

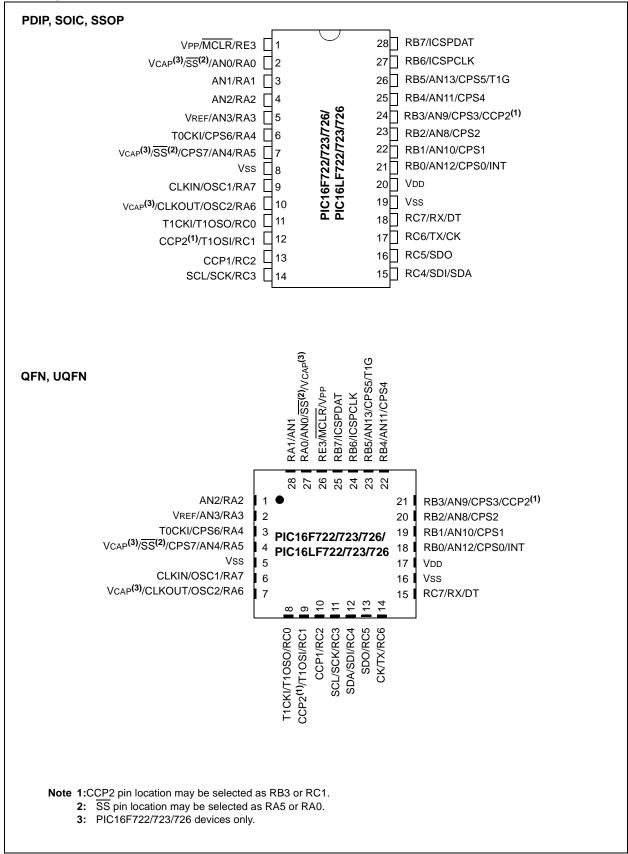
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f727t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F722/3/4/6/7

Pin Diagrams - 28-PIN PDIP/SOIC/SSOP/QFN/UQFN (PIC16F722/723/726/PIC16LF722/723/726)

2.2.2.2 OPTION register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull-ups on PORTB

Note:	To achieve a 1:1 prescaler assignment for
	Timer0, assign the prescaler to the WDT
	by setting the PSA bit of the
	OPTION_REG register to '1'. Refer to
	Section 11.1.3 "Software
	Programmable Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual bits in the WPUB register					
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin					
bit 5	TOCS: Timer0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)					
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin					
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module					
bit 2-0	PS<2:0>: Prescaler Rate Select bits					
	Bit Value Timer0 Rate WDT Rate					
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32					

1:128

1:256

1:64

1 : 128

110

111

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TOIE	INTE	RBIE ⁽¹⁾	T0IF ⁽²⁾	INTF	RBIF
bit 7							bit C
Legend: R = Readabl	o hit	W = Writable I	nit	II – I Inimpler	nented bit, read	1 26 '0'	
-n = Value at		'1' = Bit is set	JIL	0' = Bit is cle		x = Bit is unkr	NOWD
		1 – Dit 13 Set			areu		IOWIT
bit 7	GIE: Global Ir	nterrupt Enable	bit				
	1 = Enables a 0 = Disables a	all unmasked in all interrupts	terrupts				
bit 6	1 = Enables a	eral Interrupt Er all unmasked pe all peripheral in	eripheral inte	rrupts			
bit 5	1 = Enables t	Overflow Interr he Timer0 inter the Timer0 inter	rupt	it			
bit 4	1 = Enables t	IT External Inte he RB0/INT ext the RB0/INT ex	ernal interru	ot			
bit 3	1 = Enables t	B Change Intern he PORTB cha the PORTB cha	nge interrupt				
bit 2	1 = TMR0 reg	Overflow Interr gister has overfl gister did not ov	owed (must l		oftware)		
bit 1	1 = The RB0/	T External Inte INT external int INT external int	errupt occuri	ed (must be cle	eared in softwa	re)	
bit 0				eneral purpose	I/O pins chang	jed state (must	be cleared i
	0 = None of t				h		

REGISTER 4-1: INTCON: INTERRUPT CONTROL REGISTER

- The appropriate bits in the IOCB register must also be set. Note 1:
 - 2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing T0IF bit.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7			•			•	bit 0
Legend:							
R = Readable bit W = Writable b		bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 6-7: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 6-8: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCB7 | IOCB6 | IOCB5 | IOCB4 | IOCB3 | IOCB2 | IOCB1 | IOCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **IOCB<7:0>:** Interrupt-on-Change PORTB Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

REGISTER 6-9: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively

0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

6.5.6 RD4/CPS12

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

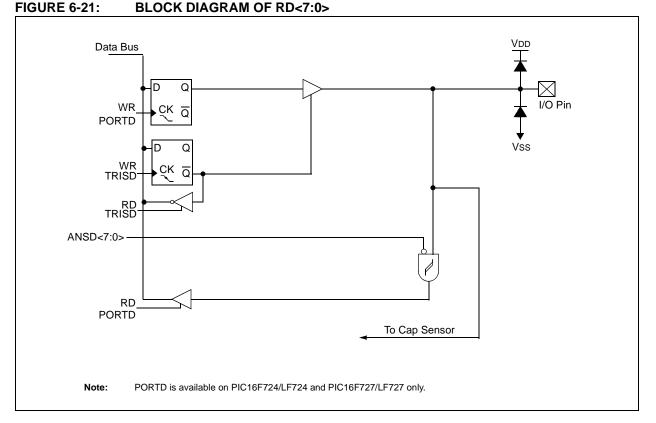
- a general purpose I/O
- · a capacitive sensing input

6.5.7 RD5/CPS13

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- a capacitive sensing input

6.5.8 RD6/CPS14


Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

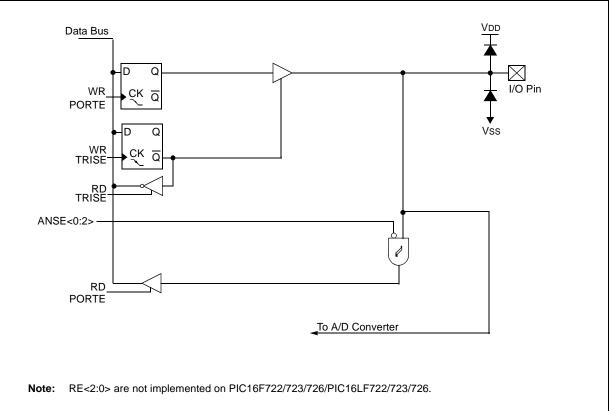
6.5.9 RD7/CPS15

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

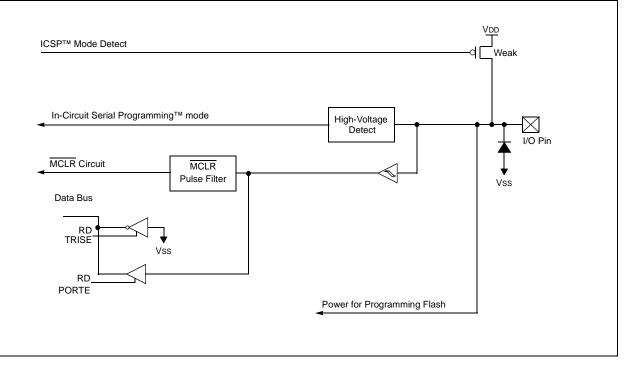
- a general purpose I/O
- · a capacitive sensing input

TABLE 6-4: SUMM	IARY OF REGISTERS ASSOCIATED WITH PORTD ⁽¹⁾
-----------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
CPSCON0	CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	0 0000	0 0000
CPSCON1		—	—	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	0000	0000
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	xxxx xxxx
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111


Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.**Note 1:**These registers are not implemented on the PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

© 2007-2015 Microchip Technology Inc.


DS40001341F-page 79

PIC16(L)F722/3/4/6/7

8.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2 registers, Code Protection and Device ID.

8.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 register at 2007h and Configuration Word 2 register at 2008h. These registers are only accessible during programming.

REGISTER 8-1: CONFIG1: CONFIGURATION WORD REGISTER 1

		R/P-1	R/P-1	U-1 ⁽⁴⁾	R/P-1	R/P-1	R/P-1
—	— — DE		PLLEN	_	BORV	BOREN1	BOREN0
bit 15							bit 8

U-1 ⁽⁴⁾	R/P-1	R/P-1 R/P-1		R/P-1 R/P-1		R/P-1	R/P-1
_	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit 7							bit 0

Legend:	P = Programmable bit	P = Programmable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 13	DEBUG: In-Circuit Debugger Mode bit 1 = In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger	
bit 12	PLLEN: INTOSC PLL Enable bit 0 = INTOSC Frequency is 500 kHz 1 = INTOSC Frequency is 16 MHz (32x)	
bit 11	Unimplemented: Read as '1'	
bit 10	BORV: Brown-out Reset Voltage selection bit 0 = Brown-out Reset Voltage (VBOR) set to 2.5 V nominal 1 = Brown-out Reset Voltage (VBOR) set to 1.9 V nominal	
bit 9-8	BOREN<1:0>: Brown-out Reset Selection bits ⁽¹⁾ 0x = BOR disabled (Preconditioned State) 10 = BOR enabled during operation and disabled in Sleep 11 = BOR enabled	
bit 7	Unimplemented: Read as '1'	
bit 6	CP : Code Protection bit ⁽²⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled	
bit 5	MCLRE: <u>RE3/MCLR</u> pin function select bit ⁽³⁾ 1 = RE3/ <u>MCLR</u> pin function is MCLR 0 = RE3/MCLR pin function is digital input, MCLR internally tied to VDD	
Note 1: 2: 3:	Enabling Brown-out Reset does not automatically enable Power-up Timer. The entire program memory will be erased when the code protection is turned off. When \overline{MCLR} is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.	

4: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0				
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7		ull-ups are dis	abled	dual port latch	values						
bit 6	•	errupt Edge Se on rising edge on falling edge	of INT pin								
bit 5	TOCS: TMR0 Clock Source Select bit 1 = Transition on T0CKI pin or CPSOSC signal 0 = Internal instruction cycle clock (FOSC/4)										
bit 4		Source Edge t on high-to-lov t on low-to-hig	w transition or								
bit 3		er Assignmen is assigned to is assigned to	the WDT	nodule							
bit 2-0	PS<2:0>: Pre	escaler Rate S	elect bits								
	BIT	VALUE TMR0 R	ATE WDT RA	TE							
	0 0 1 1 1	00 1:2 01 1:4 10 1:8 11 1:1 00 1:3 01 1:6 10 1:1	1:2 1:4 1:8 1:16 4 1:32 28								
TABLE 11-1:			TERS ASSO		H TIMERO						

REGISTER 11-1: OPTION_REG: OPTION REGISTER

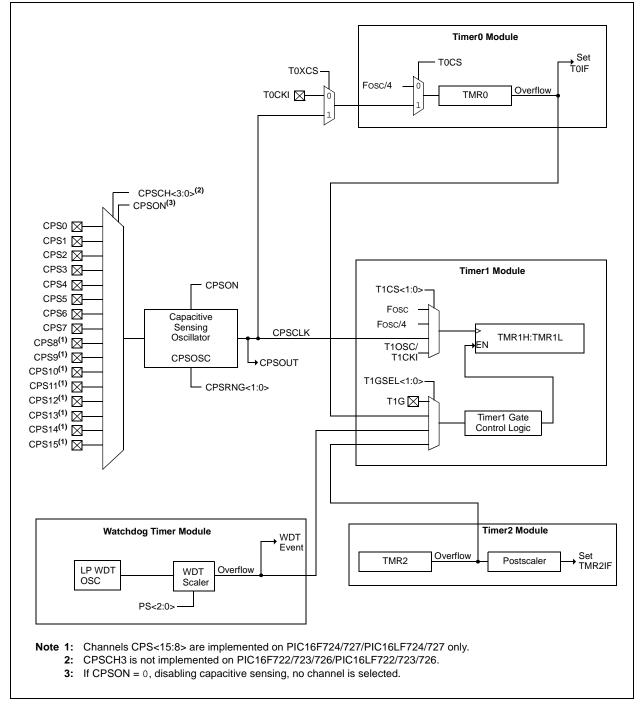
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CPSCON0	CPSON				CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TMR0	Timer0 Mo	dule Register	xxxx xxxx	uuuu uuuu						
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, rea	d as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-3	TOUTPS<3:0	>: Timer2 Out	out Postscaler	Select bits							
	0000 = 1:1 P	-									
	0001 = 1:2 P	ostscaler									
	0010 = 1:3 P	ostscaler									
	0011 = 1:4 P										
		1:5 Postscaler									
		:6 Postscaler									
	0110 = 1:7 P 0111 = 1:8 P										
	1000 = 1.9 P										
	1000 = 1.31										
	1010 = 1:11										
	1011 = 1:12	Postscaler									
	1100 = 1:13	1100 = 1:13 Postscaler									
	1101 = 1:14 Postscaler										
	1110 = 1:15 Postscaler										
	1111 = 1:16										
bit 2	TMR2ON: Tir	ner2 On bit									
	1 = Timer2 is										
	0 = Timer2 is	s off									
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Sel	ect bits							
	00 = Prescale										
	01 = Prescale	-									
	1x = Prescale	er is 16									
TABLE 13-1:	SUMMAR		FRS ASSO	CIATED WITH	H TIMER2						

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

IADEE	10-1.							14		
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2	Timer2 Mod	dule Period R	egister						1111 1111	1111 1111
TMR2	Holding Re	gister for the		0000 0000	0000 0000					
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000


x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module. Legend:

14.0 CAPACITIVE SENSING MODULE

The capacitive sensing module allows for an interaction with an end user without a mechanical interface. In a typical application, the capacitive sensing module is attached to a pad on a printed circuit board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the capacitive sensing module. The capacitive sensing module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- Multiple timer resources
- Software control
- · Operation during Sleep

FIGURE 14-1: CAPACITIVE SENSING BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_		CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL	Capture/Compare/PWM Register X Low Byte								xxxx xxxx	uuuu uuuu
CCPRxH	Capture/Com	Capture/Compare/PWM Register X High Byte								
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	-	—	-	—	—	—	CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	-	—	-	—	—	—	CCP2IF	0	0
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	00x0 0x00
TMR1L	Holding Regi	ster for the L	east Significa	nt Byte of the	16-bit TMR1 I	Register			xxxx xxxx	uuuu uuuu
TMR1H	Holding Regi	ster for the M	ost Significar	nt Byte of the	16-bit TMR1 F	Register			xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

15.3.4 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 15-4.

EQUATION 15-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2+1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

TABLE 15-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 15-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

15.3.5 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

15.3.6 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 7.0** "**Oscillator Module**" for additional details.

15.3.7 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

15.3.8 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCPx) output driver(s) by setting the associated TRIS bit(s).
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.

- Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin:
 - Wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
 - Enable the PWM pin (CCPx) output driver(s) by clearing the associated TRIS bit(s).
 - **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

17.1.2 SLAVE MODE

For any SPI device acting as a slave, the data is transmitted and received as external clock pulses appear on SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

17.1.2.1 Slave Mode Operation

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready.

The slave has no control as to when data will be clocked in or out of the device. All data that is to be transmitted, to a master or another slave, must be loaded into the SSPBUF register before the first clock pulse is received.

Once eight bits of data have been received:

- · Received byte is moved to the SSPBUF register
- BF bit of the SSPSTAT register is set
- SSPIF bit of the PIR1 register is set

Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

The user's firmware must read SSPBUF, clearing the BF flag, or the SSPOV bit of the SSPCON register will be set with the reception of the next byte and communication will be disabled.

A SPI module transmits and receives at the same time, occasionally causing dummy data to be transmitted/received. It is up to the user to determine which data is to be used and what can be discarded.

17.1.2.2 Enabling Slave I/O

To enable the serial port, the SSPEN bit of the SSPCON register must be set. If a Slave mode of operation is selected in the SSPM bits of the SSPCON register, the SDI, SDO, SCK pins will be assigned as serial port pins.

For these pins to function as serial port pins, they must have their corresponding data direction bits set or cleared in the associated TRIS register as follows:

- · SDI configured as input
- · SDO configured as output
- · SCK configured as input

Optionally, a fourth pin, Slave Select (\overline{SS}) may be used in Slave mode. Slave Select may be configured to operate on one of the following pins via the SSSEL bit in the APFCON register.

- RA5/AN4/SS
- RA0/AN0/SS

Upon selection of a Slave Select pin, the appropriate bits must be set in the ANSELA and TRISA registers. Slave Select must be set as an input by setting the corresponding bit in TRISA, and digital I/O must be enabled on the SS pin by clearing the corresponding bit of the ANSELA register.

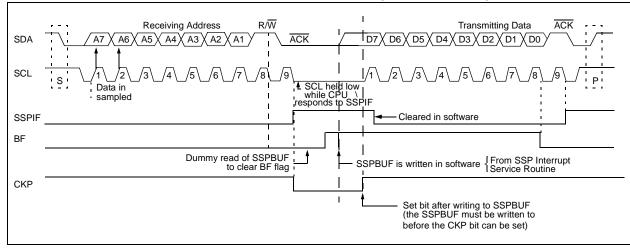
17.1.2.3 Slave Mode Setup

When initializing the SSP module to SPI Slave mode, compatibility must be ensured with the master device. This is done by programming the appropriate control bits of the SSPCON and SSPSTAT registers. These control bits allow the following to be specified:

- · SCK as clock input
- Idle state of SCK (CKP bit)
- Data input sample phase (SMP bit)
- Output data on rising/falling edge of SCK (CKE bit)

Figure 17-4 and Figure 17-5 show example waveforms of Slave mode operation.

REGISTER 17-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)


R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit 0

R = Readabl	le bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	SMP: SF	PI Data Input Sample Phase	bit	
		ter mode:		
	•	t data sampled at end of data	•	
	0 = Input <u>SPI Slav</u>	t data sampled at middle of c	data output time	
		ist be cleared when SPI is us	sed in Slave mode	
bit 6	CKE: SP	PI Clock Edge Select bit		
		le, CKP = 0:		
		stable on rising edge of SCI		
		stable on falling edge of SC	K	
		l <u>e, CKP = 1:</u> stable on falling edge of SC	ĸ	
		stable on rising edge of SCI		
bit 5		ta/Address bit		
	Used in I	l ² C mode only.		
bit 4	P: Stop b	oit		
	Used in I	I ² C mode only.		
bit 3	S: Start I	bit		
	Used in	I ² C mode only.		
bit 2	R/W: Re	ad/Write Information bit		
	Used in I	l ² C mode only.		
bit 1	UA: Upd	late Address bit		
	Used in I	I ² C mode only.		
bit 0	BF: Buffe	er Full Status bit		
		eive complete, SSPBUF is fu		
	0 - Rece	eive not complete, SSPBUF	ic omntv	

17.2.6 TRANSMISSION

When the R/W bit of the received address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set and the slave will respond to the master by reading out data. After the address match, an ACK pulse is generated by the slave hardware and the SCL pin is held low (clock is automatically stretched) until the slave is ready to respond. See **Section 17.2.7 "Clock Stretching"**. The data the slave will transmit must be loaded into the SSPBUF register, which sets the BF bit. The SCL line is released by setting the CKP bit of the SSPCON register.

An SSP interrupt is generated for each transferred data byte. The SSPIF flag bit of the PIR1 register initiates an SSP interrupt, and must be cleared by software before the next byte is transmitted. The BF bit of the SSPSTAT register is cleared on the falling edge of the eighth received clock pulse. The SSPIF flag bit is set on the falling edge of the ninth clock pulse. Following the eighth falling clock edge, control of the SDA line is released back to the master so that the master can acknowledge or not acknowledge the response. If the master sends a not acknowledge, the slave's transmission is complete and the slave must monitor for the next Start condition. If the master acknowledges, control of the bus is returned to the slave to transmit another byte of data. Just as with the previous byte, the clock is stretched by the slave, data must be loaded into the SSPBUF and CKP must be set to release the clock line (SCL).

FIGURE 17-12: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

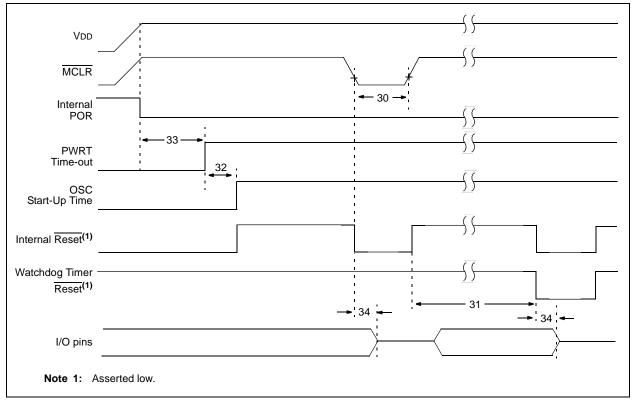
PIC16(L)F722/3/4/6/7

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$				
Status Affected:	None				
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INT- CON<7>). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	RETFIE				
	After Interrupt PC = TOS GIE = 1				

RETLW	Return with literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE;W contains table
TABLE	<pre>;offset value ;W now has table value ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8</pre>
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion.

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_		70	ns	VDD = 3.3-5.0V		
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-5.0V		
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns			
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns		_	ns			
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V		
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	VDD = 3.3-5.0V		
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns			
OS18	TioR	Port output rise time ⁽²⁾		40 15	72 32	ns	VDD = 2.0V VDD = 3.3-5.0V		
OS19	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 3.3-5.0V		
OS20*	Tinp	INT pin input high or low time	25	—	—	ns			
OS21*	Trbp	PORTB interrupt-on-change new input level time	Тсү	—	—	ns			

TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS

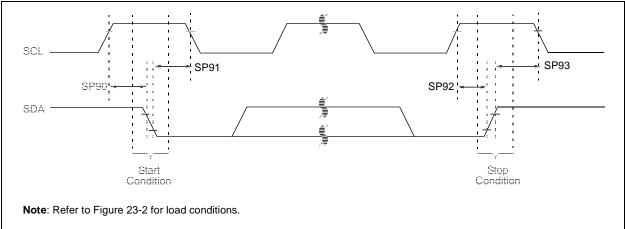

* These parameters are characterized but not tested.

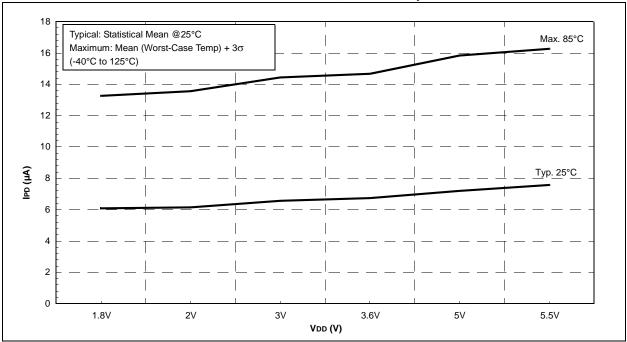
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

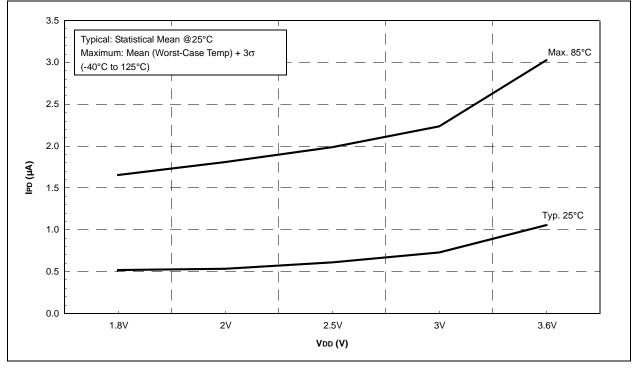
FIGURE 23-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

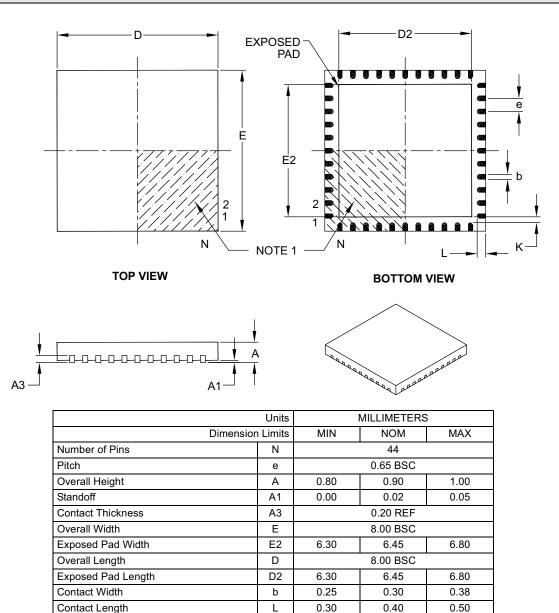

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{\mathrm{SS}}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү		—	ns	
SP71*	TscH	SCK input high time (Slave mode)		TCY + 20		_	ns	
SP72*	TscL	SCK input low time (Slave mode)		TCY + 20		_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge		100		—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100		—	ns	
SP75* TDOR	TDOR	SDO data output rise time	3.0-5.5V	—	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76*	TDOF	SDO data output fall time		—	10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impedance		10	_	50	ns	
SP78* TscR	TscR	SCK output rise time	3.0-5.5V	—	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCK output fall time (Master mode)		_	10	25	ns	
SP80*	TscH2doV,	SDO data output valid after SCK	3.0-5.5V	—	_	50	ns	
	TscL2doV	edge	1.8-5.5V	—	_	145	ns	
SP81*	TDOV2SCH, TDOV2SCL	SDO data output setup to SCK edge		Тсу	_	—	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_	-	ns	


TABLE 23-11: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.


FIGURE 23-20: I²C BUS START/STOP BITS TIMING


FIGURE 24-47: PIC16F722/3/4/6/7 WDT IPD vs. VDD, VCAP = 0.1 µF

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Κ

0.20

_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

Contact-to-Exposed Pad

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

_