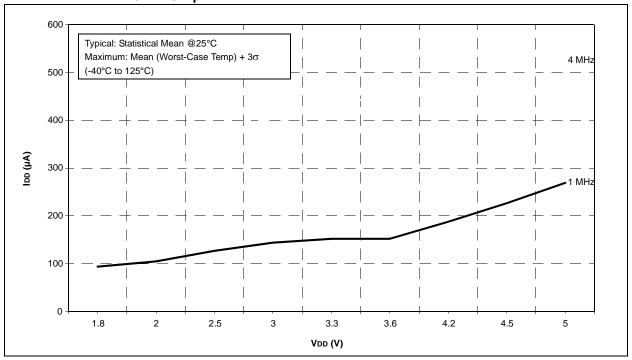
W<3:0> > f<3:0> W<3:0> \leq f<3:0>

XORLW	Exclusive OR literal with W
Syntax:	[label] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.


XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Param No.	Symbol	Charact	Min.	Тур	Max.	Units	Conditions		
SP90*	TSU:STA	Start condition	100 kHz mode	4700		_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_	—		Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first	
		Hold time	400 kHz mode	600	_	_		clock pulse is generated	
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	—	_	ns		
		Setup time	400 kHz mode	600	_	_			
SP93	THD:STO	Stop condition	100 kHz mode	4000	—	—	ns		
		Hold time	400 kHz mode	600	_				


TABLE 23-12: I²C BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

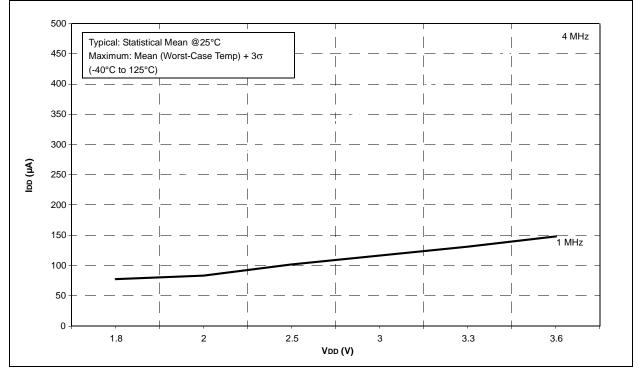
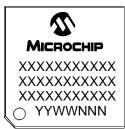


FIGURE 24-5: PIC16F722/3/4/6/7 MAXIMUM IDD vs. VDD OVER Fosc, EXTRC MODE, VCAP = 0.1μ F

Package Marking Information (Continued)

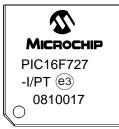
44-Lead QFN


28-Lead SOIC

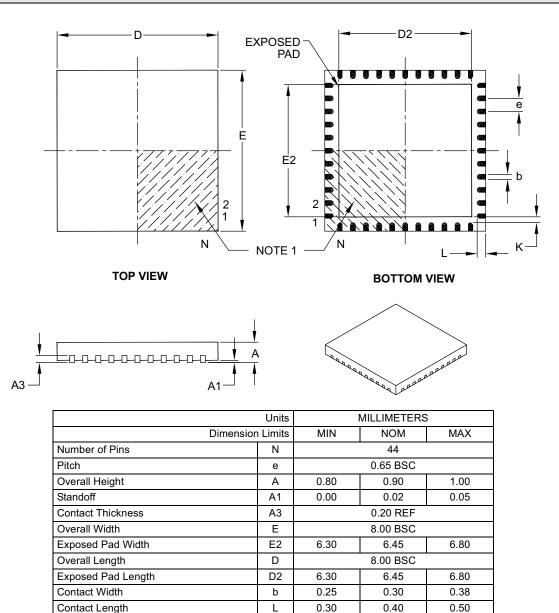
28-Lead SSOP

44-Lead TQFP

Example


Example

Example



Example

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Κ

0.20

_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

Contact-to-Exposed Pad

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

_

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (12/2007)

Original release.

Revision B (08/2008)

Electrical Specification updates; Package Drawings; miscellaneous updates.

Revision C (04/2009)

Revised data sheet title; Revised Low-Power Features section; Revised Section 6.2.2.4 RA3/AN3/VREF; Revised Figure 16-8 Synchronous Reception.

Revision D (07/2009)

Removed the Preliminary Label; Updated the "Electrical Characteristics" section; Added charts in the "Char. Data" section; Deleted "Based 8-Bit CMOS" from title; Updated the "Special Microcontroller Features" section and the "Peripheral Features" section; Changed the title of the "Low Power Features" section into "Extreme Low-Power Management PIC16LF72X with nanoWatt XLP" and updated this section; Inserted new section – "Analog Features" (page 1); Changed the title of the "Peripheral Features" section into "Peripheral Highlights" and updated the section.

Revision E (10/2009)

Added paragraph to section 5.0 (LDO Voltage Regulator); Updated the Electrical Specifications section (Added another absolute Maximum Rating; Updated section 23.1 and Table 23-4); Updated the Pin Diagrams with the UQFN package; Updated Table 1, adding UQFN; Updated section 23.5 (Thermal Considerations); Updated the Packaging Information section adding the UQFN Package; Updated the Product Identification System section.

Revision F (12/2015)

Updated Table 2; Updated 23.1, 23.3 and 9.2.4 Sections; Updated Figure 23-9; Other minor corrections.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{B}}$ devices to the PIC16F72X family of devices.

B.1 PIC16F77 to PIC16F72X

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F77	PIC16F727	
Max. Operating Speed	20 MHz	20 MHz	
Max. Program Memory (Words)	8K	8K	
Max. SRAM (Bytes)	368	368	
A/D Resolution	8-bit	8-bit	
Timers (8/16-bit)	2/1	2/1	
Oscillator Modes	4	8	
Brown-out Reset	Y	Y	
Internal Pull-ups	RB<7:0>	RB<7:0>	
Interrupt-on-change	RB<7:4>	RB<7:0>	
Comparator	0	0	
USART	Y	Y	
Extended WDT	Ν	N	
Software Control Option of WDT/BOR	N	N	
INTOSC Frequencies	None	500 kHz - 16 MHz	
Clock Switching	Ν	Ν	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>[X]</u> (1)	¥	<u>/xx</u>	<u>xxx</u>	Exam	ples:
Device	Tape and Reel Option	Temperature Range	Package	Pattern	b) F	IC16F722-E/SP 301 = Extended Temp., kinny PDIP package, QTP pattern #301 IC16F722-I/SO = Industrial Temp., SOIC ackage
Device:	PIC16F722, PIC16 PIC16F723, PIC16 PIC16F724, PIC16 PIC16F726, PIC16 PIC16F726, PIC16 PIC16F727, PIC16	LF723, PIC16F723 LF724, PIC16F724 LF726, PIC16F726	T, PIC16LF72 T, PIC16LF72 T, PIC16LF72	23T ⁽¹⁾ 24T ⁽¹⁾ 26T ⁽¹⁾		uonugo
Tape and Reel Option:	$I = -40^{\circ}C \text{ to}$ $E = -40^{\circ}C \text{ to}$ $MV = \text{Micro Le}$					
Temperature Range:		o +85°C (Indus o +125°C (Exten			Note 1	: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and
Package:	P = Plastic IPT = TQFP (1SO = SOIC	ead Frame (QFN) DIP Thin Quad Flatpack Plastic DIP)			is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.